4 * Developed 1997-2015 by Guido Vollbeding.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
8 * This file contains portable arithmetic entropy decoding routines for JPEG
9 * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
11 * Both sequential and progressive modes are supported in this single module.
13 * Suspension is not currently supported in this module.
16 #define JPEG_INTERNALS
21 /* Expanded entropy decoder object for arithmetic decoding. */
24 struct jpeg_entropy_decoder pub
; /* public fields */
26 INT32 c
; /* C register, base of coding interval + input bit buffer */
27 INT32 a
; /* A register, normalized size of coding interval */
28 int ct
; /* bit shift counter, # of bits left in bit buffer part of C */
32 int last_dc_val
[MAX_COMPS_IN_SCAN
]; /* last DC coef for each component */
33 int dc_context
[MAX_COMPS_IN_SCAN
]; /* context index for DC conditioning */
35 unsigned int restarts_to_go
; /* MCUs left in this restart interval */
37 /* Pointers to statistics areas (these workspaces have image lifespan) */
38 unsigned char * dc_stats
[NUM_ARITH_TBLS
];
39 unsigned char * ac_stats
[NUM_ARITH_TBLS
];
41 /* Statistics bin for coding with fixed probability 0.5 */
42 unsigned char fixed_bin
[4];
43 } arith_entropy_decoder
;
45 typedef arith_entropy_decoder
* arith_entropy_ptr
;
47 /* The following two definitions specify the allocation chunk size
48 * for the statistics area.
49 * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
50 * 49 statistics bins for DC, and 245 statistics bins for AC coding.
52 * We use a compact representation with 1 byte per statistics bin,
53 * thus the numbers directly represent byte sizes.
54 * This 1 byte per statistics bin contains the meaning of the MPS
55 * (more probable symbol) in the highest bit (mask 0x80), and the
56 * index into the probability estimation state machine table
57 * in the lower bits (mask 0x7F).
60 #define DC_STAT_BINS 64
61 #define AC_STAT_BINS 256
65 get_byte (j_decompress_ptr cinfo
)
66 /* Read next input byte; we do not support suspension in this module. */
68 struct jpeg_source_mgr
* src
= cinfo
->src
;
70 if (src
->bytes_in_buffer
== 0)
71 if (! (*src
->fill_input_buffer
) (cinfo
))
72 ERREXIT(cinfo
, JERR_CANT_SUSPEND
);
73 src
->bytes_in_buffer
--;
74 return GETJOCTET(*src
->next_input_byte
++);
79 * The core arithmetic decoding routine (common in JPEG and JBIG).
80 * This needs to go as fast as possible.
81 * Machine-dependent optimization facilities
82 * are not utilized in this portable implementation.
83 * However, this code should be fairly efficient and
84 * may be a good base for further optimizations anyway.
86 * Return value is 0 or 1 (binary decision).
88 * Note: I've changed the handling of the code base & bit
89 * buffer register C compared to other implementations
90 * based on the standards layout & procedures.
91 * While it also contains both the actual base of the
92 * coding interval (16 bits) and the next-bits buffer,
93 * the cut-point between these two parts is floating
94 * (instead of fixed) with the bit shift counter CT.
95 * Thus, we also need only one (variable instead of
96 * fixed size) shift for the LPS/MPS decision, and
97 * we can do away with any renormalization update
98 * of C (except for new data insertion, of course).
100 * I've also introduced a new scheme for accessing
101 * the probability estimation state machine table,
102 * derived from Markus Kuhn's JBIG implementation.
106 arith_decode (j_decompress_ptr cinfo
, unsigned char *st
)
108 register arith_entropy_ptr e
= (arith_entropy_ptr
) cinfo
->entropy
;
109 register unsigned char nl
, nm
;
110 register INT32 qe
, temp
;
111 register int sv
, data
;
113 /* Renormalization & data input per section D.2.6 */
114 while (e
->a
< 0x8000L
) {
116 /* Need to fetch next data byte */
117 if (cinfo
->unread_marker
)
118 data
= 0; /* stuff zero data */
120 data
= get_byte(cinfo
); /* read next input byte */
121 if (data
== 0xFF) { /* zero stuff or marker code */
122 do data
= get_byte(cinfo
);
123 while (data
== 0xFF); /* swallow extra 0xFF bytes */
125 data
= 0xFF; /* discard stuffed zero byte */
127 /* Note: Different from the Huffman decoder, hitting
128 * a marker while processing the compressed data
129 * segment is legal in arithmetic coding.
