2 * Copyright © 2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
24 #include "glsl_symbol_table.h"
26 #include "glsl_types.h"
28 #include "main/core.h" /* for MIN2 */
31 convert_component(ir_rvalue
*src
, const glsl_type
*desired_type
);
34 apply_implicit_conversion(const glsl_type
*to
, ir_rvalue
* &from
,
35 struct _mesa_glsl_parse_state
*state
);
38 process_parameters(exec_list
*instructions
, exec_list
*actual_parameters
,
39 exec_list
*parameters
,
40 struct _mesa_glsl_parse_state
*state
)
44 foreach_list (n
, parameters
) {
45 ast_node
*const ast
= exec_node_data(ast_node
, n
, link
);
46 ir_rvalue
*result
= ast
->hir(instructions
, state
);
48 ir_constant
*const constant
= result
->constant_expression_value();
52 actual_parameters
->push_tail(result
);
61 * Generate a source prototype for a function signature
63 * \param return_type Return type of the function. May be \c NULL.
64 * \param name Name of the function.
65 * \param parameters List of \c ir_instruction nodes representing the
66 * parameter list for the function. This may be either a
67 * formal (\c ir_variable) or actual (\c ir_rvalue)
68 * parameter list. Only the type is used.
71 * A ralloced string representing the prototype of the function.
74 prototype_string(const glsl_type
*return_type
, const char *name
,
75 exec_list
*parameters
)
79 if (return_type
!= NULL
)
80 str
= ralloc_asprintf(NULL
, "%s ", return_type
->name
);
82 ralloc_asprintf_append(&str
, "%s(", name
);
84 const char *comma
= "";
85 foreach_list(node
, parameters
) {
86 const ir_instruction
*const param
= (ir_instruction
*) node
;
88 ralloc_asprintf_append(&str
, "%s%s", comma
, param
->type
->name
);
92 ralloc_strcat(&str
, ")");
98 match_function_by_name(exec_list
*instructions
, const char *name
,
99 YYLTYPE
*loc
, exec_list
*actual_parameters
,
100 struct _mesa_glsl_parse_state
*state
)
103 ir_function
*f
= state
->symbols
->get_function(name
);
104 ir_function_signature
*sig
;
106 sig
= f
? f
->matching_signature(actual_parameters
) : NULL
;
108 /* FINISHME: This doesn't handle the case where shader X contains a
109 * FINISHME: matching signature but shader X + N contains an _exact_
110 * FINISHME: matching signature.
113 && (f
== NULL
|| state
->es_shader
|| !f
->has_user_signature())
114 && state
->symbols
->get_type(name
) == NULL
115 && (state
->language_version
== 110
116 || state
->symbols
->get_variable(name
) == NULL
)) {
117 /* The current shader doesn't contain a matching function or signature.
118 * Before giving up, look for the prototype in the built-in functions.
120 for (unsigned i
= 0; i
< state
->num_builtins_to_link
; i
++) {
121 ir_function
*builtin
;
122 builtin
= state
->builtins_to_link
[i
]->symbols
->get_function(name
);
123 sig
= builtin
? builtin
->matching_signature(actual_parameters
) : NULL
;
126 f
= new(ctx
) ir_function(name
);
127 state
->symbols
->add_global_function(f
);
128 emit_function(state
, instructions
, f
);
131 f
->add_signature(sig
->clone_prototype(f
, NULL
));
138 /* Verify that 'out' and 'inout' actual parameters are lvalues. This
139 * isn't done in ir_function::matching_signature because that function
140 * cannot generate the necessary diagnostics.
142 * Also, validate that 'const_in' formal parameters (an extension of our
143 * IR) correspond to ir_constant actual parameters.
145 exec_list_iterator actual_iter
= actual_parameters
->iterator();
146 exec_list_iterator formal_iter
= sig
->parameters
.iterator();
148 while (actual_iter
.has_next()) {
149 ir_rvalue
*actual
= (ir_rvalue
*) actual_iter
.get();
150 ir_variable
*formal
= (ir_variable
*) formal_iter
.get();
152 assert(actual
!= NULL
);
153 assert(formal
!= NULL
);
155 if (formal
->mode
== ir_var_const_in
&& !actual
->as_constant()) {
156 _mesa_glsl_error(loc
, state
,
157 "parameter `%s' must be a constant expression",
161 if ((formal
->mode
== ir_var_out
)
162 || (formal
->mode
== ir_var_inout
)) {
163 const char *mode
= NULL
;
164 switch (formal
->mode
) {
165 case ir_var_out
: mode
= "out"; break;
166 case ir_var_inout
: mode
= "inout"; break;
167 default: assert(false); break;
169 /* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always
172 if (actual
->variable_referenced()
173 && actual
->variable_referenced()->read_only
) {
174 _mesa_glsl_error(loc
, state
,
175 "function parameter '%s %s' references the "
176 "read-only variable '%s'",
178 actual
->variable_referenced()->name
);
180 } else if (!actual
->is_lvalue()) {
181 _mesa_glsl_error(loc
, state
,
182 "function parameter '%s %s' is not an lvalue",
187 if (formal
->type
->is_numeric() || formal
->type
->is_boolean()) {
188 ir_rvalue
*converted
= convert_component(actual
, formal
->type
);
189 actual
->replace_with(converted
);
196 /* Always insert the call in the instruction stream, and return a deref
197 * of its return val if it returns a value, since we don't know if
198 * the rvalue is going to be assigned to anything or not.
