4 * Copyright (C) 1991-1997, Thomas G. Lane.
5 * Modified 2011-2012 by Guido Vollbeding.
6 * This file is part of the Independent JPEG Group's software.
7 * For conditions of distribution and use, see the accompanying README file.
9 * This file contains the JPEG system-independent memory management
10 * routines. This code is usable across a wide variety of machines; most
11 * of the system dependencies have been isolated in a separate file.
12 * The major functions provided here are:
13 * * pool-based allocation and freeing of memory;
14 * * policy decisions about how to divide available memory among the
16 * * control logic for swapping virtual arrays between main memory and
18 * The separate system-dependent file provides the actual backing-storage
19 * access code, and it contains the policy decision about how much total
21 * This file is system-dependent in the sense that some of its functions
22 * are unnecessary in some systems. For example, if there is enough virtual
23 * memory so that backing storage will never be used, much of the virtual
24 * array control logic could be removed. (Of course, if you have that much
25 * memory then you shouldn't care about a little bit of unused code...)
28 #define JPEG_INTERNALS
29 #define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */
32 #include "jmemsys.h" /* import the system-dependent declarations */
35 #ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */
36 extern char * getenv
JPP((const char * name
));
42 * Some important notes:
43 * The allocation routines provided here must never return NULL.
44 * They should exit to error_exit if unsuccessful.
46 * It's not a good idea to try to merge the sarray and barray routines,
47 * even though they are textually almost the same, because samples are
48 * usually stored as bytes while coefficients are shorts or ints. Thus,
49 * in machines where byte pointers have a different representation from
50 * word pointers, the resulting machine code could not be the same.
55 * Many machines require storage alignment: longs must start on 4-byte
56 * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc()
57 * always returns pointers that are multiples of the worst-case alignment
58 * requirement, and we had better do so too.
59 * There isn't any really portable way to determine the worst-case alignment
60 * requirement. This module assumes that the alignment requirement is
61 * multiples of sizeof(ALIGN_TYPE).
62 * By default, we define ALIGN_TYPE as double. This is necessary on some
63 * workstations (where doubles really do need 8-byte alignment) and will work
64 * fine on nearly everything. If your machine has lesser alignment needs,
65 * you can save a few bytes by making ALIGN_TYPE smaller.
66 * The only place I know of where this will NOT work is certain Macintosh
67 * 680x0 compilers that define double as a 10-byte IEEE extended float.
68 * Doing 10-byte alignment is counterproductive because longwords won't be
69 * aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have
73 #ifndef ALIGN_TYPE /* so can override from jconfig.h */
74 #define ALIGN_TYPE double
79 * We allocate objects from "pools", where each pool is gotten with a single
80 * request to jpeg_get_small() or jpeg_get_large(). There is no per-object
81 * overhead within a pool, except for alignment padding. Each pool has a
82 * header with a link to the next pool of the same class.
83 * Small and large pool headers are identical except that the latter's
84 * link pointer must be FAR on 80x86 machines.
85 * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
86 * field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
87 * of the alignment requirement of ALIGN_TYPE.
90 typedef union small_pool_struct
* small_pool_ptr
;
92 typedef union small_pool_struct
{
94 small_pool_ptr next
; /* next in list of pools */
95 size_t bytes_used
; /* how many bytes already used within pool */
96 size_t bytes_left
; /* bytes still available in this pool */
98 ALIGN_TYPE dummy
; /* included in union to ensure alignment */
101 typedef union large_pool_struct FAR
* large_pool_ptr
;
103 typedef union large_pool_struct
{
105 large_pool_ptr next
; /* next in list of pools */
106 size_t bytes_used
; /* how many bytes already used within pool */
107 size_t bytes_left
; /* bytes still available in this pool */
109 ALIGN_TYPE dummy
; /* included in union to ensure alignment */
114 * Here is the full definition of a memory manager object.
118 struct jpeg_memory_mgr pub
; /* public fields */
120 /* Each pool identifier (lifetime class) names a linked list of pools. */
121 small_pool_ptr small_list
[JPOOL_NUMPOOLS
];
122 large_pool_ptr large_list
[JPOOL_NUMPOOLS
];
124 /* Since we only have one lifetime class of virtual arrays, only one
125 * linked list is necessary (for each datatype). Note that the virtual
126 * array control blocks being linked together are actually stored somewhere
127 * in the small-pool list.
129 jvirt_sarray_ptr virt_sarray_list
;
130 jvirt_barray_ptr virt_barray_list
;
132 /* This counts total space obtained from jpeg_get_small/large */
133 long total_space_allocated
;
135 /* alloc_sarray and alloc_barray set this value for use by virtual
138 JDIMENSION last_rowsperchunk
; /* from most recent alloc_sarray/barray */
141 typedef my_memory_mgr
* my_mem_ptr
;
145 * The control blocks for virtual arrays.
146 * Note that these blocks are allocated in the "small" pool area.
147 * System-dependent info for the associated backing store (if any) is hidden
148 * inside the backing_store_info struct.
