2 * Copyright © 2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
31 * * Symbol table management
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
56 #include "glsl_types.h"
60 _mesa_ast_to_hir(exec_list
*instructions
, struct _mesa_glsl_parse_state
*state
)
62 _mesa_glsl_initialize_variables(instructions
, state
);
63 _mesa_glsl_initialize_functions(state
);
65 state
->symbols
->language_version
= state
->language_version
;
67 state
->current_function
= NULL
;
69 /* Section 4.2 of the GLSL 1.20 specification states:
70 * "The built-in functions are scoped in a scope outside the global scope
71 * users declare global variables in. That is, a shader's global scope,
72 * available for user-defined functions and global variables, is nested
73 * inside the scope containing the built-in functions."
75 * Since built-in functions like ftransform() access built-in variables,
76 * it follows that those must be in the outer scope as well.
78 * We push scope here to create this nesting effect...but don't pop.
79 * This way, a shader's globals are still in the symbol table for use
82 state
->symbols
->push_scope();
84 foreach_list_typed (ast_node
, ast
, link
, & state
->translation_unit
)
85 ast
->hir(instructions
, state
);
87 detect_recursion_unlinked(state
, instructions
);
92 * If a conversion is available, convert one operand to a different type
94 * The \c from \c ir_rvalue is converted "in place".
96 * \param to Type that the operand it to be converted to
97 * \param from Operand that is being converted
98 * \param state GLSL compiler state
101 * If a conversion is possible (or unnecessary), \c true is returned.
102 * Otherwise \c false is returned.
105 apply_implicit_conversion(const glsl_type
*to
, ir_rvalue
* &from
,
106 struct _mesa_glsl_parse_state
*state
)
109 if (to
->base_type
== from
->type
->base_type
)
112 /* This conversion was added in GLSL 1.20. If the compilation mode is
113 * GLSL 1.10, the conversion is skipped.
115 if (state
->language_version
< 120)
118 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
120 * "There are no implicit array or structure conversions. For
121 * example, an array of int cannot be implicitly converted to an
122 * array of float. There are no implicit conversions between
123 * signed and unsigned integers."
125 /* FINISHME: The above comment is partially a lie. There is int/uint
126 * FINISHME: conversion for immediate constants.
128 if (!to
->is_float() || !from
->type
->is_numeric())
131 /* Convert to a floating point type with the same number of components
132 * as the original type - i.e. int to float, not int to vec4.
134 to
= glsl_type::get_instance(GLSL_TYPE_FLOAT
, from
->type
->vector_elements
,
135 from
->type
->matrix_columns
);
137 switch (from
->type
->base_type
) {
139 from
= new(ctx
) ir_expression(ir_unop_i2f
, to
, from
, NULL
);
142 from
= new(ctx
) ir_expression(ir_unop_u2f
, to
, from
, NULL
);
145 from
= new(ctx
) ir_expression(ir_unop_b2f
, to
, from
, NULL
);
155 static const struct glsl_type
*
156 arithmetic_result_type(ir_rvalue
* &value_a
, ir_rvalue
* &value_b
,
158 struct _mesa_glsl_parse_state
*state
, YYLTYPE
*loc
)
160 const glsl_type
*type_a
= value_a
->type
;
161 const glsl_type
*type_b
= value_b
->type
;
163 /* From GLSL 1.50 spec, page 56:
165 * "The arithmetic binary operators add (+), subtract (-),
166 * multiply (*), and divide (/) operate on integer and
167 * floating-point scalars, vectors, and matrices."
169 if (!type_a
->is_numeric() || !type_b
->is_numeric()) {
170 _mesa_glsl_error(loc
, state
,
171 "Operands to arithmetic operators must be numeric");
172 return glsl_type::error_type
;
176 /* "If one operand is floating-point based and the other is
177 * not, then the conversions from Section 4.1.10 "Implicit
178 * Conversions" are applied to the non-floating-point-based operand."
180 if (!apply_implicit_conversion(type_a
, value_b
, state
)
181 && !apply_implicit_conversion(type_b
, value_a
, state
)) {
182 _mesa_glsl_error(loc
, state
,
183 "Could not implicitly convert operands to "
184 "arithmetic operator");
185 return glsl_type::error_type
;
187 type_a
= value_a
->type
;
188 type_b
= value_b
->type
;
190 /* "If the operands are integer types, they must both be signed or
193 * From this rule and the preceeding conversion it can be inferred that
194 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
195 * The is_numeric check above already filtered out the case where either
196 * type is not one of these, so now the base types need only be tested for
199 if (type_a
->base_type
!= type_b
->base_type
) {
200 _mesa_glsl_error(loc
, state
,
201 "base type mismatch for arithmetic operator");
202 return glsl_type::error_type
;
205 /* "All arithmetic binary operators result in the same fundamental type
206 * (signed integer, unsigned integer, or floating-point) as the
207 * operands they operate on, after operand type conversion. After
208 * conversion, the following cases are valid
210 * * The two operands are scalars. In this case the operation is
211 * applied, resulting in a scalar."