200 ir_call
*call
= new(ctx
) ir_call(sig
, actual_parameters
);
201 if (!sig
->return_type
->is_void()) {
203 ir_dereference_variable
*deref
;
205 var
= new(ctx
) ir_variable(sig
->return_type
,
206 ralloc_asprintf(ctx
, "%s_retval",
207 sig
->function_name()),
209 instructions
->push_tail(var
);
211 deref
= new(ctx
) ir_dereference_variable(var
);
212 ir_assignment
*assign
= new(ctx
) ir_assignment(deref
, call
, NULL
);
213 instructions
->push_tail(assign
);
214 if (state
->language_version
>= 120)
215 var
->constant_value
= call
->constant_expression_value();
217 deref
= new(ctx
) ir_dereference_variable(var
);
220 instructions
->push_tail(call
);
224 char *str
= prototype_string(NULL
, name
, actual_parameters
);
226 _mesa_glsl_error(loc
, state
, "no matching function for call to `%s'",
230 const char *prefix
= "candidates are: ";
232 for (int i
= -1; i
< (int) state
->num_builtins_to_link
; i
++) {
233 glsl_symbol_table
*syms
= i
>= 0 ? state
->builtins_to_link
[i
]->symbols
235 f
= syms
->get_function(name
);
239 foreach_list (node
, &f
->signatures
) {
240 ir_function_signature
*sig
= (ir_function_signature
*) node
;
242 str
= prototype_string(sig
->return_type
, f
->name
, &sig
->parameters
);
243 _mesa_glsl_error(loc
, state
, "%s%s", prefix
, str
);
251 return ir_call::get_error_instruction(ctx
);
257 * Perform automatic type conversion of constructor parameters
259 * This implements the rules in the "Conversion and Scalar Constructors"
260 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
263 convert_component(ir_rvalue
*src
, const glsl_type
*desired_type
)
265 void *ctx
= ralloc_parent(src
);
266 const unsigned a
= desired_type
->base_type
;
267 const unsigned b
= src
->type
->base_type
;
268 ir_expression
*result
= NULL
;
270 if (src
->type
->is_error())
273 assert(a
<= GLSL_TYPE_BOOL
);
274 assert(b
<= GLSL_TYPE_BOOL
);
276 if ((a
== b
) || (src
->type
->is_integer() && desired_type
->is_integer()))
282 if (b
== GLSL_TYPE_FLOAT
)
283 result
= new(ctx
) ir_expression(ir_unop_f2i
, desired_type
, src
, NULL
);
285 assert(b
== GLSL_TYPE_BOOL
);
286 result
= new(ctx
) ir_expression(ir_unop_b2i
, desired_type
, src
, NULL
);
289 case GLSL_TYPE_FLOAT
:
292 result
= new(ctx
) ir_expression(ir_unop_u2f
, desired_type
, src
, NULL
);
295 result
= new(ctx
) ir_expression(ir_unop_i2f
, desired_type
, src
, NULL
);
298 result
= new(ctx
) ir_expression(ir_unop_b2f
, desired_type
, src
, NULL
);
306 result
= new(ctx
) ir_expression(ir_unop_i2b
, desired_type
, src
, NULL
);
308 case GLSL_TYPE_FLOAT
:
309 result
= new(ctx
) ir_expression(ir_unop_f2b
, desired_type
, src
, NULL
);
315 assert(result
!= NULL
);
317 /* Try constant folding; it may fold in the conversion we just added. */
318 ir_constant
*const constant
= result
->constant_expression_value();
319 return (constant
!= NULL
) ? (ir_rvalue
*) constant
: (ir_rvalue
*) result
;
323 * Dereference a specific component from a scalar, vector, or matrix
326 dereference_component(ir_rvalue
*src
, unsigned component
)
328 void *ctx
= ralloc_parent(src
);
329 assert(component
< src
->type
->components());
331 /* If the source is a constant, just create a new constant instead of a
332 * dereference of the existing constant.
334 ir_constant
*constant
= src
->as_constant();
336 return new(ctx
) ir_constant(constant
, component
);
338 if (src
->type
->is_scalar()) {
340 } else if (src
->type
->is_vector()) {
341 return new(ctx
) ir_swizzle(src
, component
, 0, 0, 0, 1);
343 assert(src
->type
->is_matrix());
345 /* Dereference a row of the matrix, then call this function again to get
346 * a specific element from that row.
348 const int c
= component
/ src
->type
->column_type()->vector_elements
;
349 const int r
= component
% src
->type
->column_type()->vector_elements
;
350 ir_constant
*const col_index
= new(ctx
) ir_constant(c
);
351 ir_dereference
*const col
= new(ctx
) ir_dereference_array(src
, col_index
);
353 col
->type
= src
->type
->column_type();
355 return dereference_component(col
, r
);
358 assert(!"Should not get here.");
364 process_array_constructor(exec_list
*instructions
,
365 const glsl_type
*constructor_type
,
366 YYLTYPE
*loc
, exec_list
*parameters
,
367 struct _mesa_glsl_parse_state
*state
)
370 /* Array constructors come in two forms: sized and unsized. Sized array
371 * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
372 * variables. In this case the number of parameters must exactly match the
373 * specified size of the array.