151 struct jvirt_sarray_control
{
152 JSAMPARRAY mem_buffer
; /* => the in-memory buffer */
153 JDIMENSION rows_in_array
; /* total virtual array height */
154 JDIMENSION samplesperrow
; /* width of array (and of memory buffer) */
155 JDIMENSION maxaccess
; /* max rows accessed by access_virt_sarray */
156 JDIMENSION rows_in_mem
; /* height of memory buffer */
157 JDIMENSION rowsperchunk
; /* allocation chunk size in mem_buffer */
158 JDIMENSION cur_start_row
; /* first logical row # in the buffer */
159 JDIMENSION first_undef_row
; /* row # of first uninitialized row */
160 boolean pre_zero
; /* pre-zero mode requested? */
161 boolean dirty
; /* do current buffer contents need written? */
162 boolean b_s_open
; /* is backing-store data valid? */
163 jvirt_sarray_ptr next
; /* link to next virtual sarray control block */
164 backing_store_info b_s_info
; /* System-dependent control info */
167 struct jvirt_barray_control
{
168 JBLOCKARRAY mem_buffer
; /* => the in-memory buffer */
169 JDIMENSION rows_in_array
; /* total virtual array height */
170 JDIMENSION blocksperrow
; /* width of array (and of memory buffer) */
171 JDIMENSION maxaccess
; /* max rows accessed by access_virt_barray */
172 JDIMENSION rows_in_mem
; /* height of memory buffer */
173 JDIMENSION rowsperchunk
; /* allocation chunk size in mem_buffer */
174 JDIMENSION cur_start_row
; /* first logical row # in the buffer */
175 JDIMENSION first_undef_row
; /* row # of first uninitialized row */
176 boolean pre_zero
; /* pre-zero mode requested? */
177 boolean dirty
; /* do current buffer contents need written? */
178 boolean b_s_open
; /* is backing-store data valid? */
179 jvirt_barray_ptr next
; /* link to next virtual barray control block */
180 backing_store_info b_s_info
; /* System-dependent control info */
184 #ifdef MEM_STATS /* optional extra stuff for statistics */
187 print_mem_stats (j_common_ptr cinfo
, int pool_id
)
189 my_mem_ptr mem
= (my_mem_ptr
) cinfo
->mem
;
190 small_pool_ptr shdr_ptr
;
191 large_pool_ptr lhdr_ptr
;
193 /* Since this is only a debugging stub, we can cheat a little by using
194 * fprintf directly rather than going through the trace message code.
195 * This is helpful because message parm array can't handle longs.
197 fprintf(stderr
, "Freeing pool %d, total space = %ld\n",
198 pool_id
, mem
->total_space_allocated
);
200 for (lhdr_ptr
= mem
->large_list
[pool_id
]; lhdr_ptr
!= NULL
;
201 lhdr_ptr
= lhdr_ptr
->hdr
.next
) {
202 fprintf(stderr
, " Large chunk used %ld\n",
203 (long) lhdr_ptr
->hdr
.bytes_used
);
206 for (shdr_ptr
= mem
->small_list
[pool_id
]; shdr_ptr
!= NULL
;
207 shdr_ptr
= shdr_ptr
->hdr
.next
) {
208 fprintf(stderr
, " Small chunk used %ld free %ld\n",
209 (long) shdr_ptr
->hdr
.bytes_used
,
210 (long) shdr_ptr
->hdr
.bytes_left
);
214 #endif /* MEM_STATS */
218 out_of_memory (j_common_ptr cinfo
, int which
)
219 /* Report an out-of-memory error and stop execution */
220 /* If we compiled MEM_STATS support, report alloc requests before dying */
223 cinfo
->err
->trace_level
= 2; /* force self_destruct to report stats */
225 ERREXIT1(cinfo
, JERR_OUT_OF_MEMORY
, which
);
230 * Allocation of "small" objects.
232 * For these, we use pooled storage. When a new pool must be created,
233 * we try to get enough space for the current request plus a "slop" factor,
234 * where the slop will be the amount of leftover space in the new pool.
235 * The speed vs. space tradeoff is largely determined by the slop values.
236 * A different slop value is provided for each pool class (lifetime),
237 * and we also distinguish the first pool of a class from later ones.
238 * NOTE: the values given work fairly well on both 16- and 32-bit-int
239 * machines, but may be too small if longs are 64 bits or more.
242 static const size_t first_pool_slop
[JPOOL_NUMPOOLS
] =
244 1600, /* first PERMANENT pool */
245 16000 /* first IMAGE pool */
248 static const size_t extra_pool_slop
[JPOOL_NUMPOOLS
] =
250 0, /* additional PERMANENT pools */
251 5000 /* additional IMAGE pools */
254 #define MIN_SLOP 50 /* greater than 0 to avoid futile looping */
258 alloc_small (j_common_ptr cinfo
, int pool_id
, size_t sizeofobject
)
259 /* Allocate a "small" object */
261 my_mem_ptr mem
= (my_mem_ptr
) cinfo
->mem
;
262 small_pool_ptr hdr_ptr
, prev_hdr_ptr
;
264 size_t odd_bytes
, min_request
, slop
;
266 /* Check for unsatisfiable request (do now to ensure no overflow below) */
267 if (sizeofobject
> (size_t) (MAX_ALLOC_CHUNK
-SIZEOF(small_pool_hdr
)))
268 out_of_memory(cinfo
, 1); /* request exceeds malloc's ability */
270 /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
271 odd_bytes
= sizeofobject
% SIZEOF(ALIGN_TYPE
);
273 sizeofobject
+= SIZEOF(ALIGN_TYPE
) - odd_bytes
;
275 /* See if space is available in any existing pool */
276 if (pool_id
< 0 || pool_id
>= JPOOL_NUMPOOLS
)
277 ERREXIT1(cinfo
, JERR_BAD_POOL_ID
, pool_id
); /* safety check */
279 hdr_ptr
= mem
->small_list
[pool_id
];
280 while (hdr_ptr
!= NULL
) {
281 if (hdr_ptr
->hdr
.bytes_left
>= sizeofobject
)
282 break; /* found pool with enough space */
283 prev_hdr_ptr
= hdr_ptr
;
284 hdr_ptr
= hdr_ptr
->hdr
.next
;
287 /* Time to make a new pool? */
288 if (hdr_ptr
== NULL
) {
289 /* min_request is what we need now, slop is what will be leftover */
290 min_request
= sizeofobject
+ SIZEOF(small_pool_hdr
);
291 if (prev_hdr_ptr
== NULL
) /* first pool in class? */
292 slop
= first_pool_slop
[pool_id
];
294 slop
= extra_pool_slop
[pool_id
];
295 /* Don't ask for more than MAX_ALLOC_CHUNK */
296 if (slop
> (size_t) (MAX_ALLOC_CHUNK
-min_request
))
297 slop
= (size_t) (MAX_ALLOC_CHUNK
-min_request
);
298 /* Try to get space, if fail reduce slop and try again */
300 hdr_ptr
= (small_pool_ptr
) jpeg_get_small(cinfo
, min_request
+ slop
);
304 if (slop
< MIN_SLOP
) /* give up when it gets real small */
305 out_of_memory(cinfo
, 2); /* jpeg_get_small failed */
307 mem
->total_space_allocated
+= min_request
+ slop
;
308 /* Success, initialize the new pool header and add to end of list */
309 hdr_ptr
->hdr
.next
= NULL
;
310 hdr_ptr
->hdr
.bytes_used
= 0;
311 hdr_ptr
->hdr
.bytes_left
= sizeofobject
+ slop
;
312 if (prev_hdr_ptr
== NULL
) /* first pool in class? */
313 mem
->small_list
[pool_id
] = hdr_ptr
;
315 prev_hdr_ptr
->hdr
.next
= hdr_ptr
;
318 /* OK, allocate the object from the current pool */
319 data_ptr
= (char *) (hdr_ptr
+ 1); /* point to first data byte in pool */
320 data_ptr
+= hdr_ptr
->hdr
.bytes_used
; /* point to place for object */
321 hdr_ptr
->hdr
.bytes_used
+= sizeofobject
;
322 hdr_ptr
->hdr
.bytes_left
-= sizeofobject
;
324 return (void *) data_ptr
;
329 * Allocation of "large" objects.