130 * The convention is to supply zero data
131 * then until decoding is complete.
133 cinfo
->unread_marker
= data
;
138 e
->c
= (e
->c
<< 8) | data
; /* insert data into C register */
139 if ((e
->ct
+= 8) < 0) /* update bit shift counter */
140 /* Need more initial bytes */
142 /* Got 2 initial bytes -> re-init A and exit loop */
143 e
->a
= 0x8000L
; /* => e->a = 0x10000L after loop exit */
148 /* Fetch values from our compact representation of Table D.3(D.2):
149 * Qe values and probability estimation state machine
152 qe
= jpeg_aritab
[sv
& 0x7F]; /* => Qe_Value */
153 nl
= qe
& 0xFF; qe
>>= 8; /* Next_Index_LPS + Switch_MPS */
154 nm
= qe
& 0xFF; qe
>>= 8; /* Next_Index_MPS */
156 /* Decode & estimation procedures per sections D.2.4 & D.2.5 */
162 /* Conditional LPS (less probable symbol) exchange */
165 *st
= (sv
& 0x80) ^ nm
; /* Estimate_after_MPS */
168 *st
= (sv
& 0x80) ^ nl
; /* Estimate_after_LPS */
169 sv
^= 0x80; /* Exchange LPS/MPS */
171 } else if (e
->a
< 0x8000L
) {
172 /* Conditional MPS (more probable symbol) exchange */
174 *st
= (sv
& 0x80) ^ nl
; /* Estimate_after_LPS */
175 sv
^= 0x80; /* Exchange LPS/MPS */
177 *st
= (sv
& 0x80) ^ nm
; /* Estimate_after_MPS */
186 * Check for a restart marker & resynchronize decoder.
190 process_restart (j_decompress_ptr cinfo
)
192 arith_entropy_ptr entropy
= (arith_entropy_ptr
) cinfo
->entropy
;
194 jpeg_component_info
* compptr
;
196 /* Advance past the RSTn marker */
197 if (! (*cinfo
->marker
->read_restart_marker
) (cinfo
))
198 ERREXIT(cinfo
, JERR_CANT_SUSPEND
);
200 /* Re-initialize statistics areas */
201 for (ci
= 0; ci
< cinfo
->comps_in_scan
; ci
++) {
202 compptr
= cinfo
->cur_comp_info
[ci
];
203 if (! cinfo
->progressive_mode
|| (cinfo
->Ss
== 0 && cinfo
->Ah
== 0)) {
204 MEMZERO(entropy
->dc_stats
[compptr
->dc_tbl_no
], DC_STAT_BINS
);
205 /* Reset DC predictions to 0 */
206 entropy
->last_dc_val
[ci
] = 0;
207 entropy
->dc_context
[ci
] = 0;
209 if ((! cinfo
->progressive_mode
&& cinfo
->lim_Se
) ||
210 (cinfo
->progressive_mode
&& cinfo
->Ss
)) {
211 MEMZERO(entropy
->ac_stats
[compptr
->ac_tbl_no
], AC_STAT_BINS
);
215 /* Reset arithmetic decoding variables */
218 entropy
->ct
= -16; /* force reading 2 initial bytes to fill C */
220 /* Reset restart counter */
221 entropy
->restarts_to_go
= cinfo
->restart_interval
;
226 * Arithmetic MCU decoding.
227 * Each of these routines decodes and returns one MCU's worth of
228 * arithmetic-compressed coefficients.
229 * The coefficients are reordered from zigzag order into natural array order,
230 * but are not dequantized.
232 * The i'th block of the MCU is stored into the block pointed to by
233 * MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
237 * MCU decoding for DC initial scan (either spectral selection,
238 * or first pass of successive approximation).