375 * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
376 * are vec4 variables. In this case the size of the array being constructed
377 * is determined by the number of parameters.
379 * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
381 * "There must be exactly the same number of arguments as the size of
382 * the array being constructed. If no size is present in the
383 * constructor, then the array is explicitly sized to the number of
384 * arguments provided. The arguments are assigned in order, starting at
385 * element 0, to the elements of the constructed array. Each argument
386 * must be the same type as the element type of the array, or be a type
387 * that can be converted to the element type of the array according to
388 * Section 4.1.10 "Implicit Conversions.""
390 exec_list actual_parameters
;
391 const unsigned parameter_count
=
392 process_parameters(instructions
, &actual_parameters
, parameters
, state
);
394 if ((parameter_count
== 0)
395 || ((constructor_type
->length
!= 0)
396 && (constructor_type
->length
!= parameter_count
))) {
397 const unsigned min_param
= (constructor_type
->length
== 0)
398 ? 1 : constructor_type
->length
;
400 _mesa_glsl_error(loc
, state
, "array constructor must have %s %u "
402 (constructor_type
->length
!= 0) ? "at least" : "exactly",
403 min_param
, (min_param
<= 1) ? "" : "s");
404 return ir_call::get_error_instruction(ctx
);
407 if (constructor_type
->length
== 0) {
409 glsl_type::get_array_instance(constructor_type
->element_type(),
411 assert(constructor_type
!= NULL
);
412 assert(constructor_type
->length
== parameter_count
);
415 bool all_parameters_are_constant
= true;
417 /* Type cast each parameter and, if possible, fold constants. */
418 foreach_list_safe(n
, &actual_parameters
) {
419 ir_rvalue
*ir
= (ir_rvalue
*) n
;
420 ir_rvalue
*result
= ir
;
422 /* Apply implicit conversions (not the scalar constructor rules!) */
423 if (constructor_type
->element_type()->is_float()) {
424 const glsl_type
*desired_type
=
425 glsl_type::get_instance(GLSL_TYPE_FLOAT
,
426 ir
->type
->vector_elements
,
427 ir
->type
->matrix_columns
);
428 result
= convert_component(ir
, desired_type
);
431 if (result
->type
!= constructor_type
->element_type()) {
432 _mesa_glsl_error(loc
, state
, "type error in array constructor: "
433 "expected: %s, found %s",
434 constructor_type
->element_type()->name
,
438 /* Attempt to convert the parameter to a constant valued expression.
439 * After doing so, track whether or not all the parameters to the
440 * constructor are trivially constant valued expressions.
442 ir_rvalue
*const constant
= result
->constant_expression_value();
444 if (constant
!= NULL
)
447 all_parameters_are_constant
= false;
449 ir
->replace_with(result
);
452 if (all_parameters_are_constant
)
453 return new(ctx
) ir_constant(constructor_type
, &actual_parameters
);
455 ir_variable
*var
= new(ctx
) ir_variable(constructor_type
, "array_ctor",
457 instructions
->push_tail(var
);
460 foreach_list(node
, &actual_parameters
) {
461 ir_rvalue
*rhs
= (ir_rvalue
*) node
;
462 ir_rvalue
*lhs
= new(ctx
) ir_dereference_array(var
,
463 new(ctx
) ir_constant(i
));
465 ir_instruction
*assignment
= new(ctx
) ir_assignment(lhs
, rhs
, NULL
);
466 instructions
->push_tail(assignment
);
471 return new(ctx
) ir_dereference_variable(var
);
476 * Try to convert a record constructor to a constant expression
479 constant_record_constructor(const glsl_type
*constructor_type
,
480 exec_list
*parameters
, void *mem_ctx
)
482 foreach_list(node
, parameters
) {
483 ir_constant
*constant
= ((ir_instruction
*) node
)->as_constant();
484 if (constant
== NULL
)
486 node
->replace_with(constant
);
489 return new(mem_ctx
) ir_constant(constructor_type
, parameters
);
494 * Determine if a list consists of a single scalar r-value
497 single_scalar_parameter(exec_list
*parameters
)
499 const ir_rvalue
*const p
= (ir_rvalue
*) parameters
->head
;
500 assert(((ir_rvalue
*)p
)->as_rvalue() != NULL
);
502 return (p
->type
->is_scalar() && p
->next
->is_tail_sentinel());
507 * Generate inline code for a vector constructor
509 * The generated constructor code will consist of a temporary variable
510 * declaration of the same type as the constructor. A sequence of assignments
511 * from constructor parameters to the temporary will follow.
514 * An \c ir_dereference_variable of the temprorary generated in the constructor
518 emit_inline_vector_constructor(const glsl_type
*type
,
519 exec_list
*instructions
,
520 exec_list
*parameters
,
523 assert(!parameters
->is_empty());
525 ir_variable
*var
= new(ctx
) ir_variable(type
, "vec_ctor", ir_var_temporary
);
526 instructions
->push_tail(var
);
528 /* There are two kinds of vector constructors.
530 * - Construct a vector from a single scalar by replicating that scalar to
531 * all components of the vector.
533 * - Construct a vector from an arbirary combination of vectors and
534 * scalars. The components of the constructor parameters are assigned
535 * to the vector in order until the vector is full.
