revert between 56095 -> 55830 in arch
[AROS.git] / workbench / libs / jpeg / jcparam.c
blob4b2bee24976b34c55745da89769512ab351c5417
1 /*
2 * jcparam.c
4 * Copyright (C) 1991-1998, Thomas G. Lane.
5 * Modified 2003-2013 by Guido Vollbeding.
6 * This file is part of the Independent JPEG Group's software.
7 * For conditions of distribution and use, see the accompanying README file.
9 * This file contains optional default-setting code for the JPEG compressor.
10 * Applications do not have to use this file, but those that don't use it
11 * must know a lot more about the innards of the JPEG code.
14 #define JPEG_INTERNALS
15 #include "jinclude.h"
16 #include "jpeglib.h"
20 * Quantization table setup routines
23 GLOBAL(void)
24 jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl,
25 const unsigned int *basic_table,
26 int scale_factor, boolean force_baseline)
27 /* Define a quantization table equal to the basic_table times
28 * a scale factor (given as a percentage).
29 * If force_baseline is TRUE, the computed quantization table entries
30 * are limited to 1..255 for JPEG baseline compatibility.
33 JQUANT_TBL ** qtblptr;
34 int i;
35 long temp;
37 /* Safety check to ensure start_compress not called yet. */
38 if (cinfo->global_state != CSTATE_START)
39 ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
41 if (which_tbl < 0 || which_tbl >= NUM_QUANT_TBLS)
42 ERREXIT1(cinfo, JERR_DQT_INDEX, which_tbl);
44 qtblptr = & cinfo->quant_tbl_ptrs[which_tbl];
46 if (*qtblptr == NULL)
47 *qtblptr = jpeg_alloc_quant_table((j_common_ptr) cinfo);
49 for (i = 0; i < DCTSIZE2; i++) {
50 temp = ((long) basic_table[i] * scale_factor + 50L) / 100L;
51 /* limit the values to the valid range */
52 if (temp <= 0L) temp = 1L;
53 if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */
54 if (force_baseline && temp > 255L)
55 temp = 255L; /* limit to baseline range if requested */
56 (*qtblptr)->quantval[i] = (UINT16) temp;
59 /* Initialize sent_table FALSE so table will be written to JPEG file. */
60 (*qtblptr)->sent_table = FALSE;
64 /* These are the sample quantization tables given in JPEG spec section K.1.
65 * The spec says that the values given produce "good" quality, and
66 * when divided by 2, "very good" quality.
68 static const unsigned int std_luminance_quant_tbl[DCTSIZE2] = {
69 16, 11, 10, 16, 24, 40, 51, 61,
70 12, 12, 14, 19, 26, 58, 60, 55,
71 14, 13, 16, 24, 40, 57, 69, 56,
72 14, 17, 22, 29, 51, 87, 80, 62,
73 18, 22, 37, 56, 68, 109, 103, 77,
74 24, 35, 55, 64, 81, 104, 113, 92,
75 49, 64, 78, 87, 103, 121, 120, 101,
76 72, 92, 95, 98, 112, 100, 103, 99
78 static const unsigned int std_chrominance_quant_tbl[DCTSIZE2] = {
79 17, 18, 24, 47, 99, 99, 99, 99,
80 18, 21, 26, 66, 99, 99, 99, 99,
81 24, 26, 56, 99, 99, 99, 99, 99,
82 47, 66, 99, 99, 99, 99, 99, 99,
83 99, 99, 99, 99, 99, 99, 99, 99,
84 99, 99, 99, 99, 99, 99, 99, 99,
85 99, 99, 99, 99, 99, 99, 99, 99,
86 99, 99, 99, 99, 99, 99, 99, 99
90 GLOBAL(void)
91 jpeg_default_qtables (j_compress_ptr cinfo, boolean force_baseline)
92 /* Set or change the 'quality' (quantization) setting, using default tables
93 * and straight percentage-scaling quality scales.
94 * This entry point allows different scalings for luminance and chrominance.