213 if (type_a
->is_scalar() && type_b
->is_scalar())
216 /* "* One operand is a scalar, and the other is a vector or matrix.
217 * In this case, the scalar operation is applied independently to each
218 * component of the vector or matrix, resulting in the same size
221 if (type_a
->is_scalar()) {
222 if (!type_b
->is_scalar())
224 } else if (type_b
->is_scalar()) {
228 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
229 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
232 assert(!type_a
->is_scalar());
233 assert(!type_b
->is_scalar());
235 /* "* The two operands are vectors of the same size. In this case, the
236 * operation is done component-wise resulting in the same size
239 if (type_a
->is_vector() && type_b
->is_vector()) {
240 if (type_a
== type_b
) {
243 _mesa_glsl_error(loc
, state
,
244 "vector size mismatch for arithmetic operator");
245 return glsl_type::error_type
;
249 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
250 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
251 * <vector, vector> have been handled. At least one of the operands must
252 * be matrix. Further, since there are no integer matrix types, the base
253 * type of both operands must be float.
255 assert(type_a
->is_matrix() || type_b
->is_matrix());
256 assert(type_a
->base_type
== GLSL_TYPE_FLOAT
);
257 assert(type_b
->base_type
== GLSL_TYPE_FLOAT
);
259 /* "* The operator is add (+), subtract (-), or divide (/), and the
260 * operands are matrices with the same number of rows and the same
261 * number of columns. In this case, the operation is done component-
262 * wise resulting in the same size matrix."
263 * * The operator is multiply (*), where both operands are matrices or
264 * one operand is a vector and the other a matrix. A right vector
265 * operand is treated as a column vector and a left vector operand as a
266 * row vector. In all these cases, it is required that the number of
267 * columns of the left operand is equal to the number of rows of the
268 * right operand. Then, the multiply (*) operation does a linear
269 * algebraic multiply, yielding an object that has the same number of
270 * rows as the left operand and the same number of columns as the right
271 * operand. Section 5.10 "Vector and Matrix Operations" explains in
272 * more detail how vectors and matrices are operated on."
275 if (type_a
== type_b
)
278 if (type_a
->is_matrix() && type_b
->is_matrix()) {
279 /* Matrix multiply. The columns of A must match the rows of B. Given
280 * the other previously tested constraints, this means the vector type
281 * of a row from A must be the same as the vector type of a column from
284 if (type_a
->row_type() == type_b
->column_type()) {
285 /* The resulting matrix has the number of columns of matrix B and
286 * the number of rows of matrix A. We get the row count of A by
287 * looking at the size of a vector that makes up a column. The
288 * transpose (size of a row) is done for B.
290 const glsl_type
*const type
=
291 glsl_type::get_instance(type_a
->base_type
,
292 type_a
->column_type()->vector_elements
,
293 type_b
->row_type()->vector_elements
);
294 assert(type
!= glsl_type::error_type
);
298 } else if (type_a
->is_matrix()) {
299 /* A is a matrix and B is a column vector. Columns of A must match
300 * rows of B. Given the other previously tested constraints, this
301 * means the vector type of a row from A must be the same as the
302 * vector the type of B.
304 if (type_a
->row_type() == type_b
) {
305 /* The resulting vector has a number of elements equal to
306 * the number of rows of matrix A. */
307 const glsl_type
*const type
=
308 glsl_type::get_instance(type_a
->base_type
,
309 type_a
->column_type()->vector_elements
,
311 assert(type
!= glsl_type::error_type
);
316 assert(type_b
->is_matrix());
318 /* A is a row vector and B is a matrix. Columns of A must match rows
319 * of B. Given the other previously tested constraints, this means
320 * the type of A must be the same as the vector type of a column from
323 if (type_a
== type_b
->column_type()) {
324 /* The resulting vector has a number of elements equal to
325 * the number of columns of matrix B. */
326 const glsl_type
*const type
=
327 glsl_type::get_instance(type_a
->base_type
,
328 type_b
->row_type()->vector_elements
,
330 assert(type
!= glsl_type::error_type
);
336 _mesa_glsl_error(loc
, state
, "size mismatch for matrix multiplication");
337 return glsl_type::error_type
;
341 /* "All other cases are illegal."
343 _mesa_glsl_error(loc
, state
, "type mismatch");
344 return glsl_type::error_type
;
348 static const struct glsl_type
*
349 unary_arithmetic_result_type(const struct glsl_type
*type
,
350 struct _mesa_glsl_parse_state
*state
, YYLTYPE
*loc
)
352 /* From GLSL 1.50 spec, page 57:
354 * "The arithmetic unary operators negate (-), post- and pre-increment
355 * and decrement (-- and ++) operate on integer or floating-point
356 * values (including vectors and matrices). All unary operators work
357 * component-wise on their operands. These result with the same type
360 if (!type
->is_numeric()) {
361 _mesa_glsl_error(loc
, state
,
362 "Operands to arithmetic operators must be numeric");
363 return glsl_type::error_type
;
370 * \brief Return the result type of a bit-logic operation.