331 * The external semantics of these are the same as "small" objects,
332 * except that FAR pointers are used on 80x86. However the pool
333 * management heuristics are quite different. We assume that each
334 * request is large enough that it may as well be passed directly to
335 * jpeg_get_large; the pool management just links everything together
336 * so that we can free it all on demand.
337 * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
338 * structures. The routines that create these structures (see below)
339 * deliberately bunch rows together to ensure a large request size.
342 METHODDEF(void FAR
*)
343 alloc_large (j_common_ptr cinfo
, int pool_id
, size_t sizeofobject
)
344 /* Allocate a "large" object */
346 my_mem_ptr mem
= (my_mem_ptr
) cinfo
->mem
;
347 large_pool_ptr hdr_ptr
;
350 /* Check for unsatisfiable request (do now to ensure no overflow below) */
351 if (sizeofobject
> (size_t) (MAX_ALLOC_CHUNK
-SIZEOF(large_pool_hdr
)))
352 out_of_memory(cinfo
, 3); /* request exceeds malloc's ability */
354 /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
355 odd_bytes
= sizeofobject
% SIZEOF(ALIGN_TYPE
);
357 sizeofobject
+= SIZEOF(ALIGN_TYPE
) - odd_bytes
;
359 /* Always make a new pool */
360 if (pool_id
< 0 || pool_id
>= JPOOL_NUMPOOLS
)
361 ERREXIT1(cinfo
, JERR_BAD_POOL_ID
, pool_id
); /* safety check */
363 hdr_ptr
= (large_pool_ptr
) jpeg_get_large(cinfo
, sizeofobject
+
364 SIZEOF(large_pool_hdr
));
366 out_of_memory(cinfo
, 4); /* jpeg_get_large failed */
367 mem
->total_space_allocated
+= sizeofobject
+ SIZEOF(large_pool_hdr
);
369 /* Success, initialize the new pool header and add to list */
370 hdr_ptr
->hdr
.next
= mem
->large_list
[pool_id
];
371 /* We maintain space counts in each pool header for statistical purposes,
372 * even though they are not needed for allocation.
374 hdr_ptr
->hdr
.bytes_used
= sizeofobject
;
375 hdr_ptr
->hdr
.bytes_left
= 0;
376 mem
->large_list
[pool_id
] = hdr_ptr
;
378 return (void FAR
*) (hdr_ptr
+ 1); /* point to first data byte in pool */
383 * Creation of 2-D sample arrays.
384 * The pointers are in near heap, the samples themselves in FAR heap.
386 * To minimize allocation overhead and to allow I/O of large contiguous
387 * blocks, we allocate the sample rows in groups of as many rows as possible
388 * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
389 * NB: the virtual array control routines, later in this file, know about
390 * this chunking of rows. The rowsperchunk value is left in the mem manager
391 * object so that it can be saved away if this sarray is the workspace for
395 METHODDEF(JSAMPARRAY
)
396 alloc_sarray (j_common_ptr cinfo
, int pool_id
,
397 JDIMENSION samplesperrow
, JDIMENSION numrows
)
398 /* Allocate a 2-D sample array */
400 my_mem_ptr mem
= (my_mem_ptr
) cinfo
->mem
;
403 JDIMENSION rowsperchunk
, currow
, i
;
406 /* Calculate max # of rows allowed in one allocation chunk */
407 ltemp
= (MAX_ALLOC_CHUNK
-SIZEOF(large_pool_hdr
)) /
408 ((long) samplesperrow
* SIZEOF(JSAMPLE
));
410 ERREXIT(cinfo
, JERR_WIDTH_OVERFLOW
);
411 if (ltemp
< (long) numrows
)
412 rowsperchunk
= (JDIMENSION
) ltemp
;
414 rowsperchunk
= numrows
;
415 mem
->last_rowsperchunk
= rowsperchunk
;
417 /* Get space for row pointers (small object) */
418 result
= (JSAMPARRAY
) alloc_small(cinfo
, pool_id
,
419 (size_t) (numrows
* SIZEOF(JSAMPROW
)));
421 /* Get the rows themselves (large objects) */
423 while (currow
< numrows
) {
424 rowsperchunk
= MIN(rowsperchunk
, numrows
- currow
);
425 workspace
= (JSAMPROW
) alloc_large(cinfo
, pool_id
,
426 (size_t) ((size_t) rowsperchunk
* (size_t) samplesperrow
428 for (i
= rowsperchunk
; i
> 0; i
--) {
429 result
[currow
++] = workspace
;
430 workspace
+= samplesperrow
;
439 * Creation of 2-D coefficient-block arrays.
440 * This is essentially the same as the code for sample arrays, above.