97 /* Set up two quantization tables using the specified scaling */
98 jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl,
99 cinfo->q_scale_factor[0], force_baseline);
100 jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl,
101 cinfo->q_scale_factor[1], force_baseline);
105 GLOBAL(void)
106 jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor,
107 boolean force_baseline)
108 /* Set or change the 'quality' (quantization) setting, using default tables
109 * and a straight percentage-scaling quality scale. In most cases it's better
110 * to use jpeg_set_quality (below); this entry point is provided for
111 * applications that insist on a linear percentage scaling.
114 /* Set up two quantization tables using the specified scaling */
115 jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl,
116 scale_factor, force_baseline);
117 jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl,
118 scale_factor, force_baseline);
122 GLOBAL(int)
123 jpeg_quality_scaling (int quality)
124 /* Convert a user-specified quality rating to a percentage scaling factor
125 * for an underlying quantization table, using our recommended scaling curve.
126 * The input 'quality' factor should be 0 (terrible) to 100 (very good).
129 /* Safety limit on quality factor. Convert 0 to 1 to avoid zero divide. */
130 if (quality <= 0) quality = 1;
131 if (quality > 100) quality = 100;
133 /* The basic table is used as-is (scaling 100) for a quality of 50.
134 * Qualities 50..100 are converted to scaling percentage 200 - 2*Q;
135 * note that at Q=100 the scaling is 0, which will cause jpeg_add_quant_table
136 * to make all the table entries 1 (hence, minimum quantization loss).
137 * Qualities 1..50 are converted to scaling percentage 5000/Q.
139 if (quality < 50)
140 quality = 5000 / quality;
141 else
142 quality = 200 - quality*2;
144 return quality;
148 GLOBAL(void)
149 jpeg_set_quality (j_compress_ptr cinfo, int quality, boolean force_baseline)
150 /* Set or change the 'quality' (quantization) setting, using default tables.
151 * This is the standard quality-adjusting entry point for typical user
152 * interfaces; only those who want detailed control over quantization tables
153 * would use the preceding routines directly.
156 /* Convert user 0-100 rating to percentage scaling */
157 quality = jpeg_quality_scaling(quality);
159 /* Set up standard quality tables */
160 jpeg_set_linear_quality(cinfo, quality, force_baseline);
165 * Huffman table setup routines
168 LOCAL(void)
169 add_huff_table (j_compress_ptr cinfo,
170 JHUFF_TBL **htblptr, const UINT8 *bits, const UINT8 *val)
171 /* Define a Huffman table */
173 int nsymbols, len;
175 if (*htblptr == NULL)
176 *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
178 /* Copy the number-of-symbols-of-each-code-length counts */
179 MEMCOPY((*htblptr)->bits, bits, SIZEOF((*htblptr)->bits));
181 /* Validate the counts. We do this here mainly so we can copy the right
182 * number of symbols from the val[] array, without risking marching off
183 * the end of memory. jchuff.c will do a more thorough test later.
185 nsymbols = 0;
186 for (len = 1; len <= 16; len++)
187 nsymbols += bits[len];
188 if (nsymbols < 1 || nsymbols > 256)
189 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
191 MEMCOPY((*htblptr)->huffval, val, nsymbols * SIZEOF(UINT8));
193 /* Initialize sent_table FALSE so table will be written to JPEG file. */
194 (*htblptr)->sent_table = FALSE;
198 LOCAL(void)
199 std_huff_tables (j_compress_ptr cinfo)
200 /* Set up the standard Huffman tables (cf. JPEG standard section K.3) */
201 /* IMPORTANT: these are only valid for 8-bit data precision! */
203 static const UINT8 bits_dc_luminance[17] =
204 { /* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 };
205 static const UINT8 val_dc_luminance[] =
206 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
208 static const UINT8 bits_dc_chrominance[17] =
209 { /* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 };
210 static const UINT8 val_dc_chrominance[] =
211 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
213 static const UINT8 bits_ac_luminance[17] =
214 { /* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d };
215 static const UINT8 val_ac_luminance[] =
216 { 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
217 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
218 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
219 0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
220 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
221 0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
222 0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
223 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
224 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
225 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
226 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
227 0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
228 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
229 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
230 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
231 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
232 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
233 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
234 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
235 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
236 0xf9, 0xfa };
238 static const UINT8 bits_ac_chrominance[17] =
239 { /* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 };
240 static const UINT8 val_ac_chrominance[] =
241 { 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
242 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
243 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
244 0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
245 0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
246 0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
247 0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
248 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
249 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
250 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
251 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
252 0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
253 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
254 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
255 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
256 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
257 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
258 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
259 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
260 0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
261 0xf9, 0xfa };
263 add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[0],
264 bits_dc_luminance, val_dc_luminance);
265 add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[0],
266 bits_ac_luminance, val_ac_luminance);
267 add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[1],
268 bits_dc_chrominance, val_dc_chrominance);
269 add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[1],
270 bits_ac_chrominance, val_ac_chrominance);
275 * Default parameter setup for compression.