242 decode_mcu_DC_first (j_decompress_ptr cinfo
, JBLOCKROW
*MCU_data
)
244 arith_entropy_ptr entropy
= (arith_entropy_ptr
) cinfo
->entropy
;
247 int blkn
, ci
, tbl
, sign
;
250 /* Process restart marker if needed */
251 if (cinfo
->restart_interval
) {
252 if (entropy
->restarts_to_go
== 0)
253 process_restart(cinfo
);
254 entropy
->restarts_to_go
--;
257 if (entropy
->ct
== -1) return TRUE
; /* if error do nothing */
259 /* Outer loop handles each block in the MCU */
261 for (blkn
= 0; blkn
< cinfo
->blocks_in_MCU
; blkn
++) {
262 block
= MCU_data
[blkn
];
263 ci
= cinfo
->MCU_membership
[blkn
];
264 tbl
= cinfo
->cur_comp_info
[ci
]->dc_tbl_no
;
266 /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
268 /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
269 st
= entropy
->dc_stats
[tbl
] + entropy
->dc_context
[ci
];
271 /* Figure F.19: Decode_DC_DIFF */
272 if (arith_decode(cinfo
, st
) == 0)
273 entropy
->dc_context
[ci
] = 0;
275 /* Figure F.21: Decoding nonzero value v */
276 /* Figure F.22: Decoding the sign of v */
277 sign
= arith_decode(cinfo
, st
+ 1);
279 /* Figure F.23: Decoding the magnitude category of v */
280 if ((m
= arith_decode(cinfo
, st
)) != 0) {
281 st
= entropy
->dc_stats
[tbl
] + 20; /* Table F.4: X1 = 20 */
282 while (arith_decode(cinfo
, st
)) {
283 if ((m
<<= 1) == 0x8000) {
284 WARNMS(cinfo
, JWRN_ARITH_BAD_CODE
);
285 entropy
->ct
= -1; /* magnitude overflow */
291 /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
292 if (m
< (int) ((1L << cinfo
->arith_dc_L
[tbl
]) >> 1))
293 entropy
->dc_context
[ci
] = 0; /* zero diff category */
294 else if (m
> (int) ((1L << cinfo
->arith_dc_U
[tbl
]) >> 1))
295 entropy
->dc_context
[ci
] = 12 + (sign
* 4); /* large diff category */
297 entropy
->dc_context
[ci
] = 4 + (sign
* 4); /* small diff category */
299 /* Figure F.24: Decoding the magnitude bit pattern of v */
302 if (arith_decode(cinfo
, st
)) v
|= m
;
303 v
+= 1; if (sign
) v
= -v
;
304 entropy
->last_dc_val
[ci
] += v
;
307 /* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */
308 (*block
)[0] = (JCOEF
) (entropy
->last_dc_val
[ci
] << cinfo
->Al
);
316 * MCU decoding for AC initial scan (either spectral selection,
317 * or first pass of successive approximation).