372 * If the given types to the bit-logic operator are invalid, return
373 * glsl_type::error_type.
375 * \param type_a Type of LHS of bit-logic op
376 * \param type_b Type of RHS of bit-logic op
378 static const struct glsl_type
*
379 bit_logic_result_type(const struct glsl_type
*type_a
,
380 const struct glsl_type
*type_b
,
382 struct _mesa_glsl_parse_state
*state
, YYLTYPE
*loc
)
384 if (state
->language_version
< 130) {
385 _mesa_glsl_error(loc
, state
, "bit operations require GLSL 1.30");
386 return glsl_type::error_type
;
389 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
391 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
392 * (|). The operands must be of type signed or unsigned integers or
395 if (!type_a
->is_integer()) {
396 _mesa_glsl_error(loc
, state
, "LHS of `%s' must be an integer",
397 ast_expression::operator_string(op
));
398 return glsl_type::error_type
;
400 if (!type_b
->is_integer()) {
401 _mesa_glsl_error(loc
, state
, "RHS of `%s' must be an integer",
402 ast_expression::operator_string(op
));
403 return glsl_type::error_type
;
406 /* "The fundamental types of the operands (signed or unsigned) must
409 if (type_a
->base_type
!= type_b
->base_type
) {
410 _mesa_glsl_error(loc
, state
, "operands of `%s' must have the same "
411 "base type", ast_expression::operator_string(op
));
412 return glsl_type::error_type
;
415 /* "The operands cannot be vectors of differing size." */
416 if (type_a
->is_vector() &&
417 type_b
->is_vector() &&
418 type_a
->vector_elements
!= type_b
->vector_elements
) {
419 _mesa_glsl_error(loc
, state
, "operands of `%s' cannot be vectors of "
420 "different sizes", ast_expression::operator_string(op
));
421 return glsl_type::error_type
;
424 /* "If one operand is a scalar and the other a vector, the scalar is
425 * applied component-wise to the vector, resulting in the same type as
426 * the vector. The fundamental types of the operands [...] will be the
427 * resulting fundamental type."
429 if (type_a
->is_scalar())
435 static const struct glsl_type
*
436 modulus_result_type(const struct glsl_type
*type_a
,
437 const struct glsl_type
*type_b
,
438 struct _mesa_glsl_parse_state
*state
, YYLTYPE
*loc
)
440 if (state
->language_version
< 130) {
441 _mesa_glsl_error(loc
, state
,
442 "operator '%%' is reserved in %s",
443 state
->version_string
);
444 return glsl_type::error_type
;
447 /* From GLSL 1.50 spec, page 56:
448 * "The operator modulus (%) operates on signed or unsigned integers or
449 * integer vectors. The operand types must both be signed or both be
452 if (!type_a
->is_integer() || !type_b
->is_integer()
453 || (type_a
->base_type
!= type_b
->base_type
)) {
454 _mesa_glsl_error(loc
, state
, "type mismatch");
455 return glsl_type::error_type
;
458 /* "The operands cannot be vectors of differing size. If one operand is
459 * a scalar and the other vector, then the scalar is applied component-
460 * wise to the vector, resulting in the same type as the vector. If both
461 * are vectors of the same size, the result is computed component-wise."
463 if (type_a
->is_vector()) {
464 if (!type_b
->is_vector()
465 || (type_a
->vector_elements
== type_b
->vector_elements
))
470 /* "The operator modulus (%) is not defined for any other data types
471 * (non-integer types)."
473 _mesa_glsl_error(loc
, state
, "type mismatch");
474 return glsl_type::error_type
;
478 static const struct glsl_type
*
479 relational_result_type(ir_rvalue
* &value_a
, ir_rvalue
* &value_b
,
480 struct _mesa_glsl_parse_state
*state
, YYLTYPE
*loc
)
482 const glsl_type
*type_a
= value_a
->type
;
483 const glsl_type
*type_b
= value_b
->type
;
485 /* From GLSL 1.50 spec, page 56:
486 * "The relational operators greater than (>), less than (<), greater
487 * than or equal (>=), and less than or equal (<=) operate only on
488 * scalar integer and scalar floating-point expressions."
490 if (!type_a
->is_numeric()
491 || !type_b
->is_numeric()
492 || !type_a
->is_scalar()
493 || !type_b
->is_scalar()) {
494 _mesa_glsl_error(loc
, state
,
495 "Operands to relational operators must be scalar and "
497 return glsl_type::error_type
;
500 /* "Either the operands' types must match, or the conversions from
501 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
502 * operand, after which the types must match."