277 * Applications that don't choose to use this routine must do their
278 * own setup of all these parameters. Alternately, you can call this
279 * to establish defaults and then alter parameters selectively. This
280 * is the recommended approach since, if we add any new parameters,
281 * your code will still work (they'll be set to reasonable defaults).
284 GLOBAL(void)
285 jpeg_set_defaults (j_compress_ptr cinfo)
287 int i;
289 /* Safety check to ensure start_compress not called yet. */
290 if (cinfo->global_state != CSTATE_START)
291 ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
293 /* Allocate comp_info array large enough for maximum component count.
294 * Array is made permanent in case application wants to compress
295 * multiple images at same param settings.
297 if (cinfo->comp_info == NULL)
298 cinfo->comp_info = (jpeg_component_info *)
299 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
300 MAX_COMPONENTS * SIZEOF(jpeg_component_info));
302 /* Initialize everything not dependent on the color space */
304 cinfo->scale_num = 1; /* 1:1 scaling */
305 cinfo->scale_denom = 1;
306 cinfo->data_precision = BITS_IN_JSAMPLE;
307 /* Set up two quantization tables using default quality of 75 */
308 jpeg_set_quality(cinfo, 75, TRUE);
309 /* Set up two Huffman tables */
310 std_huff_tables(cinfo);
312 /* Initialize default arithmetic coding conditioning */
313 for (i = 0; i < NUM_ARITH_TBLS; i++) {
314 cinfo->arith_dc_L[i] = 0;
315 cinfo->arith_dc_U[i] = 1;
316 cinfo->arith_ac_K[i] = 5;
319 /* Default is no multiple-scan output */
320 cinfo->scan_info = NULL;
321 cinfo->num_scans = 0;
323 /* Expect normal source image, not raw downsampled data */
324 cinfo->raw_data_in = FALSE;
326 /* The standard Huffman tables are only valid for 8-bit data precision.
327 * If the precision is higher, use arithmetic coding.
328 * (Alternatively, using Huffman coding would be possible with forcing
329 * optimization on so that usable tables will be computed, or by
330 * supplying default tables that are valid for the desired precision.)
331 * Otherwise, use Huffman coding by default.
333 cinfo->arith_code = cinfo->data_precision > 8 ? TRUE : FALSE;
335 /* By default, don't do extra passes to optimize entropy coding */
336 cinfo->optimize_coding = FALSE;
338 /* By default, use the simpler non-cosited sampling alignment */
339 cinfo->CCIR601_sampling = FALSE;
341 /* By default, apply fancy downsampling */
342 cinfo->do_fancy_downsampling = TRUE;
344 /* No input smoothing */
345 cinfo->smoothing_factor = 0;
347 /* DCT algorithm preference */
348 cinfo->dct_method = JDCT_DEFAULT;
350 /* No restart markers */
351 cinfo->restart_interval = 0;
352 cinfo->restart_in_rows = 0;
354 /* Fill in default JFIF marker parameters. Note that whether the marker
355 * will actually be written is determined by jpeg_set_colorspace.
357 * By default, the library emits JFIF version code 1.01.
358 * An application that wants to emit JFIF 1.02 extension markers should set
359 * JFIF_minor_version to 2. We could probably get away with just defaulting
360 * to 1.02, but there may still be some decoders in use that will complain
361 * about that; saying 1.01 should minimize compatibility problems.
363 * For wide gamut colorspaces (BG_RGB and BG_YCC), the major version will be
364 * overridden by jpeg_set_colorspace and set to 2.