443 METHODDEF(JBLOCKARRAY
)
444 alloc_barray (j_common_ptr cinfo
, int pool_id
,
445 JDIMENSION blocksperrow
, JDIMENSION numrows
)
446 /* Allocate a 2-D coefficient-block array */
448 my_mem_ptr mem
= (my_mem_ptr
) cinfo
->mem
;
451 JDIMENSION rowsperchunk
, currow
, i
;
454 /* Calculate max # of rows allowed in one allocation chunk */
455 ltemp
= (MAX_ALLOC_CHUNK
-SIZEOF(large_pool_hdr
)) /
456 ((long) blocksperrow
* SIZEOF(JBLOCK
));
458 ERREXIT(cinfo
, JERR_WIDTH_OVERFLOW
);
459 if (ltemp
< (long) numrows
)
460 rowsperchunk
= (JDIMENSION
) ltemp
;
462 rowsperchunk
= numrows
;
463 mem
->last_rowsperchunk
= rowsperchunk
;
465 /* Get space for row pointers (small object) */
466 result
= (JBLOCKARRAY
) alloc_small(cinfo
, pool_id
,
467 (size_t) (numrows
* SIZEOF(JBLOCKROW
)));
469 /* Get the rows themselves (large objects) */
471 while (currow
< numrows
) {
472 rowsperchunk
= MIN(rowsperchunk
, numrows
- currow
);
473 workspace
= (JBLOCKROW
) alloc_large(cinfo
, pool_id
,
474 (size_t) ((size_t) rowsperchunk
* (size_t) blocksperrow
476 for (i
= rowsperchunk
; i
> 0; i
--) {
477 result
[currow
++] = workspace
;
478 workspace
+= blocksperrow
;
487 * About virtual array management:
489 * The above "normal" array routines are only used to allocate strip buffers
490 * (as wide as the image, but just a few rows high). Full-image-sized buffers
491 * are handled as "virtual" arrays. The array is still accessed a strip at a
492 * time, but the memory manager must save the whole array for repeated
493 * accesses. The intended implementation is that there is a strip buffer in
494 * memory (as high as is possible given the desired memory limit), plus a
495 * backing file that holds the rest of the array.
497 * The request_virt_array routines are told the total size of the image and
498 * the maximum number of rows that will be accessed at once. The in-memory
499 * buffer must be at least as large as the maxaccess value.
501 * The request routines create control blocks but not the in-memory buffers.
502 * That is postponed until realize_virt_arrays is called. At that time the
503 * total amount of space needed is known (approximately, anyway), so free
504 * memory can be divided up fairly.
506 * The access_virt_array routines are responsible for making a specific strip
507 * area accessible (after reading or writing the backing file, if necessary).
508 * Note that the access routines are told whether the caller intends to modify
509 * the accessed strip; during a read-only pass this saves having to rewrite
510 * data to disk. The access routines are also responsible for pre-zeroing
511 * any newly accessed rows, if pre-zeroing was requested.
513 * In current usage, the access requests are usually for nonoverlapping
514 * strips; that is, successive access start_row numbers differ by exactly
515 * num_rows = maxaccess. This means we can get good performance with simple
516 * buffer dump/reload logic, by making the in-memory buffer be a multiple
517 * of the access height; then there will never be accesses across bufferload
518 * boundaries. The code will still work with overlapping access requests,
519 * but it doesn't handle bufferload overlaps very efficiently.
523 METHODDEF(jvirt_sarray_ptr
)
524 request_virt_sarray (j_common_ptr cinfo
, int pool_id
, boolean pre_zero
,
525 JDIMENSION samplesperrow
, JDIMENSION numrows
,
526 JDIMENSION maxaccess
)
527 /* Request a virtual 2-D sample array */
529 my_mem_ptr mem
= (my_mem_ptr
) cinfo
->mem
;
530 jvirt_sarray_ptr result
;
532 /* Only IMAGE-lifetime virtual arrays are currently supported */
533 if (pool_id
!= JPOOL_IMAGE
)
534 ERREXIT1(cinfo
, JERR_BAD_POOL_ID
, pool_id
); /* safety check */
536 /* get control block */
537 result
= (jvirt_sarray_ptr
) alloc_small(cinfo
, pool_id
,
538 SIZEOF(struct jvirt_sarray_control
));
540 result
->mem_buffer
= NULL
; /* marks array not yet realized */
541 result
->rows_in_array
= numrows
;
542 result
->samplesperrow
= samplesperrow
;
543 result
->maxaccess
= maxaccess
;
544 result
->pre_zero
= pre_zero
;
545 result
->b_s_open
= FALSE
; /* no associated backing-store object */
546 result
->next
= mem
->virt_sarray_list
; /* add to list of virtual arrays */
547 mem
->virt_sarray_list
= result
;
553 METHODDEF(jvirt_barray_ptr
)
554 request_virt_barray (j_common_ptr cinfo
, int pool_id
, boolean pre_zero
,
555 JDIMENSION blocksperrow
, JDIMENSION numrows
,
556 JDIMENSION maxaccess
)
557 /* Request a virtual 2-D coefficient-block array */
559 my_mem_ptr mem
= (my_mem_ptr
) cinfo
->mem
;
560 jvirt_barray_ptr result
;
562 /* Only IMAGE-lifetime virtual arrays are currently supported */
563 if (pool_id
!= JPOOL_IMAGE
)
564 ERREXIT1(cinfo
, JERR_BAD_POOL_ID
, pool_id
); /* safety check */
566 /* get control block */
567 result
= (jvirt_barray_ptr
) alloc_small(cinfo
, pool_id
,
568 SIZEOF(struct jvirt_barray_control
));
570 result
->mem_buffer
= NULL
; /* marks array not yet realized */
571 result
->rows_in_array
= numrows
;
572 result
->blocksperrow
= blocksperrow
;
573 result
->maxaccess
= maxaccess
;
574 result
->pre_zero
= pre_zero
;
575 result
->b_s_open
= FALSE
; /* no associated backing-store object */
576 result
->next
= mem
->virt_barray_list
; /* add to list of virtual arrays */
577 mem
->virt_barray_list
= result
;
584 realize_virt_arrays (j_common_ptr cinfo
)
585 /* Allocate the in-memory buffers for any unrealized virtual arrays */
587 my_mem_ptr mem
= (my_mem_ptr
) cinfo
->mem
;
588 long space_per_minheight
, maximum_space
, avail_mem
;
589 long minheights
, max_minheights
;
590 jvirt_sarray_ptr sptr
;
591 jvirt_barray_ptr bptr
;
593 /* Compute the minimum space needed (maxaccess rows in each buffer)
594 * and the maximum space needed (full image height in each buffer).