537 const unsigned lhs_components
= type
->components();
538 if (single_scalar_parameter(parameters
)) {
539 ir_rvalue
*first_param
= (ir_rvalue
*)parameters
->head
;
540 ir_rvalue
*rhs
= new(ctx
) ir_swizzle(first_param
, 0, 0, 0, 0,
542 ir_dereference_variable
*lhs
= new(ctx
) ir_dereference_variable(var
);
543 const unsigned mask
= (1U << lhs_components
) - 1;
545 assert(rhs
->type
== lhs
->type
);
547 ir_instruction
*inst
= new(ctx
) ir_assignment(lhs
, rhs
, NULL
, mask
);
548 instructions
->push_tail(inst
);
550 unsigned base_component
= 0;
551 unsigned base_lhs_component
= 0;
552 ir_constant_data data
;
553 unsigned constant_mask
= 0, constant_components
= 0;
555 memset(&data
, 0, sizeof(data
));
557 foreach_list(node
, parameters
) {
558 ir_rvalue
*param
= (ir_rvalue
*) node
;
559 unsigned rhs_components
= param
->type
->components();
561 /* Do not try to assign more components to the vector than it has!
563 if ((rhs_components
+ base_lhs_component
) > lhs_components
) {
564 rhs_components
= lhs_components
- base_lhs_component
;
567 const ir_constant
*const c
= param
->as_constant();
569 for (unsigned i
= 0; i
< rhs_components
; i
++) {
570 switch (c
->type
->base_type
) {
572 data
.u
[i
+ base_component
] = c
->get_uint_component(i
);
575 data
.i
[i
+ base_component
] = c
->get_int_component(i
);
577 case GLSL_TYPE_FLOAT
:
578 data
.f
[i
+ base_component
] = c
->get_float_component(i
);
581 data
.b
[i
+ base_component
] = c
->get_bool_component(i
);
584 assert(!"Should not get here.");
589 /* Mask of fields to be written in the assignment.
591 constant_mask
|= ((1U << rhs_components
) - 1) << base_lhs_component
;
592 constant_components
+= rhs_components
;
594 base_component
+= rhs_components
;
596 /* Advance the component index by the number of components
597 * that were just assigned.
599 base_lhs_component
+= rhs_components
;
602 if (constant_mask
!= 0) {
603 ir_dereference
*lhs
= new(ctx
) ir_dereference_variable(var
);
604 const glsl_type
*rhs_type
= glsl_type::get_instance(var
->type
->base_type
,
607 ir_rvalue
*rhs
= new(ctx
) ir_constant(rhs_type
, &data
);
609 ir_instruction
*inst
=
610 new(ctx
) ir_assignment(lhs
, rhs
, NULL
, constant_mask
);
611 instructions
->push_tail(inst
);
615 foreach_list(node
, parameters
) {
616 ir_rvalue
*param
= (ir_rvalue
*) node
;
617 unsigned rhs_components
= param
->type
->components();
619 /* Do not try to assign more components to the vector than it has!
621 if ((rhs_components
+ base_component
) > lhs_components
) {
622 rhs_components
= lhs_components
- base_component
;
625 const ir_constant
*const c
= param
->as_constant();
627 /* Mask of fields to be written in the assignment.
629 const unsigned write_mask
= ((1U << rhs_components
) - 1)
632 ir_dereference
*lhs
= new(ctx
) ir_dereference_variable(var
);
634 /* Generate a swizzle so that LHS and RHS sizes match.
637 new(ctx
) ir_swizzle(param
, 0, 1, 2, 3, rhs_components
);
639 ir_instruction
*inst
=
640 new(ctx
) ir_assignment(lhs
, rhs
, NULL
, write_mask
);
641 instructions
->push_tail(inst
);
644 /* Advance the component index by the number of components that were
647 base_component
+= rhs_components
;
650 return new(ctx
) ir_dereference_variable(var
);
655 * Generate assignment of a portion of a vector to a portion of a matrix column
657 * \param src_base First component of the source to be used in assignment
658 * \param column Column of destination to be assiged
659 * \param row_base First component of the destination column to be assigned
660 * \param count Number of components to be assigned
663 * \c src_base + \c count must be less than or equal to the number of components
664 * in the source vector.
667 assign_to_matrix_column(ir_variable
*var
, unsigned column
, unsigned row_base
,
668 ir_rvalue
*src
, unsigned src_base
, unsigned count
,
671 ir_constant
*col_idx
= new(mem_ctx
) ir_constant(column
);
672 ir_dereference
*column_ref
= new(mem_ctx
) ir_dereference_array(var
, col_idx
);
674 assert(column_ref
->type
->components() >= (row_base
+ count
));
675 assert(src
->type
->components() >= (src_base
+ count
));
677 /* Generate a swizzle that extracts the number of components from the source
678 * that are to be assigned to the column of the matrix.
680 if (count
< src
->type
->vector_elements
) {
681 src
= new(mem_ctx
) ir_swizzle(src
,
682 src_base
+ 0, src_base
+ 1,
683 src_base
+ 2, src_base
+ 3,
687 /* Mask of fields to be written in the assignment.
689 const unsigned write_mask
= ((1U << count
) - 1) << row_base
;
691 return new(mem_ctx
) ir_assignment(column_ref
, src
, NULL
, write_mask
);
696 * Generate inline code for a matrix constructor
698 * The generated constructor code will consist of a temporary variable
699 * declaration of the same type as the constructor. A sequence of assignments
700 * from constructor parameters to the temporary will follow.