366 cinfo->JFIF_major_version = 1; /* Default JFIF version = 1.01 */
367 cinfo->JFIF_minor_version = 1;
368 cinfo->density_unit = 0; /* Pixel size is unknown by default */
369 cinfo->X_density = 1; /* Pixel aspect ratio is square by default */
370 cinfo->Y_density = 1;
372 /* No color transform */
373 cinfo->color_transform = JCT_NONE;
375 /* Choose JPEG colorspace based on input space, set defaults accordingly */
377 jpeg_default_colorspace(cinfo);
382 * Select an appropriate JPEG colorspace for in_color_space.
385 GLOBAL(void)
386 jpeg_default_colorspace (j_compress_ptr cinfo)
388 switch (cinfo->in_color_space) {
389 case JCS_UNKNOWN:
390 jpeg_set_colorspace(cinfo, JCS_UNKNOWN);
391 break;
392 case JCS_GRAYSCALE:
393 jpeg_set_colorspace(cinfo, JCS_GRAYSCALE);
394 break;
395 case JCS_RGB:
396 jpeg_set_colorspace(cinfo, JCS_YCbCr);
397 break;
398 case JCS_YCbCr:
399 jpeg_set_colorspace(cinfo, JCS_YCbCr);
400 break;
401 case JCS_CMYK:
402 jpeg_set_colorspace(cinfo, JCS_CMYK); /* By default, no translation */
403 break;
404 case JCS_YCCK:
405 jpeg_set_colorspace(cinfo, JCS_YCCK);
406 break;
407 case JCS_BG_RGB:
408 /* No translation for now -- conversion to BG_YCC not yet supportet */
409 jpeg_set_colorspace(cinfo, JCS_BG_RGB);
410 break;
411 case JCS_BG_YCC:
412 jpeg_set_colorspace(cinfo, JCS_BG_YCC);
413 break;
414 default:
415 ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
421 * Set the JPEG colorspace, and choose colorspace-dependent default values.
424 GLOBAL(void)
425 jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace)
427 jpeg_component_info * compptr;
428 int ci;
430 #define SET_COMP(index,id,hsamp,vsamp,quant,dctbl,actbl) \
431 (compptr = &cinfo->comp_info[index], \
432 compptr->component_id = (id), \
433 compptr->h_samp_factor = (hsamp), \
434 compptr->v_samp_factor = (vsamp), \
435 compptr->quant_tbl_no = (quant), \
436 compptr->dc_tbl_no = (dctbl), \
437 compptr->ac_tbl_no = (actbl) )
439 /* Safety check to ensure start_compress not called yet. */
440 if (cinfo->global_state != CSTATE_START)
441 ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
443 /* For all colorspaces, we use Q and Huff tables 0 for luminance components,
444 * tables 1 for chrominance components.
447 cinfo->jpeg_color_space = colorspace;
449 cinfo->write_JFIF_header = FALSE; /* No marker for non-JFIF colorspaces */
450 cinfo->write_Adobe_marker = FALSE; /* write no Adobe marker by default */
452 switch (colorspace) {
453 case JCS_UNKNOWN:
454 cinfo->num_components = cinfo->input_components;
455 if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS)
456 ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
457 MAX_COMPONENTS);
458 for (ci = 0; ci < cinfo->num_components; ci++) {
459 SET_COMP(ci, ci, 1,1, 0, 0,0);
461 break;
462 case JCS_GRAYSCALE:
463 cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
464 cinfo->num_components = 1;
465 /* JFIF specifies component ID 1 */
466 SET_COMP(0, 0x01, 1,1, 0, 0,0);
467 break;
468 case JCS_RGB:
469 cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag RGB */
470 cinfo->num_components = 3;
471 SET_COMP(0, 0x52 /* 'R' */, 1,1, 0,
472 cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0,
473 cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0);
474 SET_COMP(1, 0x47 /* 'G' */, 1,1, 0, 0,0);
475 SET_COMP(2, 0x42 /* 'B' */, 1,1, 0,
476 cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0,
477 cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0);
478 break;
479 case JCS_YCbCr:
480 cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
481 cinfo->num_components = 3;
482 /* JFIF specifies component IDs 1,2,3 */
483 /* We default to 2x2 subsamples of chrominance */
484 SET_COMP(0, 0x01, 2,2, 0, 0,0);
485 SET_COMP(1, 0x02, 1,1, 1, 1,1);
486 SET_COMP(2, 0x03, 1,1, 1, 1,1);
487 break;
488 case JCS_CMYK:
489 cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag CMYK */
490 cinfo->num_components = 4;
491 SET_COMP(0, 0x43 /* 'C' */, 1,1, 0, 0,0);
492 SET_COMP(1, 0x4D /* 'M' */, 1,1, 0, 0,0);
493 SET_COMP(2, 0x59 /* 'Y' */, 1,1, 0, 0,0);
494 SET_COMP(3, 0x4B /* 'K' */, 1,1, 0, 0,0);
495 break;
496 case JCS_YCCK:
497 cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag YCCK */
498 cinfo->num_components = 4;
499 SET_COMP(0, 0x01, 2,2, 0, 0,0);
500 SET_COMP(1, 0x02, 1,1, 1, 1,1);
501 SET_COMP(2, 0x03, 1,1, 1, 1,1);
502 SET_COMP(3, 0x04, 2,2, 0, 0,0);
503 break;
504 case JCS_BG_RGB:
505 cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
506 cinfo->JFIF_major_version = 2; /* Set JFIF major version = 2 */
507 cinfo->num_components = 3;
508 /* Add offset 0x20 to the normal R/G/B component IDs */
509 SET_COMP(0, 0x72 /* 'r' */, 1,1, 0,
510 cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0,
511 cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0);
512 SET_COMP(1, 0x67 /* 'g' */, 1,1, 0, 0,0);
513 SET_COMP(2, 0x62 /* 'b' */, 1,1, 0,
514 cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0,
515 cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0);
516 break;
517 case JCS_BG_YCC:
518 cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
519 cinfo->JFIF_major_version = 2; /* Set JFIF major version = 2 */
520 cinfo->num_components = 3;
521 /* Add offset 0x20 to the normal Cb/Cr component IDs */
522 /* We default to 2x2 subsamples of chrominance */
523 SET_COMP(0, 0x01, 2,2, 0, 0,0);
524 SET_COMP(1, 0x22, 1,1, 1, 1,1);
525 SET_COMP(2, 0x23, 1,1, 1, 1,1);
526 break;
527 default:
528 ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
533 #ifdef C_PROGRESSIVE_SUPPORTED
535 LOCAL(jpeg_scan_info *)
536 fill_a_scan (jpeg_scan_info * scanptr, int ci,
537 int Ss, int Se, int Ah, int Al)
538 /* Support routine: generate one scan for specified component */
540 scanptr->comps_in_scan = 1;
541 scanptr->component_index[0] = ci;
542 scanptr->Ss = Ss;
543 scanptr->Se = Se;
544 scanptr->Ah = Ah;
545 scanptr->Al = Al;
546 scanptr++;
547 return scanptr;
550 LOCAL(jpeg_scan_info *)
551 fill_scans (jpeg_scan_info * scanptr, int ncomps,
552 int Ss, int Se, int Ah, int Al)
553 /* Support routine: generate one scan for each component */
555 int ci;
557 for (ci = 0; ci < ncomps; ci++) {
558 scanptr->comps_in_scan = 1;
559 scanptr->component_index[0] = ci;
560 scanptr->Ss = Ss;
561 scanptr->Se = Se;
562 scanptr->Ah = Ah;
563 scanptr->Al = Al;
564 scanptr++;
566 return scanptr;
569 LOCAL(jpeg_scan_info *)
570 fill_dc_scans (jpeg_scan_info * scanptr, int ncomps, int Ah, int Al)
571 /* Support routine: generate interleaved DC scan if possible, else N scans */
573 int ci;
575 if (ncomps <= MAX_COMPS_IN_SCAN) {
576 /* Single interleaved DC scan */
577 scanptr->comps_in_scan = ncomps;
578 for (ci = 0; ci < ncomps; ci++)
579 scanptr->component_index[ci] = ci;
580 scanptr->Ss = scanptr->Se = 0;
581 scanptr->Ah = Ah;
582 scanptr->Al = Al;
583 scanptr++;
584 } else {
585 /* Noninterleaved DC scan for each component */
586 scanptr = fill_scans(scanptr, ncomps, 0, 0, Ah, Al);
588 return scanptr;
593 * Create a recommended progressive-JPEG script.