504 if (!apply_implicit_conversion(type_a
, value_b
, state
)
505 && !apply_implicit_conversion(type_b
, value_a
, state
)) {
506 _mesa_glsl_error(loc
, state
,
507 "Could not implicitly convert operands to "
508 "relational operator");
509 return glsl_type::error_type
;
511 type_a
= value_a
->type
;
512 type_b
= value_b
->type
;
514 if (type_a
->base_type
!= type_b
->base_type
) {
515 _mesa_glsl_error(loc
, state
, "base type mismatch");
516 return glsl_type::error_type
;
519 /* "The result is scalar Boolean."
521 return glsl_type::bool_type
;
525 * \brief Return the result type of a bit-shift operation.
527 * If the given types to the bit-shift operator are invalid, return
528 * glsl_type::error_type.
530 * \param type_a Type of LHS of bit-shift op
531 * \param type_b Type of RHS of bit-shift op
533 static const struct glsl_type
*
534 shift_result_type(const struct glsl_type
*type_a
,
535 const struct glsl_type
*type_b
,
537 struct _mesa_glsl_parse_state
*state
, YYLTYPE
*loc
)
539 if (state
->language_version
< 130) {
540 _mesa_glsl_error(loc
, state
, "bit operations require GLSL 1.30");
541 return glsl_type::error_type
;
544 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
546 * "The shift operators (<<) and (>>). For both operators, the operands
547 * must be signed or unsigned integers or integer vectors. One operand
548 * can be signed while the other is unsigned."
550 if (!type_a
->is_integer()) {
551 _mesa_glsl_error(loc
, state
, "LHS of operator %s must be an integer or "
552 "integer vector", ast_expression::operator_string(op
));
553 return glsl_type::error_type
;
556 if (!type_b
->is_integer()) {
557 _mesa_glsl_error(loc
, state
, "RHS of operator %s must be an integer or "
558 "integer vector", ast_expression::operator_string(op
));
559 return glsl_type::error_type
;
562 /* "If the first operand is a scalar, the second operand has to be
565 if (type_a
->is_scalar() && !type_b
->is_scalar()) {
566 _mesa_glsl_error(loc
, state
, "If the first operand of %s is scalar, the "
567 "second must be scalar as well",
568 ast_expression::operator_string(op
));
569 return glsl_type::error_type
;
572 /* If both operands are vectors, check that they have same number of
575 if (type_a
->is_vector() &&
576 type_b
->is_vector() &&
577 type_a
->vector_elements
!= type_b
->vector_elements
) {
578 _mesa_glsl_error(loc
, state
, "Vector operands to operator %s must "
579 "have same number of elements",
580 ast_expression::operator_string(op
));
581 return glsl_type::error_type
;
584 /* "In all cases, the resulting type will be the same type as the left
591 * Validates that a value can be assigned to a location with a specified type
593 * Validates that \c rhs can be assigned to some location. If the types are
594 * not an exact match but an automatic conversion is possible, \c rhs will be
598 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
599 * Otherwise the actual RHS to be assigned will be returned. This may be
600 * \c rhs, or it may be \c rhs after some type conversion.
603 * In addition to being used for assignments, this function is used to
604 * type-check return values.
607 validate_assignment(struct _mesa_glsl_parse_state
*state
,
608 const glsl_type
*lhs_type
, ir_rvalue
*rhs
,
611 /* If there is already some error in the RHS, just return it. Anything
612 * else will lead to an avalanche of error message back to the user.
614 if (rhs
->type
->is_error())
617 /* If the types are identical, the assignment can trivially proceed.
619 if (rhs
->type
== lhs_type
)
622 /* If the array element types are the same and the size of the LHS is zero,
623 * the assignment is okay for initializers embedded in variable
626 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
627 * is handled by ir_dereference::is_lvalue.
629 if (is_initializer
&& lhs_type
->is_array() && rhs
->type
->is_array()
630 && (lhs_type
->element_type() == rhs
->type
->element_type())
631 && (lhs_type
->array_size() == 0)) {
635 /* Check for implicit conversion in GLSL 1.20 */
636 if (apply_implicit_conversion(lhs_type
, rhs
, state
)) {
637 if (rhs
->type
== lhs_type
)
645 do_assignment(exec_list
*instructions
, struct _mesa_glsl_parse_state
*state
,
646 ir_rvalue
*lhs
, ir_rvalue
*rhs
, bool is_initializer
,
650 bool error_emitted
= (lhs
->type
->is_error() || rhs
->type
->is_error());
652 if (!error_emitted
) {
653 if (lhs
->variable_referenced() != NULL
654 && lhs
->variable_referenced()->read_only
) {
655 _mesa_glsl_error(&lhs_loc
, state
,
656 "assignment to read-only variable '%s'",
657 lhs
->variable_referenced()->name
);
658 error_emitted
= true;
660 } else if (!lhs
->is_lvalue()) {
661 _mesa_glsl_error(& lhs_loc
, state
, "non-lvalue in assignment");
662 error_emitted
= true;
665 if (state
->es_shader
&& lhs
->type
->is_array()) {
666 _mesa_glsl_error(&lhs_loc
, state
, "whole array assignment is not "
667 "allowed in GLSL ES 1.00.");
668 error_emitted
= true;
673 validate_assignment(state
, lhs
->type
, rhs
, is_initializer
);
674 if (new_rhs
== NULL
) {
675 _mesa_glsl_error(& lhs_loc
, state
, "type mismatch");
679 /* If the LHS array was not declared with a size, it takes it size from
680 * the RHS. If the LHS is an l-value and a whole array, it must be a
681 * dereference of a variable. Any other case would require that the LHS
682 * is either not an l-value or not a whole array.