703 * An \c ir_dereference_variable of the temprorary generated in the constructor
707 emit_inline_matrix_constructor(const glsl_type
*type
,
708 exec_list
*instructions
,
709 exec_list
*parameters
,
712 assert(!parameters
->is_empty());
714 ir_variable
*var
= new(ctx
) ir_variable(type
, "mat_ctor", ir_var_temporary
);
715 instructions
->push_tail(var
);
717 /* There are three kinds of matrix constructors.
719 * - Construct a matrix from a single scalar by replicating that scalar to
720 * along the diagonal of the matrix and setting all other components to
723 * - Construct a matrix from an arbirary combination of vectors and
724 * scalars. The components of the constructor parameters are assigned
725 * to the matrix in colum-major order until the matrix is full.
727 * - Construct a matrix from a single matrix. The source matrix is copied
728 * to the upper left portion of the constructed matrix, and the remaining
729 * elements take values from the identity matrix.
731 ir_rvalue
*const first_param
= (ir_rvalue
*) parameters
->head
;
732 if (single_scalar_parameter(parameters
)) {
733 /* Assign the scalar to the X component of a vec4, and fill the remaining
734 * components with zero.
736 ir_variable
*rhs_var
=
737 new(ctx
) ir_variable(glsl_type::vec4_type
, "mat_ctor_vec",
739 instructions
->push_tail(rhs_var
);
741 ir_constant_data zero
;
747 ir_instruction
*inst
=
748 new(ctx
) ir_assignment(new(ctx
) ir_dereference_variable(rhs_var
),
749 new(ctx
) ir_constant(rhs_var
->type
, &zero
),
751 instructions
->push_tail(inst
);
753 ir_dereference
*const rhs_ref
= new(ctx
) ir_dereference_variable(rhs_var
);
755 inst
= new(ctx
) ir_assignment(rhs_ref
, first_param
, NULL
, 0x01);
756 instructions
->push_tail(inst
);
758 /* Assign the temporary vector to each column of the destination matrix
759 * with a swizzle that puts the X component on the diagonal of the
760 * matrix. In some cases this may mean that the X component does not
761 * get assigned into the column at all (i.e., when the matrix has more
762 * columns than rows).
764 static const unsigned rhs_swiz
[4][4] = {
771 const unsigned cols_to_init
= MIN2(type
->matrix_columns
,
772 type
->vector_elements
);
773 for (unsigned i
= 0; i
< cols_to_init
; i
++) {
774 ir_constant
*const col_idx
= new(ctx
) ir_constant(i
);
775 ir_rvalue
*const col_ref
= new(ctx
) ir_dereference_array(var
, col_idx
);
777 ir_rvalue
*const rhs_ref
= new(ctx
) ir_dereference_variable(rhs_var
);
778 ir_rvalue
*const rhs
= new(ctx
) ir_swizzle(rhs_ref
, rhs_swiz
[i
],
779 type
->vector_elements
);
781 inst
= new(ctx
) ir_assignment(col_ref
, rhs
, NULL
);
782 instructions
->push_tail(inst
);
785 for (unsigned i
= cols_to_init
; i
< type
->matrix_columns
; i
++) {
786 ir_constant
*const col_idx
= new(ctx
) ir_constant(i
);
787 ir_rvalue
*const col_ref
= new(ctx
) ir_dereference_array(var
, col_idx
);
789 ir_rvalue
*const rhs_ref
= new(ctx
) ir_dereference_variable(rhs_var
);
790 ir_rvalue
*const rhs
= new(ctx
) ir_swizzle(rhs_ref
, 1, 1, 1, 1,
791 type
->vector_elements
);
793 inst
= new(ctx
) ir_assignment(col_ref
, rhs
, NULL
);
794 instructions
->push_tail(inst
);
796 } else if (first_param
->type
->is_matrix()) {
797 /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
799 * "If a matrix is constructed from a matrix, then each component
800 * (column i, row j) in the result that has a corresponding
801 * component (column i, row j) in the argument will be initialized
802 * from there. All other components will be initialized to the
803 * identity matrix. If a matrix argument is given to a matrix
804 * constructor, it is an error to have any other arguments."
806 assert(first_param
->next
->is_tail_sentinel());
807 ir_rvalue
*const src_matrix
= first_param
;
809 /* If the source matrix is smaller, pre-initialize the relavent parts of
810 * the destination matrix to the identity matrix.
812 if ((src_matrix
->type
->matrix_columns
< var
->type
->matrix_columns
)
813 || (src_matrix
->type
->vector_elements
< var
->type
->vector_elements
)) {
815 /* If the source matrix has fewer rows, every column of the destination
816 * must be initialized. Otherwise only the columns in the destination
817 * that do not exist in the source must be initialized.
820 (src_matrix
->type
->vector_elements
< var
->type
->vector_elements
)
821 ? 0 : src_matrix
->type
->matrix_columns
;
823 const glsl_type
*const col_type
= var
->type
->column_type();
824 for (/* empty */; col
< var
->type
->matrix_columns
; col
++) {
825 ir_constant_data ident
;
834 ir_rvalue
*const rhs
= new(ctx
) ir_constant(col_type
, &ident
);
836 ir_rvalue
*const lhs
=
837 new(ctx
) ir_dereference_array(var
, new(ctx
) ir_constant(col
));
839 ir_instruction
*inst
= new(ctx
) ir_assignment(lhs
, rhs
, NULL
);
840 instructions
->push_tail(inst
);
844 /* Assign columns from the source matrix to the destination matrix.