595 * These may be of use to the system-dependent jpeg_mem_available routine.
597 space_per_minheight
= 0;
599 for (sptr
= mem
->virt_sarray_list
; sptr
!= NULL
; sptr
= sptr
->next
) {
600 if (sptr
->mem_buffer
== NULL
) { /* if not realized yet */
601 space_per_minheight
+= (long) sptr
->maxaccess
*
602 (long) sptr
->samplesperrow
* SIZEOF(JSAMPLE
);
603 maximum_space
+= (long) sptr
->rows_in_array
*
604 (long) sptr
->samplesperrow
* SIZEOF(JSAMPLE
);
607 for (bptr
= mem
->virt_barray_list
; bptr
!= NULL
; bptr
= bptr
->next
) {
608 if (bptr
->mem_buffer
== NULL
) { /* if not realized yet */
609 space_per_minheight
+= (long) bptr
->maxaccess
*
610 (long) bptr
->blocksperrow
* SIZEOF(JBLOCK
);
611 maximum_space
+= (long) bptr
->rows_in_array
*
612 (long) bptr
->blocksperrow
* SIZEOF(JBLOCK
);
616 if (space_per_minheight
<= 0)
617 return; /* no unrealized arrays, no work */
619 /* Determine amount of memory to actually use; this is system-dependent. */
620 avail_mem
= jpeg_mem_available(cinfo
, space_per_minheight
, maximum_space
,
621 mem
->total_space_allocated
);
623 /* If the maximum space needed is available, make all the buffers full
624 * height; otherwise parcel it out with the same number of minheights
627 if (avail_mem
>= maximum_space
)
628 max_minheights
= 1000000000L;
630 max_minheights
= avail_mem
/ space_per_minheight
;
631 /* If there doesn't seem to be enough space, try to get the minimum
632 * anyway. This allows a "stub" implementation of jpeg_mem_available().
634 if (max_minheights
<= 0)
638 /* Allocate the in-memory buffers and initialize backing store as needed. */
640 for (sptr
= mem
->virt_sarray_list
; sptr
!= NULL
; sptr
= sptr
->next
) {
641 if (sptr
->mem_buffer
== NULL
) { /* if not realized yet */
642 minheights
= ((long) sptr
->rows_in_array
- 1L) / sptr
->maxaccess
+ 1L;
643 if (minheights
<= max_minheights
) {
644 /* This buffer fits in memory */
645 sptr
->rows_in_mem
= sptr
->rows_in_array
;
647 /* It doesn't fit in memory, create backing store. */
648 sptr
->rows_in_mem
= (JDIMENSION
) (max_minheights
* sptr
->maxaccess
);
649 jpeg_open_backing_store(cinfo
, & sptr
->b_s_info
,
650 (long) sptr
->rows_in_array
*
651 (long) sptr
->samplesperrow
*
652 (long) SIZEOF(JSAMPLE
));
653 sptr
->b_s_open
= TRUE
;
655 sptr
->mem_buffer
= alloc_sarray(cinfo
, JPOOL_IMAGE
,
656 sptr
->samplesperrow
, sptr
->rows_in_mem
);
657 sptr
->rowsperchunk
= mem
->last_rowsperchunk
;
658 sptr
->cur_start_row
= 0;
659 sptr
->first_undef_row
= 0;
664 for (bptr
= mem
->virt_barray_list
; bptr
!= NULL
; bptr
= bptr
->next
) {
665 if (bptr
->mem_buffer
== NULL
) { /* if not realized yet */
666 minheights
= ((long) bptr
->rows_in_array
- 1L) / bptr
->maxaccess
+ 1L;
667 if (minheights
<= max_minheights
) {
668 /* This buffer fits in memory */
669 bptr
->rows_in_mem
= bptr
->rows_in_array
;
671 /* It doesn't fit in memory, create backing store. */
672 bptr
->rows_in_mem
= (JDIMENSION
) (max_minheights
* bptr
->maxaccess
);
673 jpeg_open_backing_store(cinfo
, & bptr
->b_s_info
,
674 (long) bptr
->rows_in_array
*
675 (long) bptr
->blocksperrow
*
676 (long) SIZEOF(JBLOCK
));
677 bptr
->b_s_open
= TRUE
;
679 bptr
->mem_buffer
= alloc_barray(cinfo
, JPOOL_IMAGE
,
680 bptr
->blocksperrow
, bptr
->rows_in_mem
);
681 bptr
->rowsperchunk
= mem
->last_rowsperchunk
;
682 bptr
->cur_start_row
= 0;
683 bptr
->first_undef_row
= 0;
691 do_sarray_io (j_common_ptr cinfo
, jvirt_sarray_ptr ptr
, boolean writing
)
692 /* Do backing store read or write of a virtual sample array */
694 long bytesperrow
, file_offset
, byte_count
, rows
, thisrow
, i
;
696 bytesperrow
= (long) ptr
->samplesperrow
* SIZEOF(JSAMPLE
);
697 file_offset
= ptr
->cur_start_row
* bytesperrow
;
698 /* Loop to read or write each allocation chunk in mem_buffer */
699 for (i
= 0; i
< (long) ptr
->rows_in_mem
; i
+= ptr
->rowsperchunk
) {
700 /* One chunk, but check for short chunk at end of buffer */
701 rows
= MIN((long) ptr
->rowsperchunk
, (long) ptr
->rows_in_mem
- i
);