684 if (lhs
->type
->array_size() == 0) {
685 ir_dereference
*const d
= lhs
->as_dereference();
689 ir_variable
*const var
= d
->variable_referenced();
693 if (var
->max_array_access
>= unsigned(rhs
->type
->array_size())) {
694 /* FINISHME: This should actually log the location of the RHS. */
695 _mesa_glsl_error(& lhs_loc
, state
, "array size must be > %u due to "
697 var
->max_array_access
);
700 var
->type
= glsl_type::get_array_instance(lhs
->type
->element_type(),
701 rhs
->type
->array_size());
706 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
707 * but not post_inc) need the converted assigned value as an rvalue
708 * to handle things like:
712 * So we always just store the computed value being assigned to a
713 * temporary and return a deref of that temporary. If the rvalue
714 * ends up not being used, the temp will get copy-propagated out.
716 ir_variable
*var
= new(ctx
) ir_variable(rhs
->type
, "assignment_tmp",
718 ir_dereference_variable
*deref_var
= new(ctx
) ir_dereference_variable(var
);
719 instructions
->push_tail(var
);
720 instructions
->push_tail(new(ctx
) ir_assignment(deref_var
,
723 deref_var
= new(ctx
) ir_dereference_variable(var
);
726 instructions
->push_tail(new(ctx
) ir_assignment(lhs
, deref_var
, NULL
));
728 return new(ctx
) ir_dereference_variable(var
);
732 get_lvalue_copy(exec_list
*instructions
, ir_rvalue
*lvalue
)
734 void *ctx
= ralloc_parent(lvalue
);
737 var
= new(ctx
) ir_variable(lvalue
->type
, "_post_incdec_tmp",
739 instructions
->push_tail(var
);
740 var
->mode
= ir_var_auto
;
742 instructions
->push_tail(new(ctx
) ir_assignment(new(ctx
) ir_dereference_variable(var
),
745 /* Once we've created this temporary, mark it read only so it's no
746 * longer considered an lvalue.
748 var
->read_only
= true;
750 return new(ctx
) ir_dereference_variable(var
);
755 ast_node::hir(exec_list
*instructions
,
756 struct _mesa_glsl_parse_state
*state
)
765 mark_whole_array_access(ir_rvalue
*access
)
767 ir_dereference_variable
*deref
= access
->as_dereference_variable();
770 deref
->var
->max_array_access
= deref
->type
->length
- 1;
775 do_comparison(void *mem_ctx
, int operation
, ir_rvalue
*op0
, ir_rvalue
*op1
)
778 ir_rvalue
*cmp
= NULL
;
780 if (operation
== ir_binop_all_equal
)
781 join_op
= ir_binop_logic_and
;
783 join_op
= ir_binop_logic_or
;
785 switch (op0
->type
->base_type
) {
786 case GLSL_TYPE_FLOAT
:
790 return new(mem_ctx
) ir_expression(operation
, op0
, op1
);
792 case GLSL_TYPE_ARRAY
: {
793 for (unsigned int i
= 0; i
< op0
->type
->length
; i
++) {
794 ir_rvalue
*e0
, *e1
, *result
;
796 e0
= new(mem_ctx
) ir_dereference_array(op0
->clone(mem_ctx
, NULL
),
797 new(mem_ctx
) ir_constant(i
));
798 e1
= new(mem_ctx
) ir_dereference_array(op1
->clone(mem_ctx
, NULL
),
799 new(mem_ctx
) ir_constant(i
));
800 result
= do_comparison(mem_ctx
, operation
, e0
, e1
);
803 cmp
= new(mem_ctx
) ir_expression(join_op
, cmp
, result
);
809 mark_whole_array_access(op0
);
810 mark_whole_array_access(op1
);
814 case GLSL_TYPE_STRUCT
: {
815 for (unsigned int i
= 0; i
< op0
->type
->length
; i
++) {
816 ir_rvalue
*e0
, *e1
, *result
;
817 const char *field_name
= op0
->type
->fields
.structure
[i
].name
;
819 e0
= new(mem_ctx
) ir_dereference_record(op0
->clone(mem_ctx
, NULL
),
821 e1
= new(mem_ctx
) ir_dereference_record(op1
->clone(mem_ctx
, NULL
),
823 result
= do_comparison(mem_ctx
, operation
, e0
, e1
);
826 cmp
= new(mem_ctx
) ir_expression(join_op
, cmp
, result
);
834 case GLSL_TYPE_ERROR
:
836 case GLSL_TYPE_SAMPLER
:
837 /* I assume a comparison of a struct containing a sampler just
838 * ignores the sampler present in the type.