846 * Since the parameter will be used in the RHS of multiple assignments,
847 * generate a temporary and copy the paramter there.
849 ir_variable
*const rhs_var
=
850 new(ctx
) ir_variable(first_param
->type
, "mat_ctor_mat",
852 instructions
->push_tail(rhs_var
);
854 ir_dereference
*const rhs_var_ref
=
855 new(ctx
) ir_dereference_variable(rhs_var
);
856 ir_instruction
*const inst
=
857 new(ctx
) ir_assignment(rhs_var_ref
, first_param
, NULL
);
858 instructions
->push_tail(inst
);
860 const unsigned last_row
= MIN2(src_matrix
->type
->vector_elements
,
861 var
->type
->vector_elements
);
862 const unsigned last_col
= MIN2(src_matrix
->type
->matrix_columns
,
863 var
->type
->matrix_columns
);
865 unsigned swiz
[4] = { 0, 0, 0, 0 };
866 for (unsigned i
= 1; i
< last_row
; i
++)
869 const unsigned write_mask
= (1U << last_row
) - 1;
871 for (unsigned i
= 0; i
< last_col
; i
++) {
872 ir_dereference
*const lhs
=
873 new(ctx
) ir_dereference_array(var
, new(ctx
) ir_constant(i
));
874 ir_rvalue
*const rhs_col
=
875 new(ctx
) ir_dereference_array(rhs_var
, new(ctx
) ir_constant(i
));
877 /* If one matrix has columns that are smaller than the columns of the
878 * other matrix, wrap the column access of the larger with a swizzle
879 * so that the LHS and RHS of the assignment have the same size (and
880 * therefore have the same type).
882 * It would be perfectly valid to unconditionally generate the
883 * swizzles, this this will typically result in a more compact IR tree.
886 if (lhs
->type
->vector_elements
!= rhs_col
->type
->vector_elements
) {
887 rhs
= new(ctx
) ir_swizzle(rhs_col
, swiz
, last_row
);
892 ir_instruction
*inst
=
893 new(ctx
) ir_assignment(lhs
, rhs
, NULL
, write_mask
);
894 instructions
->push_tail(inst
);
897 const unsigned cols
= type
->matrix_columns
;
898 const unsigned rows
= type
->vector_elements
;
899 unsigned col_idx
= 0;
900 unsigned row_idx
= 0;
902 foreach_list (node
, parameters
) {
903 ir_rvalue
*const rhs
= (ir_rvalue
*) node
;
904 const unsigned components_remaining_this_column
= rows
- row_idx
;
905 unsigned rhs_components
= rhs
->type
->components();
906 unsigned rhs_base
= 0;
908 /* Since the parameter might be used in the RHS of two assignments,
909 * generate a temporary and copy the paramter there.
911 ir_variable
*rhs_var
=
912 new(ctx
) ir_variable(rhs
->type
, "mat_ctor_vec", ir_var_temporary
);
913 instructions
->push_tail(rhs_var
);
915 ir_dereference
*rhs_var_ref
=
916 new(ctx
) ir_dereference_variable(rhs_var
);
917 ir_instruction
*inst
= new(ctx
) ir_assignment(rhs_var_ref
, rhs
, NULL
);
918 instructions
->push_tail(inst
);
920 /* Assign the current parameter to as many components of the matrix
923 * NOTE: A single vector parameter can span two matrix columns. A
924 * single vec4, for example, can completely fill a mat2.
926 if (rhs_components
>= components_remaining_this_column
) {
927 const unsigned count
= MIN2(rhs_components
,
928 components_remaining_this_column
);
930 rhs_var_ref
= new(ctx
) ir_dereference_variable(rhs_var
);
932 ir_instruction
*inst
= assign_to_matrix_column(var
, col_idx
,
936 instructions
->push_tail(inst
);
944 /* If there is data left in the parameter and components left to be
945 * set in the destination, emit another assignment. It is possible
946 * that the assignment could be of a vec4 to the last element of the
947 * matrix. In this case col_idx==cols, but there is still data
948 * left in the source parameter. Obviously, don't emit an assignment
949 * to data outside the destination matrix.
951 if ((col_idx
< cols
) && (rhs_base
< rhs_components
)) {
952 const unsigned count
= rhs_components
- rhs_base
;
954 rhs_var_ref
= new(ctx
) ir_dereference_variable(rhs_var
);
956 ir_instruction
*inst
= assign_to_matrix_column(var
, col_idx
,
961 instructions
->push_tail(inst
);
968 return new(ctx
) ir_dereference_variable(var
);
973 emit_inline_record_constructor(const glsl_type
*type
,
974 exec_list
*instructions
,
975 exec_list
*parameters
,
978 ir_variable
*const var
=
979 new(mem_ctx
) ir_variable(type
, "record_ctor", ir_var_temporary
);
980 ir_dereference_variable
*const d
= new(mem_ctx
) ir_dereference_variable(var
);
982 instructions
->push_tail(var
);
984 exec_node
*node
= parameters
->head
;
985 for (unsigned i
= 0; i
< type
->length
; i
++) {
986 assert(!node
->is_tail_sentinel());
988 ir_dereference
*const lhs
=
989 new(mem_ctx
) ir_dereference_record(d
->clone(mem_ctx
, NULL
),
990 type
->fields
.structure
[i
].name
);
992 ir_rvalue
*const rhs
= ((ir_instruction
*) node
)->as_rvalue();
995 ir_instruction
*const assign
= new(mem_ctx
) ir_assignment(lhs
, rhs
, NULL
);
997 instructions
->push_tail(assign
);
1006 ast_function_expression::hir(exec_list
*instructions
,
1007 struct _mesa_glsl_parse_state
*state
)
1010 /* There are three sorts of function calls.