321 decode_mcu_AC_first (j_decompress_ptr cinfo
, JBLOCKROW
*MCU_data
)
323 arith_entropy_ptr entropy
= (arith_entropy_ptr
) cinfo
->entropy
;
328 const int * natural_order
;
330 /* Process restart marker if needed */
331 if (cinfo
->restart_interval
) {
332 if (entropy
->restarts_to_go
== 0)
333 process_restart(cinfo
);
334 entropy
->restarts_to_go
--;
337 if (entropy
->ct
== -1) return TRUE
; /* if error do nothing */
339 natural_order
= cinfo
->natural_order
;
341 /* There is always only one block per MCU */
343 tbl
= cinfo
->cur_comp_info
[0]->ac_tbl_no
;
345 /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
347 /* Figure F.20: Decode_AC_coefficients */
350 st
= entropy
->ac_stats
[tbl
] + 3 * k
;
351 if (arith_decode(cinfo
, st
)) break; /* EOB flag */
354 if (arith_decode(cinfo
, st
+ 1)) break;
356 if (k
>= cinfo
->Se
) {
357 WARNMS(cinfo
, JWRN_ARITH_BAD_CODE
);
358 entropy
->ct
= -1; /* spectral overflow */
362 /* Figure F.21: Decoding nonzero value v */
363 /* Figure F.22: Decoding the sign of v */
364 sign
= arith_decode(cinfo
, entropy
->fixed_bin
);
366 /* Figure F.23: Decoding the magnitude category of v */
367 if ((m
= arith_decode(cinfo
, st
)) != 0) {
368 if (arith_decode(cinfo
, st
)) {
370 st
= entropy
->ac_stats
[tbl
] +
371 (k
<= cinfo
->arith_ac_K
[tbl
] ? 189 : 217);
372 while (arith_decode(cinfo
, st
)) {
373 if ((m
<<= 1) == 0x8000) {
374 WARNMS(cinfo
, JWRN_ARITH_BAD_CODE
);
375 entropy
->ct
= -1; /* magnitude overflow */
383 /* Figure F.24: Decoding the magnitude bit pattern of v */
386 if (arith_decode(cinfo
, st
)) v
|= m
;
387 v
+= 1; if (sign
) v
= -v
;
388 /* Scale and output coefficient in natural (dezigzagged) order */
389 (*block
)[natural_order
[k
]] = (JCOEF
) (v
<< cinfo
->Al
);
390 } while (k
< cinfo
->Se
);
397 * MCU decoding for DC successive approximation refinement scan.
398 * Note: we assume such scans can be multi-component,
399 * although the spec is not very clear on the point.
403 decode_mcu_DC_refine (j_decompress_ptr cinfo
, JBLOCKROW
*MCU_data
)
405 arith_entropy_ptr entropy
= (arith_entropy_ptr
) cinfo
->entropy
;
409 /* Process restart marker if needed */
410 if (cinfo
->restart_interval
) {
411 if (entropy
->restarts_to_go
== 0)
412 process_restart(cinfo
);
413 entropy
->restarts_to_go
--;
416 st
= entropy
->fixed_bin
; /* use fixed probability estimation */
417 p1
= 1 << cinfo
->Al
; /* 1 in the bit position being coded */
419 /* Outer loop handles each block in the MCU */
421 for (blkn
= 0; blkn
< cinfo
->blocks_in_MCU
; blkn
++) {
422 /* Encoded data is simply the next bit of the two's-complement DC value */
423 if (arith_decode(cinfo
, st
))
424 MCU_data
[blkn
][0][0] |= p1
;
432 * MCU decoding for AC successive approximation refinement scan.
436 decode_mcu_AC_refine (j_decompress_ptr cinfo
, JBLOCKROW
*MCU_data
)
438 arith_entropy_ptr entropy
= (arith_entropy_ptr
) cinfo
->entropy
;
444 const int * natural_order
;
446 /* Process restart marker if needed */
447 if (cinfo
->restart_interval
) {
448 if (entropy
->restarts_to_go
== 0)
449 process_restart(cinfo
);
450 entropy
->restarts_to_go
--;
453 if (entropy
->ct
== -1) return TRUE
; /* if error do nothing */
455 natural_order
= cinfo
->natural_order
;
457 /* There is always only one block per MCU */
459 tbl
= cinfo
->cur_comp_info
[0]->ac_tbl_no
;
461 p1
= 1 << cinfo
->Al
; /* 1 in the bit position being coded */
462 m1
= (-1) << cinfo
->Al
; /* -1 in the bit position being coded */
464 /* Establish EOBx (previous stage end-of-block) index */
467 if ((*block
)[natural_order
[kex
]]) break;
472 st
= entropy
->ac_stats
[tbl
] + 3 * k
;
474 if (arith_decode(cinfo
, st
)) break; /* EOB flag */
476 thiscoef
= *block
+ natural_order
[++k
];
477 if (*thiscoef
) { /* previously nonzero coef */
478 if (arith_decode(cinfo
, st
+ 2)) {
486 if (arith_decode(cinfo
, st
+ 1)) { /* newly nonzero coef */
487 if (arith_decode(cinfo
, entropy
->fixed_bin
))
494 if (k
>= cinfo
->Se
) {
495 WARNMS(cinfo
, JWRN_ARITH_BAD_CODE
);
496 entropy
->ct
= -1; /* spectral overflow */
500 } while (k
< cinfo
->Se
);
507 * Decode one MCU's worth of arithmetic-compressed coefficients.