843 assert(!"Should not get here.");
848 cmp
= new(mem_ctx
) ir_constant(true);
853 /* For logical operations, we want to ensure that the operands are
854 * scalar booleans. If it isn't, emit an error and return a constant
855 * boolean to avoid triggering cascading error messages.
858 get_scalar_boolean_operand(exec_list
*instructions
,
859 struct _mesa_glsl_parse_state
*state
,
860 ast_expression
*parent_expr
,
862 const char *operand_name
,
865 ast_expression
*expr
= parent_expr
->subexpressions
[operand
];
867 ir_rvalue
*val
= expr
->hir(instructions
, state
);
869 if (val
->type
->is_boolean() && val
->type
->is_scalar())
872 if (!*error_emitted
) {
873 YYLTYPE loc
= expr
->get_location();
874 _mesa_glsl_error(&loc
, state
, "%s of `%s' must be scalar boolean",
876 parent_expr
->operator_string(parent_expr
->oper
));
877 *error_emitted
= true;
880 return new(ctx
) ir_constant(true);
884 ast_expression::hir(exec_list
*instructions
,
885 struct _mesa_glsl_parse_state
*state
)
888 static const int operations
[AST_NUM_OPERATORS
] = {
889 -1, /* ast_assign doesn't convert to ir_expression. */
890 -1, /* ast_plus doesn't convert to ir_expression. */
914 /* Note: The following block of expression types actually convert
915 * to multiple IR instructions.
917 ir_binop_mul
, /* ast_mul_assign */
918 ir_binop_div
, /* ast_div_assign */
919 ir_binop_mod
, /* ast_mod_assign */
920 ir_binop_add
, /* ast_add_assign */
921 ir_binop_sub
, /* ast_sub_assign */
922 ir_binop_lshift
, /* ast_ls_assign */
923 ir_binop_rshift
, /* ast_rs_assign */
924 ir_binop_bit_and
, /* ast_and_assign */
925 ir_binop_bit_xor
, /* ast_xor_assign */
926 ir_binop_bit_or
, /* ast_or_assign */
928 -1, /* ast_conditional doesn't convert to ir_expression. */
929 ir_binop_add
, /* ast_pre_inc. */
930 ir_binop_sub
, /* ast_pre_dec. */
931 ir_binop_add
, /* ast_post_inc. */
932 ir_binop_sub
, /* ast_post_dec. */
933 -1, /* ast_field_selection doesn't conv to ir_expression. */
934 -1, /* ast_array_index doesn't convert to ir_expression. */
935 -1, /* ast_function_call doesn't conv to ir_expression. */
936 -1, /* ast_identifier doesn't convert to ir_expression. */
937 -1, /* ast_int_constant doesn't convert to ir_expression. */
938 -1, /* ast_uint_constant doesn't conv to ir_expression. */
939 -1, /* ast_float_constant doesn't conv to ir_expression. */
940 -1, /* ast_bool_constant doesn't conv to ir_expression. */
941 -1, /* ast_sequence doesn't convert to ir_expression. */
943 ir_rvalue
*result
= NULL
;
945 const struct glsl_type
*type
; /* a temporary variable for switch cases */
946 bool error_emitted
= false;
949 loc
= this->get_location();
951 switch (this->oper
) {
953 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
954 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
956 result
= do_assignment(instructions
, state
, op
[0], op
[1], false,
957 this->subexpressions
[0]->get_location());
958 error_emitted
= result
->type
->is_error();
963 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
965 type
= unary_arithmetic_result_type(op
[0]->type
, state
, & loc
);
967 error_emitted
= type
->is_error();
973 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
975 type
= unary_arithmetic_result_type(op
[0]->type
, state
, & loc
);
977 error_emitted
= type
->is_error();
979 result
= new(ctx
) ir_expression(operations
[this->oper
], type
,
987 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
988 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
990 type
= arithmetic_result_type(op
[0], op
[1],
991 (this->oper
== ast_mul
),
993 error_emitted
= type
->is_error();
995 result
= new(ctx
) ir_expression(operations
[this->oper
], type
,
1000 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
1001 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
1003 type
= modulus_result_type(op
[0]->type
, op
[1]->type
, state
, & loc
);
1005 assert(operations
[this->oper
] == ir_binop_mod
);
1007 result
= new(ctx
) ir_expression(operations
[this->oper
], type
,
1009 error_emitted
= type
->is_error();
1014 if (state
->language_version
< 130) {
1015 _mesa_glsl_error(&loc
, state
, "operator %s requires GLSL 1.30",
1016 operator_string(this->oper
));
1017 error_emitted
= true;
1020 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
1021 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
1022 type
= shift_result_type(op
[0]->type
, op
[1]->type
, this->oper
, state
,
1024 result
= new(ctx
) ir_expression(operations
[this->oper
], type
,
1026 error_emitted
= op
[0]->type
->is_error() || op
[1]->type
->is_error();
1033 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
1034 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
1036 type
= relational_result_type(op
[0], op
[1], state
, & loc
);
1038 /* The relational operators must either generate an error or result
1039 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1041 assert(type
->is_error()
1042 || ((type
->base_type
== GLSL_TYPE_BOOL
)
1043 && type
->is_scalar()));
1045 result
= new(ctx
) ir_expression(operations
[this->oper
], type
,
1047 error_emitted
= type
->is_error();
1052 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
1053 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
1055 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1057 * "The equality operators equal (==), and not equal (!=)
1058 * operate on all types. They result in a scalar Boolean. If
1059 * the operand types do not match, then there must be a
1060 * conversion from Section 4.1.10 "Implicit Conversions"
1061 * applied to one operand that can make them match, in which
1062 * case this conversion is done."