1012 * 1. constructors - The first subexpression is an ast_type_specifier.
1013 * 2. methods - Only the .length() method of array types.
1014 * 3. functions - Calls to regular old functions.
1016 * Method calls are actually detected when the ast_field_selection
1017 * expression is handled.
1019 if (is_constructor()) {
1020 const ast_type_specifier
*type
= (ast_type_specifier
*) subexpressions
[0];
1021 YYLTYPE loc
= type
->get_location();
1024 const glsl_type
*const constructor_type
= type
->glsl_type(& name
, state
);
1026 /* constructor_type can be NULL if a variable with the same name as the
1027 * structure has come into scope.
1029 if (constructor_type
== NULL
) {
1030 _mesa_glsl_error(& loc
, state
, "unknown type `%s' (structure name "
1031 "may be shadowed by a variable with the same name)",
1033 return ir_call::get_error_instruction(ctx
);
1037 /* Constructors for samplers are illegal.
1039 if (constructor_type
->is_sampler()) {
1040 _mesa_glsl_error(& loc
, state
, "cannot construct sampler type `%s'",
1041 constructor_type
->name
);
1042 return ir_call::get_error_instruction(ctx
);
1045 if (constructor_type
->is_array()) {
1046 if (state
->language_version
<= 110) {
1047 _mesa_glsl_error(& loc
, state
,
1048 "array constructors forbidden in GLSL 1.10");
1049 return ir_call::get_error_instruction(ctx
);
1052 return process_array_constructor(instructions
, constructor_type
,
1053 & loc
, &this->expressions
, state
);
1057 /* There are two kinds of constructor call. Constructors for built-in
1058 * language types, such as mat4 and vec2, are free form. The only
1059 * requirement is that the parameters must provide enough values of the
1060 * correct scalar type. Constructors for arrays and structures must
1061 * have the exact number of parameters with matching types in the
1062 * correct order. These constructors follow essentially the same type
1063 * matching rules as functions.
1065 if (constructor_type
->is_record()) {
1066 exec_list actual_parameters
;
1068 process_parameters(instructions
, &actual_parameters
,
1069 &this->expressions
, state
);
1071 exec_node
*node
= actual_parameters
.head
;
1072 for (unsigned i
= 0; i
< constructor_type
->length
; i
++) {
1073 ir_rvalue
*ir
= (ir_rvalue
*) node
;
1075 if (node
->is_tail_sentinel()) {
1076 _mesa_glsl_error(&loc
, state
,
1077 "insufficient parameters to constructor "
1079 constructor_type
->name
);
1080 return ir_call::get_error_instruction(ctx
);
1083 if (apply_implicit_conversion(constructor_type
->fields
.structure
[i
].type
,
1085 node
->replace_with(ir
);
1087 _mesa_glsl_error(&loc
, state
,
1088 "parameter type mismatch in constructor "
1089 "for `%s.%s' (%s vs %s)",
1090 constructor_type
->name
,
1091 constructor_type
->fields
.structure
[i
].name
,
1093 constructor_type
->fields
.structure
[i
].type
->name
);
1094 return ir_call::get_error_instruction(ctx
);;
1100 if (!node
->is_tail_sentinel()) {
1101 _mesa_glsl_error(&loc
, state
, "too many parameters in constructor "
1102 "for `%s'", constructor_type
->name
);
1103 return ir_call::get_error_instruction(ctx
);
1106 ir_rvalue
*const constant
=
1107 constant_record_constructor(constructor_type
, &actual_parameters
,
1110 return (constant
!= NULL
)
1112 : emit_inline_record_constructor(constructor_type
, instructions
,
1113 &actual_parameters
, state
);
1116 if (!constructor_type
->is_numeric() && !constructor_type
->is_boolean())
1117 return ir_call::get_error_instruction(ctx
);
1119 /* Total number of components of the type being constructed. */
1120 const unsigned type_components
= constructor_type
->components();
1122 /* Number of components from parameters that have actually been
1123 * consumed. This is used to perform several kinds of error checking.
1125 unsigned components_used
= 0;
1127 unsigned matrix_parameters
= 0;
1128 unsigned nonmatrix_parameters
= 0;
1129 exec_list actual_parameters
;
1131 foreach_list (n
, &this->expressions
) {
1132 ast_node
*ast
= exec_node_data(ast_node
, n
, link
);
1133 ir_rvalue
*result
= ast
->hir(instructions
, state
)->as_rvalue();
1135 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1137 * "It is an error to provide extra arguments beyond this
1138 * last used argument."