511 decode_mcu (j_decompress_ptr cinfo
, JBLOCKROW
*MCU_data
)
513 arith_entropy_ptr entropy
= (arith_entropy_ptr
) cinfo
->entropy
;
514 jpeg_component_info
* compptr
;
517 int blkn
, ci
, tbl
, sign
, k
;
519 const int * natural_order
;
521 /* Process restart marker if needed */
522 if (cinfo
->restart_interval
) {
523 if (entropy
->restarts_to_go
== 0)
524 process_restart(cinfo
);
525 entropy
->restarts_to_go
--;
528 if (entropy
->ct
== -1) return TRUE
; /* if error do nothing */
530 natural_order
= cinfo
->natural_order
;
532 /* Outer loop handles each block in the MCU */
534 for (blkn
= 0; blkn
< cinfo
->blocks_in_MCU
; blkn
++) {
535 block
= MCU_data
[blkn
];
536 ci
= cinfo
->MCU_membership
[blkn
];
537 compptr
= cinfo
->cur_comp_info
[ci
];
539 /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
541 tbl
= compptr
->dc_tbl_no
;
543 /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
544 st
= entropy
->dc_stats
[tbl
] + entropy
->dc_context
[ci
];
546 /* Figure F.19: Decode_DC_DIFF */
547 if (arith_decode(cinfo
, st
) == 0)
548 entropy
->dc_context
[ci
] = 0;
550 /* Figure F.21: Decoding nonzero value v */
551 /* Figure F.22: Decoding the sign of v */
552 sign
= arith_decode(cinfo
, st
+ 1);
554 /* Figure F.23: Decoding the magnitude category of v */
555 if ((m
= arith_decode(cinfo
, st
)) != 0) {
556 st
= entropy
->dc_stats
[tbl
] + 20; /* Table F.4: X1 = 20 */
557 while (arith_decode(cinfo
, st
)) {
558 if ((m
<<= 1) == 0x8000) {
559 WARNMS(cinfo
, JWRN_ARITH_BAD_CODE
);
560 entropy
->ct
= -1; /* magnitude overflow */
566 /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
567 if (m
< (int) ((1L << cinfo
->arith_dc_L
[tbl
]) >> 1))
568 entropy
->dc_context
[ci
] = 0; /* zero diff category */
569 else if (m
> (int) ((1L << cinfo
->arith_dc_U
[tbl
]) >> 1))
570 entropy
->dc_context
[ci
] = 12 + (sign
* 4); /* large diff category */
572 entropy
->dc_context
[ci
] = 4 + (sign
* 4); /* small diff category */
574 /* Figure F.24: Decoding the magnitude bit pattern of v */
577 if (arith_decode(cinfo
, st
)) v
|= m
;
578 v
+= 1; if (sign
) v
= -v
;
579 entropy
->last_dc_val
[ci
] += v
;
582 (*block
)[0] = (JCOEF
) entropy
->last_dc_val
[ci
];
584 /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
586 if (cinfo
->lim_Se
== 0) continue;
587 tbl
= compptr
->ac_tbl_no
;
590 /* Figure F.20: Decode_AC_coefficients */
592 st
= entropy
->ac_stats
[tbl
] + 3 * k
;
593 if (arith_decode(cinfo
, st
)) break; /* EOB flag */
596 if (arith_decode(cinfo
, st
+ 1)) break;
598 if (k
>= cinfo
->lim_Se
) {
599 WARNMS(cinfo
, JWRN_ARITH_BAD_CODE
);
600 entropy
->ct
= -1; /* spectral overflow */
604 /* Figure F.21: Decoding nonzero value v */
605 /* Figure F.22: Decoding the sign of v */
606 sign
= arith_decode(cinfo
, entropy
->fixed_bin
);
608 /* Figure F.23: Decoding the magnitude category of v */
609 if ((m
= arith_decode(cinfo
, st
)) != 0) {
610 if (arith_decode(cinfo
, st
)) {
612 st
= entropy
->ac_stats
[tbl
] +
613 (k
<= cinfo
->arith_ac_K
[tbl
] ? 189 : 217);
614 while (arith_decode(cinfo
, st
)) {
615 if ((m
<<= 1) == 0x8000) {
616 WARNMS(cinfo
, JWRN_ARITH_BAD_CODE
);
617 entropy
->ct
= -1; /* magnitude overflow */
625 /* Figure F.24: Decoding the magnitude bit pattern of v */
628 if (arith_decode(cinfo
, st
)) v
|= m
;
629 v
+= 1; if (sign
) v
= -v
;
630 (*block
)[natural_order
[k
]] = (JCOEF
) v
;
631 } while (k
< cinfo
->lim_Se
);
639 * Initialize for an arithmetic-compressed scan.