702 /* Transfer no more than is currently defined */
703 thisrow
= (long) ptr
->cur_start_row
+ i
;
704 rows
= MIN(rows
, (long) ptr
->first_undef_row
- thisrow
);
705 /* Transfer no more than fits in file */
706 rows
= MIN(rows
, (long) ptr
->rows_in_array
- thisrow
);
707 if (rows
<= 0) /* this chunk might be past end of file! */
709 byte_count
= rows
* bytesperrow
;
711 (*ptr
->b_s_info
.write_backing_store
) (cinfo
, & ptr
->b_s_info
,
712 (void FAR
*) ptr
->mem_buffer
[i
],
713 file_offset
, byte_count
);
715 (*ptr
->b_s_info
.read_backing_store
) (cinfo
, & ptr
->b_s_info
,
716 (void FAR
*) ptr
->mem_buffer
[i
],
717 file_offset
, byte_count
);
718 file_offset
+= byte_count
;
724 do_barray_io (j_common_ptr cinfo
, jvirt_barray_ptr ptr
, boolean writing
)
725 /* Do backing store read or write of a virtual coefficient-block array */
727 long bytesperrow
, file_offset
, byte_count
, rows
, thisrow
, i
;
729 bytesperrow
= (long) ptr
->blocksperrow
* SIZEOF(JBLOCK
);
730 file_offset
= ptr
->cur_start_row
* bytesperrow
;
731 /* Loop to read or write each allocation chunk in mem_buffer */
732 for (i
= 0; i
< (long) ptr
->rows_in_mem
; i
+= ptr
->rowsperchunk
) {
733 /* One chunk, but check for short chunk at end of buffer */
734 rows
= MIN((long) ptr
->rowsperchunk
, (long) ptr
->rows_in_mem
- i
);
735 /* Transfer no more than is currently defined */
736 thisrow
= (long) ptr
->cur_start_row
+ i
;
737 rows
= MIN(rows
, (long) ptr
->first_undef_row
- thisrow
);
738 /* Transfer no more than fits in file */
739 rows
= MIN(rows
, (long) ptr
->rows_in_array
- thisrow
);
740 if (rows
<= 0) /* this chunk might be past end of file! */
742 byte_count
= rows
* bytesperrow
;
744 (*ptr
->b_s_info
.write_backing_store
) (cinfo
, & ptr
->b_s_info
,
745 (void FAR
*) ptr
->mem_buffer
[i
],
746 file_offset
, byte_count
);
748 (*ptr
->b_s_info
.read_backing_store
) (cinfo
, & ptr
->b_s_info
,
749 (void FAR
*) ptr
->mem_buffer
[i
],
750 file_offset
, byte_count
);
751 file_offset
+= byte_count
;
756 METHODDEF(JSAMPARRAY
)
757 access_virt_sarray (j_common_ptr cinfo
, jvirt_sarray_ptr ptr
,
758 JDIMENSION start_row
, JDIMENSION num_rows
,
760 /* Access the part of a virtual sample array starting at start_row */
761 /* and extending for num_rows rows. writable is true if */
762 /* caller intends to modify the accessed area. */
764 JDIMENSION end_row
= start_row
+ num_rows
;
765 JDIMENSION undef_row
;
767 /* debugging check */
768 if (end_row
> ptr
->rows_in_array
|| num_rows
> ptr
->maxaccess
||
769 ptr
->mem_buffer
== NULL
)
770 ERREXIT(cinfo
, JERR_BAD_VIRTUAL_ACCESS
);
772 /* Make the desired part of the virtual array accessible */
773 if (start_row
< ptr
->cur_start_row
||
774 end_row
> ptr
->cur_start_row
+ptr
->rows_in_mem
) {
776 ERREXIT(cinfo
, JERR_VIRTUAL_BUG
);
777 /* Flush old buffer contents if necessary */
779 do_sarray_io(cinfo
, ptr
, TRUE
);
782 /* Decide what part of virtual array to access.
783 * Algorithm: if target address > current window, assume forward scan,
784 * load starting at target address. If target address < current window,
785 * assume backward scan, load so that target area is top of window.
786 * Note that when switching from forward write to forward read, will have
787 * start_row = 0, so the limiting case applies and we load from 0 anyway.
789 if (start_row
> ptr
->cur_start_row
) {
790 ptr
->cur_start_row
= start_row
;
792 /* use long arithmetic here to avoid overflow & unsigned problems */
795 ltemp
= (long) end_row
- (long) ptr
->rows_in_mem
;
797 ltemp
= 0; /* don't fall off front end of file */
798 ptr
->cur_start_row
= (JDIMENSION
) ltemp
;
800 /* Read in the selected part of the array.
801 * During the initial write pass, we will do no actual read
802 * because the selected part is all undefined.
804 do_sarray_io(cinfo
, ptr
, FALSE
);
806 /* Ensure the accessed part of the array is defined; prezero if needed.
807 * To improve locality of access, we only prezero the part of the array
808 * that the caller is about to access, not the entire in-memory array.