1064 if ((!apply_implicit_conversion(op
[0]->type
, op
[1], state
)
1065 && !apply_implicit_conversion(op
[1]->type
, op
[0], state
))
1066 || (op
[0]->type
!= op
[1]->type
)) {
1067 _mesa_glsl_error(& loc
, state
, "operands of `%s' must have the same "
1068 "type", (this->oper
== ast_equal
) ? "==" : "!=");
1069 error_emitted
= true;
1070 } else if ((state
->language_version
<= 110)
1071 && (op
[0]->type
->is_array() || op
[1]->type
->is_array())) {
1072 _mesa_glsl_error(& loc
, state
, "array comparisons forbidden in "
1074 error_emitted
= true;
1077 if (error_emitted
) {
1078 result
= new(ctx
) ir_constant(false);
1080 result
= do_comparison(ctx
, operations
[this->oper
], op
[0], op
[1]);
1081 assert(result
->type
== glsl_type::bool_type
);
1088 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
1089 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
1090 type
= bit_logic_result_type(op
[0]->type
, op
[1]->type
, this->oper
,
1092 result
= new(ctx
) ir_expression(operations
[this->oper
], type
,
1094 error_emitted
= op
[0]->type
->is_error() || op
[1]->type
->is_error();
1098 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
1100 if (state
->language_version
< 130) {
1101 _mesa_glsl_error(&loc
, state
, "bit-wise operations require GLSL 1.30");
1102 error_emitted
= true;
1105 if (!op
[0]->type
->is_integer()) {
1106 _mesa_glsl_error(&loc
, state
, "operand of `~' must be an integer");
1107 error_emitted
= true;
1111 result
= new(ctx
) ir_expression(ir_unop_bit_not
, type
, op
[0], NULL
);
1114 case ast_logic_and
: {
1115 exec_list rhs_instructions
;
1116 op
[0] = get_scalar_boolean_operand(instructions
, state
, this, 0,
1117 "LHS", &error_emitted
);
1118 op
[1] = get_scalar_boolean_operand(&rhs_instructions
, state
, this, 1,
1119 "RHS", &error_emitted
);
1121 ir_constant
*op0_const
= op
[0]->constant_expression_value();
1123 if (op0_const
->value
.b
[0]) {
1124 instructions
->append_list(&rhs_instructions
);
1129 type
= glsl_type::bool_type
;
1131 ir_variable
*const tmp
= new(ctx
) ir_variable(glsl_type::bool_type
,
1134 instructions
->push_tail(tmp
);
1136 ir_if
*const stmt
= new(ctx
) ir_if(op
[0]);
1137 instructions
->push_tail(stmt
);
1139 stmt
->then_instructions
.append_list(&rhs_instructions
);
1140 ir_dereference
*const then_deref
= new(ctx
) ir_dereference_variable(tmp
);
1141 ir_assignment
*const then_assign
=
1142 new(ctx
) ir_assignment(then_deref
, op
[1], NULL
);
1143 stmt
->then_instructions
.push_tail(then_assign
);
1145 ir_dereference
*const else_deref
= new(ctx
) ir_dereference_variable(tmp
);
1146 ir_assignment
*const else_assign
=
1147 new(ctx
) ir_assignment(else_deref
, new(ctx
) ir_constant(false), NULL
);
1148 stmt
->else_instructions
.push_tail(else_assign
);
1150 result
= new(ctx
) ir_dereference_variable(tmp
);
1156 case ast_logic_or
: {
1157 exec_list rhs_instructions
;
1158 op
[0] = get_scalar_boolean_operand(instructions
, state
, this, 0,
1159 "LHS", &error_emitted
);
1160 op
[1] = get_scalar_boolean_operand(&rhs_instructions
, state
, this, 1,
1161 "RHS", &error_emitted
);
1163 ir_constant
*op0_const
= op
[0]->constant_expression_value();
1165 if (op0_const
->value
.b
[0]) {
1170 type
= glsl_type::bool_type
;
1172 ir_variable
*const tmp
= new(ctx
) ir_variable(glsl_type::bool_type
,
1175 instructions
->push_tail(tmp
);
1177 ir_if
*const stmt
= new(ctx
) ir_if(op
[0]);
1178 instructions
->push_tail(stmt
);
1180 ir_dereference
*const then_deref
= new(ctx
) ir_dereference_variable(tmp
);
1181 ir_assignment
*const then_assign
=
1182 new(ctx
) ir_assignment(then_deref
, new(ctx
) ir_constant(true), NULL
);
1183 stmt
->then_instructions
.push_tail(then_assign
);
1185 stmt
->else_instructions
.append_list(&rhs_instructions
);
1186 ir_dereference
*const else_deref
= new(ctx
) ir_dereference_variable(tmp
);
1187 ir_assignment
*const else_assign
=
1188 new(ctx
) ir_assignment(else_deref
, op
[1], NULL
);
1189 stmt
->else_instructions
.push_tail(else_assign
);
1191 result
= new(ctx
) ir_dereference_variable(tmp
);
1198 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1200 * "The logical binary operators and (&&), or ( | | ), and
1201 * exclusive or (^^). They operate only on two Boolean
1202 * expressions and result in a Boolean expression."