643 start_pass (j_decompress_ptr cinfo
)
645 arith_entropy_ptr entropy
= (arith_entropy_ptr
) cinfo
->entropy
;
647 jpeg_component_info
* compptr
;
649 if (cinfo
->progressive_mode
) {
650 /* Validate progressive scan parameters */
651 if (cinfo
->Ss
== 0) {
655 /* need not check Ss/Se < 0 since they came from unsigned bytes */
656 if (cinfo
->Se
< cinfo
->Ss
|| cinfo
->Se
> cinfo
->lim_Se
)
658 /* AC scans may have only one component */
659 if (cinfo
->comps_in_scan
!= 1)
662 if (cinfo
->Ah
!= 0) {
663 /* Successive approximation refinement scan: must have Al = Ah-1. */
664 if (cinfo
->Ah
-1 != cinfo
->Al
)
667 if (cinfo
->Al
> 13) { /* need not check for < 0 */
669 ERREXIT4(cinfo
, JERR_BAD_PROGRESSION
,
670 cinfo
->Ss
, cinfo
->Se
, cinfo
->Ah
, cinfo
->Al
);
672 /* Update progression status, and verify that scan order is legal.
673 * Note that inter-scan inconsistencies are treated as warnings
674 * not fatal errors ... not clear if this is right way to behave.
676 for (ci
= 0; ci
< cinfo
->comps_in_scan
; ci
++) {
677 int coefi
, cindex
= cinfo
->cur_comp_info
[ci
]->component_index
;
678 int *coef_bit_ptr
= & cinfo
->coef_bits
[cindex
][0];
679 if (cinfo
->Ss
&& coef_bit_ptr
[0] < 0) /* AC without prior DC scan */
680 WARNMS2(cinfo
, JWRN_BOGUS_PROGRESSION
, cindex
, 0);
681 for (coefi
= cinfo
->Ss
; coefi
<= cinfo
->Se
; coefi
++) {
682 int expected
= (coef_bit_ptr
[coefi
] < 0) ? 0 : coef_bit_ptr
[coefi
];
683 if (cinfo
->Ah
!= expected
)
684 WARNMS2(cinfo
, JWRN_BOGUS_PROGRESSION
, cindex
, coefi
);
685 coef_bit_ptr
[coefi
] = cinfo
->Al
;
688 /* Select MCU decoding routine */
689 if (cinfo
->Ah
== 0) {
691 entropy
->pub
.decode_mcu
= decode_mcu_DC_first
;
693 entropy
->pub
.decode_mcu
= decode_mcu_AC_first
;
696 entropy
->pub
.decode_mcu
= decode_mcu_DC_refine
;
698 entropy
->pub
.decode_mcu
= decode_mcu_AC_refine
;
701 /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
702 * This ought to be an error condition, but we make it a warning.