1140 if (components_used
>= type_components
) {
1141 _mesa_glsl_error(& loc
, state
, "too many parameters to `%s' "
1143 constructor_type
->name
);
1144 return ir_call::get_error_instruction(ctx
);
1147 if (!result
->type
->is_numeric() && !result
->type
->is_boolean()) {
1148 _mesa_glsl_error(& loc
, state
, "cannot construct `%s' from a "
1149 "non-numeric data type",
1150 constructor_type
->name
);
1151 return ir_call::get_error_instruction(ctx
);
1154 /* Count the number of matrix and nonmatrix parameters. This
1155 * is used below to enforce some of the constructor rules.
1157 if (result
->type
->is_matrix())
1158 matrix_parameters
++;
1160 nonmatrix_parameters
++;
1162 actual_parameters
.push_tail(result
);
1163 components_used
+= result
->type
->components();
1166 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1168 * "It is an error to construct matrices from other matrices. This
1169 * is reserved for future use."
1171 if (state
->language_version
== 110 && matrix_parameters
> 0
1172 && constructor_type
->is_matrix()) {
1173 _mesa_glsl_error(& loc
, state
, "cannot construct `%s' from a "
1174 "matrix in GLSL 1.10",
1175 constructor_type
->name
);
1176 return ir_call::get_error_instruction(ctx
);
1179 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1181 * "If a matrix argument is given to a matrix constructor, it is
1182 * an error to have any other arguments."
1184 if ((matrix_parameters
> 0)
1185 && ((matrix_parameters
+ nonmatrix_parameters
) > 1)
1186 && constructor_type
->is_matrix()) {
1187 _mesa_glsl_error(& loc
, state
, "for matrix `%s' constructor, "
1188 "matrix must be only parameter",
1189 constructor_type
->name
);
1190 return ir_call::get_error_instruction(ctx
);
1193 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1195 * "In these cases, there must be enough components provided in the
1196 * arguments to provide an initializer for every component in the
1197 * constructed value."
1199 if (components_used
< type_components
&& components_used
!= 1
1200 && matrix_parameters
== 0) {
1201 _mesa_glsl_error(& loc
, state
, "too few components to construct "
1203 constructor_type
->name
);
1204 return ir_call::get_error_instruction(ctx
);
1207 /* Later, we cast each parameter to the same base type as the
1208 * constructor. Since there are no non-floating point matrices, we
1209 * need to break them up into a series of column vectors.
1211 if (constructor_type
->base_type
!= GLSL_TYPE_FLOAT
) {
1212 foreach_list_safe(n
, &actual_parameters
) {
1213 ir_rvalue
*matrix
= (ir_rvalue
*) n
;
1215 if (!matrix
->type
->is_matrix())
1218 /* Create a temporary containing the matrix. */
1219 ir_variable
*var
= new(ctx
) ir_variable(matrix
->type
, "matrix_tmp",
1221 instructions
->push_tail(var
);
1222 instructions
->push_tail(new(ctx
) ir_assignment(new(ctx
)
1223 ir_dereference_variable(var
), matrix
, NULL
));
1224 var
->constant_value
= matrix
->constant_expression_value();
1226 /* Replace the matrix with dereferences of its columns. */
1227 for (int i
= 0; i
< matrix
->type
->matrix_columns
; i
++) {
1228 matrix
->insert_before(new (ctx
) ir_dereference_array(var
,
1229 new(ctx
) ir_constant(i
)));
1235 bool all_parameters_are_constant
= true;
1237 /* Type cast each parameter and, if possible, fold constants.*/
1238 foreach_list_safe(n
, &actual_parameters
) {
1239 ir_rvalue
*ir
= (ir_rvalue
*) n
;
1241 const glsl_type
*desired_type
=
1242 glsl_type::get_instance(constructor_type
->base_type
,
1243 ir
->type
->vector_elements
,
1244 ir
->type
->matrix_columns
);
1245 ir_rvalue
*result
= convert_component(ir
, desired_type
);
1247 /* Attempt to convert the parameter to a constant valued expression.
1248 * After doing so, track whether or not all the parameters to the
1249 * constructor are trivially constant valued expressions.
1251 ir_rvalue
*const constant
= result
->constant_expression_value();
1253 if (constant
!= NULL
)
1256 all_parameters_are_constant
= false;
1259 ir
->replace_with(result
);
1263 /* If all of the parameters are trivially constant, create a
1264 * constant representing the complete collection of parameters.
1266 if (all_parameters_are_constant
) {
1267 return new(ctx
) ir_constant(constructor_type
, &actual_parameters
);
1268 } else if (constructor_type
->is_scalar()) {
1269 return dereference_component((ir_rvalue
*) actual_parameters
.head
,
1271 } else if (constructor_type
->is_vector()) {
1272 return emit_inline_vector_constructor(constructor_type
,
1277 assert(constructor_type
->is_matrix());
1278 return emit_inline_matrix_constructor(constructor_type
,
1284 const ast_expression
*id
= subexpressions
[0];
1285 YYLTYPE loc
= id
->get_location();
1286 exec_list actual_parameters
;
1288 process_parameters(instructions
, &actual_parameters
, &this->expressions
,
1291 return match_function_by_name(instructions
,
1292 id
->primary_expression
.identifier
, & loc
,
1293 &actual_parameters
, state
);
1296 return ir_call::get_error_instruction(ctx
);