810 if (ptr
->first_undef_row
< end_row
) {
811 if (ptr
->first_undef_row
< start_row
) {
812 if (writable
) /* writer skipped over a section of array */
813 ERREXIT(cinfo
, JERR_BAD_VIRTUAL_ACCESS
);
814 undef_row
= start_row
; /* but reader is allowed to read ahead */
816 undef_row
= ptr
->first_undef_row
;
819 ptr
->first_undef_row
= end_row
;
821 size_t bytesperrow
= (size_t) ptr
->samplesperrow
* SIZEOF(JSAMPLE
);
822 undef_row
-= ptr
->cur_start_row
; /* make indexes relative to buffer */
823 end_row
-= ptr
->cur_start_row
;
824 while (undef_row
< end_row
) {
825 FMEMZERO((void FAR
*) ptr
->mem_buffer
[undef_row
], bytesperrow
);
829 if (! writable
) /* reader looking at undefined data */
830 ERREXIT(cinfo
, JERR_BAD_VIRTUAL_ACCESS
);
833 /* Flag the buffer dirty if caller will write in it */
836 /* Return address of proper part of the buffer */
837 return ptr
->mem_buffer
+ (start_row
- ptr
->cur_start_row
);
841 METHODDEF(JBLOCKARRAY
)
842 access_virt_barray (j_common_ptr cinfo
, jvirt_barray_ptr ptr
,
843 JDIMENSION start_row
, JDIMENSION num_rows
,
845 /* Access the part of a virtual block array starting at start_row */
846 /* and extending for num_rows rows. writable is true if */
847 /* caller intends to modify the accessed area. */
849 JDIMENSION end_row
= start_row
+ num_rows
;
850 JDIMENSION undef_row
;
852 /* debugging check */
853 if (end_row
> ptr
->rows_in_array
|| num_rows
> ptr
->maxaccess
||
854 ptr
->mem_buffer
== NULL
)
855 ERREXIT(cinfo
, JERR_BAD_VIRTUAL_ACCESS
);
857 /* Make the desired part of the virtual array accessible */
858 if (start_row
< ptr
->cur_start_row
||
859 end_row
> ptr
->cur_start_row
+ptr
->rows_in_mem
) {
861 ERREXIT(cinfo
, JERR_VIRTUAL_BUG
);
862 /* Flush old buffer contents if necessary */
864 do_barray_io(cinfo
, ptr
, TRUE
);
867 /* Decide what part of virtual array to access.
868 * Algorithm: if target address > current window, assume forward scan,
869 * load starting at target address. If target address < current window,
870 * assume backward scan, load so that target area is top of window.
871 * Note that when switching from forward write to forward read, will have
872 * start_row = 0, so the limiting case applies and we load from 0 anyway.
874 if (start_row
> ptr
->cur_start_row
) {
875 ptr
->cur_start_row
= start_row
;
877 /* use long arithmetic here to avoid overflow & unsigned problems */
880 ltemp
= (long) end_row
- (long) ptr
->rows_in_mem
;
882 ltemp
= 0; /* don't fall off front end of file */
883 ptr
->cur_start_row
= (JDIMENSION
) ltemp
;
885 /* Read in the selected part of the array.
886 * During the initial write pass, we will do no actual read
887 * because the selected part is all undefined.
889 do_barray_io(cinfo
, ptr
, FALSE
);
891 /* Ensure the accessed part of the array is defined; prezero if needed.
892 * To improve locality of access, we only prezero the part of the array
893 * that the caller is about to access, not the entire in-memory array.
895 if (ptr
->first_undef_row
< end_row
) {
896 if (ptr
->first_undef_row
< start_row
) {
897 if (writable
) /* writer skipped over a section of array */
898 ERREXIT(cinfo
, JERR_BAD_VIRTUAL_ACCESS
);
899 undef_row
= start_row
; /* but reader is allowed to read ahead */
901 undef_row
= ptr
->first_undef_row
;
904 ptr
->first_undef_row
= end_row
;
906 size_t bytesperrow
= (size_t) ptr
->blocksperrow
* SIZEOF(JBLOCK
);
907 undef_row
-= ptr
->cur_start_row
; /* make indexes relative to buffer */
908 end_row
-= ptr
->cur_start_row
;
909 while (undef_row
< end_row
) {
910 FMEMZERO((void FAR
*) ptr
->mem_buffer
[undef_row
], bytesperrow
);
914 if (! writable
) /* reader looking at undefined data */
915 ERREXIT(cinfo
, JERR_BAD_VIRTUAL_ACCESS
);
918 /* Flag the buffer dirty if caller will write in it */
921 /* Return address of proper part of the buffer */
922 return ptr
->mem_buffer
+ (start_row
- ptr
->cur_start_row
);
927 * Release all objects belonging to a specified pool.
931 free_pool (j_common_ptr cinfo
, int pool_id
)
933 my_mem_ptr mem
= (my_mem_ptr
) cinfo
->mem
;
934 small_pool_ptr shdr_ptr
;
935 large_pool_ptr lhdr_ptr
;
938 if (pool_id
< 0 || pool_id
>= JPOOL_NUMPOOLS
)
939 ERREXIT1(cinfo
, JERR_BAD_POOL_ID
, pool_id
); /* safety check */
942 if (cinfo
->err
->trace_level
> 1)
943 print_mem_stats(cinfo
, pool_id
); /* print pool's memory usage statistics */
946 /* If freeing IMAGE pool, close any virtual arrays first */
947 if (pool_id
== JPOOL_IMAGE
) {
948 jvirt_sarray_ptr sptr
;
949 jvirt_barray_ptr bptr
;
951 for (sptr
= mem
->virt_sarray_list
; sptr
!= NULL
; sptr
= sptr
->next
) {
952 if (sptr
->b_s_open
) { /* there may be no backing store */
953 sptr
->b_s_open
= FALSE
; /* prevent recursive close if error */
954 (*sptr
->b_s_info
.close_backing_store
) (cinfo
, & sptr
->b_s_info
);
957 mem
->virt_sarray_list
= NULL
;
958 for (bptr
= mem
->virt_barray_list
; bptr
!= NULL
; bptr
= bptr
->next
) {
959 if (bptr
->b_s_open
) { /* there may be no backing store */
960 bptr
->b_s_open
= FALSE
; /* prevent recursive close if error */
961 (*bptr
->b_s_info
.close_backing_store
) (cinfo
, & bptr
->b_s_info
);
964 mem
->virt_barray_list
= NULL
;
967 /* Release large objects */
968 lhdr_ptr
= mem
->large_list
[pool_id
];
969 mem
->large_list
[pool_id
] = NULL
;
971 while (lhdr_ptr
!= NULL
) {
972 large_pool_ptr next_lhdr_ptr
= lhdr_ptr
->hdr
.next
;
973 space_freed
= lhdr_ptr
->hdr
.bytes_used
+
974 lhdr_ptr
->hdr
.bytes_left
+
975 SIZEOF(large_pool_hdr
);
976 jpeg_free_large(cinfo
, (void FAR
*) lhdr_ptr
, space_freed
);
977 mem
->total_space_allocated
-= space_freed
;
978 lhdr_ptr
= next_lhdr_ptr
;
981 /* Release small objects */
982 shdr_ptr
= mem
->small_list
[pool_id
];
983 mem
->small_list
[pool_id
] = NULL
;
985 while (shdr_ptr
!= NULL
) {
986 small_pool_ptr next_shdr_ptr
= shdr_ptr
->hdr
.next
;
987 space_freed
= shdr_ptr
->hdr
.bytes_used
+
988 shdr_ptr
->hdr
.bytes_left
+
989 SIZEOF(small_pool_hdr
);
990 jpeg_free_small(cinfo
, (void *) shdr_ptr
, space_freed
);
991 mem
->total_space_allocated
-= space_freed
;
992 shdr_ptr
= next_shdr_ptr
;
998 * Close up shop entirely.