704 if (cinfo
->Ss
!= 0 || cinfo
->Ah
!= 0 || cinfo
->Al
!= 0 ||
705 (cinfo
->Se
< DCTSIZE2
&& cinfo
->Se
!= cinfo
->lim_Se
))
706 WARNMS(cinfo
, JWRN_NOT_SEQUENTIAL
);
707 /* Select MCU decoding routine */
708 entropy
->pub
.decode_mcu
= decode_mcu
;
711 /* Allocate & initialize requested statistics areas */
712 for (ci
= 0; ci
< cinfo
->comps_in_scan
; ci
++) {
713 compptr
= cinfo
->cur_comp_info
[ci
];
714 if (! cinfo
->progressive_mode
|| (cinfo
->Ss
== 0 && cinfo
->Ah
== 0)) {
715 tbl
= compptr
->dc_tbl_no
;
716 if (tbl
< 0 || tbl
>= NUM_ARITH_TBLS
)
717 ERREXIT1(cinfo
, JERR_NO_ARITH_TABLE
, tbl
);
718 if (entropy
->dc_stats
[tbl
] == NULL
)
719 entropy
->dc_stats
[tbl
] = (unsigned char *) (*cinfo
->mem
->alloc_small
)
720 ((j_common_ptr
) cinfo
, JPOOL_IMAGE
, DC_STAT_BINS
);
721 MEMZERO(entropy
->dc_stats
[tbl
], DC_STAT_BINS
);
722 /* Initialize DC predictions to 0 */
723 entropy
->last_dc_val
[ci
] = 0;
724 entropy
->dc_context
[ci
] = 0;
726 if ((! cinfo
->progressive_mode
&& cinfo
->lim_Se
) ||
727 (cinfo
->progressive_mode
&& cinfo
->Ss
)) {
728 tbl
= compptr
->ac_tbl_no
;
729 if (tbl
< 0 || tbl
>= NUM_ARITH_TBLS
)
730 ERREXIT1(cinfo
, JERR_NO_ARITH_TABLE
, tbl
);
731 if (entropy
->ac_stats
[tbl
] == NULL
)
732 entropy
->ac_stats
[tbl
] = (unsigned char *) (*cinfo
->mem
->alloc_small
)
733 ((j_common_ptr
) cinfo
, JPOOL_IMAGE
, AC_STAT_BINS
);
734 MEMZERO(entropy
->ac_stats
[tbl
], AC_STAT_BINS
);
738 /* Initialize arithmetic decoding variables */
741 entropy
->ct
= -16; /* force reading 2 initial bytes to fill C */
743 /* Initialize restart counter */
744 entropy
->restarts_to_go
= cinfo
->restart_interval
;
749 * Finish up at the end of an arithmetic-compressed scan.
753 finish_pass (j_decompress_ptr cinfo
)
755 /* no work necessary here */
760 * Module initialization routine for arithmetic entropy decoding.
764 jinit_arith_decoder (j_decompress_ptr cinfo
)
766 arith_entropy_ptr entropy
;
769 entropy
= (arith_entropy_ptr
)
770 (*cinfo
->mem
->alloc_small
) ((j_common_ptr
) cinfo
, JPOOL_IMAGE
,
771 SIZEOF(arith_entropy_decoder
));
772 cinfo
->entropy
= &entropy
->pub
;
773 entropy
->pub
.start_pass
= start_pass
;
774 entropy
->pub
.finish_pass
= finish_pass
;
776 /* Mark tables unallocated */
777 for (i
= 0; i
< NUM_ARITH_TBLS
; i
++) {
778 entropy
->dc_stats
[i
] = NULL
;
779 entropy
->ac_stats
[i
] = NULL
;
782 /* Initialize index for fixed probability estimation */
783 entropy
->fixed_bin
[0] = 113;
785 if (cinfo
->progressive_mode
) {
786 /* Create progression status table */
787 int *coef_bit_ptr
, ci
;
788 cinfo
->coef_bits
= (int (*)[DCTSIZE2
])
789 (*cinfo
->mem
->alloc_small
) ((j_common_ptr
) cinfo
, JPOOL_IMAGE
,
790 cinfo
->num_components
*DCTSIZE2
*SIZEOF(int));
791 coef_bit_ptr
= & cinfo
->coef_bits
[0][0];
792 for (ci
= 0; ci
< cinfo
->num_components
; ci
++)
793 for (i
= 0; i
< DCTSIZE2
; i
++)
794 *coef_bit_ptr
++ = -1;