594 * cinfo->num_components and cinfo->jpeg_color_space must be correct.
597 GLOBAL(void)
598 jpeg_simple_progression (j_compress_ptr cinfo)
600 int ncomps = cinfo->num_components;
601 int nscans;
602 jpeg_scan_info * scanptr;
604 /* Safety check to ensure start_compress not called yet. */
605 if (cinfo->global_state != CSTATE_START)
606 ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
608 /* Figure space needed for script. Calculation must match code below! */
609 if (ncomps == 3 &&
610 (cinfo->jpeg_color_space == JCS_YCbCr ||
611 cinfo->jpeg_color_space == JCS_BG_YCC)) {
612 /* Custom script for YCC color images. */
613 nscans = 10;
614 } else {
615 /* All-purpose script for other color spaces. */
616 if (ncomps > MAX_COMPS_IN_SCAN)
617 nscans = 6 * ncomps; /* 2 DC + 4 AC scans per component */
618 else
619 nscans = 2 + 4 * ncomps; /* 2 DC scans; 4 AC scans per component */
622 /* Allocate space for script.
623 * We need to put it in the permanent pool in case the application performs
624 * multiple compressions without changing the settings. To avoid a memory
625 * leak if jpeg_simple_progression is called repeatedly for the same JPEG
626 * object, we try to re-use previously allocated space, and we allocate
627 * enough space to handle YCC even if initially asked for grayscale.
629 if (cinfo->script_space == NULL || cinfo->script_space_size < nscans) {
630 cinfo->script_space_size = MAX(nscans, 10);
631 cinfo->script_space = (jpeg_scan_info *)
632 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
633 cinfo->script_space_size * SIZEOF(jpeg_scan_info));
635 scanptr = cinfo->script_space;
636 cinfo->scan_info = scanptr;
637 cinfo->num_scans = nscans;
639 if (ncomps == 3 &&
640 (cinfo->jpeg_color_space == JCS_YCbCr ||
641 cinfo->jpeg_color_space == JCS_BG_YCC)) {
642 /* Custom script for YCC color images. */
643 /* Initial DC scan */
644 scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
645 /* Initial AC scan: get some luma data out in a hurry */
646 scanptr = fill_a_scan(scanptr, 0, 1, 5, 0, 2);
647 /* Chroma data is too small to be worth expending many scans on */
648 scanptr = fill_a_scan(scanptr, 2, 1, 63, 0, 1);
649 scanptr = fill_a_scan(scanptr, 1, 1, 63, 0, 1);
650 /* Complete spectral selection for luma AC */
651 scanptr = fill_a_scan(scanptr, 0, 6, 63, 0, 2);
652 /* Refine next bit of luma AC */
653 scanptr = fill_a_scan(scanptr, 0, 1, 63, 2, 1);
654 /* Finish DC successive approximation */
655 scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
656 /* Finish AC successive approximation */
657 scanptr = fill_a_scan(scanptr, 2, 1, 63, 1, 0);
658 scanptr = fill_a_scan(scanptr, 1, 1, 63, 1, 0);
659 /* Luma bottom bit comes last since it's usually largest scan */
660 scanptr = fill_a_scan(scanptr, 0, 1, 63, 1, 0);
661 } else {
662 /* All-purpose script for other color spaces. */
663 /* Successive approximation first pass */
664 scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
665 scanptr = fill_scans(scanptr, ncomps, 1, 5, 0, 2);
666 scanptr = fill_scans(scanptr, ncomps, 6, 63, 0, 2);
667 /* Successive approximation second pass */
668 scanptr = fill_scans(scanptr, ncomps, 1, 63, 2, 1);
669 /* Successive approximation final pass */
670 scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
671 scanptr = fill_scans(scanptr, ncomps, 1, 63, 1, 0);
675 #endif /* C_PROGRESSIVE_SUPPORTED */