999 * Note that this cannot be called unless cinfo->mem is non-NULL.
1003 self_destruct (j_common_ptr cinfo
)
1007 /* Close all backing store, release all memory.
1008 * Releasing pools in reverse order might help avoid fragmentation
1009 * with some (brain-damaged) malloc libraries.
1011 for (pool
= JPOOL_NUMPOOLS
-1; pool
>= JPOOL_PERMANENT
; pool
--) {
1012 free_pool(cinfo
, pool
);
1015 /* Release the memory manager control block too. */
1016 jpeg_free_small(cinfo
, (void *) cinfo
->mem
, SIZEOF(my_memory_mgr
));
1017 cinfo
->mem
= NULL
; /* ensures I will be called only once */
1019 jpeg_mem_term(cinfo
); /* system-dependent cleanup */
1024 * Memory manager initialization.
1025 * When this is called, only the error manager pointer is valid in cinfo!
1029 jinit_memory_mgr (j_common_ptr cinfo
)
1036 cinfo
->mem
= NULL
; /* for safety if init fails */
1038 /* Check for configuration errors.
1039 * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
1040 * doesn't reflect any real hardware alignment requirement.
1041 * The test is a little tricky: for X>0, X and X-1 have no one-bits
1042 * in common if and only if X is a power of 2, ie has only one one-bit.
1043 * Some compilers may give an "unreachable code" warning here; ignore it.
1045 if ((SIZEOF(ALIGN_TYPE
) & (SIZEOF(ALIGN_TYPE
)-1)) != 0)
1046 ERREXIT(cinfo
, JERR_BAD_ALIGN_TYPE
);
1047 /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
1048 * a multiple of SIZEOF(ALIGN_TYPE).
1049 * Again, an "unreachable code" warning may be ignored here.
1050 * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
1052 test_mac
= (size_t) MAX_ALLOC_CHUNK
;
1053 if ((long) test_mac
!= MAX_ALLOC_CHUNK
||
1054 (MAX_ALLOC_CHUNK
% SIZEOF(ALIGN_TYPE
)) != 0)
1055 ERREXIT(cinfo
, JERR_BAD_ALLOC_CHUNK
);
1057 max_to_use
= jpeg_mem_init(cinfo
); /* system-dependent initialization */
1059 /* Attempt to allocate memory manager's control block */
1060 mem
= (my_mem_ptr
) jpeg_get_small(cinfo
, SIZEOF(my_memory_mgr
));
1063 jpeg_mem_term(cinfo
); /* system-dependent cleanup */
1064 ERREXIT1(cinfo
, JERR_OUT_OF_MEMORY
, 0);
1067 /* OK, fill in the method pointers */
1068 mem
->pub
.alloc_small
= alloc_small
;
1069 mem
->pub
.alloc_large
= alloc_large
;
1070 mem
->pub
.alloc_sarray
= alloc_sarray
;
1071 mem
->pub
.alloc_barray
= alloc_barray
;
1072 mem
->pub
.request_virt_sarray
= request_virt_sarray
;
1073 mem
->pub
.request_virt_barray
= request_virt_barray
;
1074 mem
->pub
.realize_virt_arrays
= realize_virt_arrays
;
1075 mem
->pub
.access_virt_sarray
= access_virt_sarray
;
1076 mem
->pub
.access_virt_barray
= access_virt_barray
;
1077 mem
->pub
.free_pool
= free_pool
;
1078 mem
->pub
.self_destruct
= self_destruct
;
1080 /* Make MAX_ALLOC_CHUNK accessible to other modules */
1081 mem
->pub
.max_alloc_chunk
= MAX_ALLOC_CHUNK
;
1083 /* Initialize working state */
1084 mem
->pub
.max_memory_to_use
= max_to_use
;
1086 for (pool
= JPOOL_NUMPOOLS
-1; pool
>= JPOOL_PERMANENT
; pool
--) {
1087 mem
->small_list
[pool
] = NULL
;
1088 mem
->large_list
[pool
] = NULL
;
1090 mem
->virt_sarray_list
= NULL
;
1091 mem
->virt_barray_list
= NULL
;
1093 mem
->total_space_allocated
= SIZEOF(my_memory_mgr
);
1095 /* Declare ourselves open for business */
1096 cinfo
->mem
= & mem
->pub
;
1098 /* Check for an environment variable JPEGMEM; if found, override the
1099 * default max_memory setting from jpeg_mem_init. Note that the
1100 * surrounding application may again override this value.
1101 * If your system doesn't support getenv(), define NO_GETENV to disable
1107 if ((memenv
= getenv("JPEGMEM")) != NULL
) {
1110 if (sscanf(memenv
, "%ld%c", &max_to_use
, &ch
) > 0) {
1111 if (ch
== 'm' || ch
== 'M')
1112 max_to_use
*= 1000L;
1113 mem
->pub
.max_memory_to_use
= max_to_use
* 1000L;