1204 op
[0] = get_scalar_boolean_operand(instructions
, state
, this, 0, "LHS",
1206 op
[1] = get_scalar_boolean_operand(instructions
, state
, this, 1, "RHS",
1209 result
= new(ctx
) ir_expression(operations
[this->oper
], glsl_type::bool_type
,
1214 op
[0] = get_scalar_boolean_operand(instructions
, state
, this, 0,
1215 "operand", &error_emitted
);
1217 result
= new(ctx
) ir_expression(operations
[this->oper
], glsl_type::bool_type
,
1221 case ast_mul_assign
:
1222 case ast_div_assign
:
1223 case ast_add_assign
:
1224 case ast_sub_assign
: {
1225 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
1226 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
1228 type
= arithmetic_result_type(op
[0], op
[1],
1229 (this->oper
== ast_mul_assign
),
1232 ir_rvalue
*temp_rhs
= new(ctx
) ir_expression(operations
[this->oper
], type
,
1235 result
= do_assignment(instructions
, state
,
1236 op
[0]->clone(ctx
, NULL
), temp_rhs
, false,
1237 this->subexpressions
[0]->get_location());
1238 error_emitted
= (op
[0]->type
->is_error());
1240 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1241 * explicitly test for this because none of the binary expression
1242 * operators allow array operands either.
1248 case ast_mod_assign
: {
1249 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
1250 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
1252 type
= modulus_result_type(op
[0]->type
, op
[1]->type
, state
, & loc
);
1254 assert(operations
[this->oper
] == ir_binop_mod
);
1256 ir_rvalue
*temp_rhs
;
1257 temp_rhs
= new(ctx
) ir_expression(operations
[this->oper
], type
,
1260 result
= do_assignment(instructions
, state
,
1261 op
[0]->clone(ctx
, NULL
), temp_rhs
, false,
1262 this->subexpressions
[0]->get_location());
1263 error_emitted
= type
->is_error();
1268 case ast_rs_assign
: {
1269 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
1270 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
1271 type
= shift_result_type(op
[0]->type
, op
[1]->type
, this->oper
, state
,
1273 ir_rvalue
*temp_rhs
= new(ctx
) ir_expression(operations
[this->oper
],
1274 type
, op
[0], op
[1]);
1275 result
= do_assignment(instructions
, state
, op
[0]->clone(ctx
, NULL
),
1277 this->subexpressions
[0]->get_location());
1278 error_emitted
= op
[0]->type
->is_error() || op
[1]->type
->is_error();
1282 case ast_and_assign
:
1283 case ast_xor_assign
:
1284 case ast_or_assign
: {
1285 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
1286 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
1287 type
= bit_logic_result_type(op
[0]->type
, op
[1]->type
, this->oper
,
1289 ir_rvalue
*temp_rhs
= new(ctx
) ir_expression(operations
[this->oper
],
1290 type
, op
[0], op
[1]);
1291 result
= do_assignment(instructions
, state
, op
[0]->clone(ctx
, NULL
),
1293 this->subexpressions
[0]->get_location());
1294 error_emitted
= op
[0]->type
->is_error() || op
[1]->type
->is_error();
1298 case ast_conditional
: {
1299 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1301 * "The ternary selection operator (?:). It operates on three
1302 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1303 * first expression, which must result in a scalar Boolean."
1305 op
[0] = get_scalar_boolean_operand(instructions
, state
, this, 0,
1306 "condition", &error_emitted
);
1308 /* The :? operator is implemented by generating an anonymous temporary
1309 * followed by an if-statement. The last instruction in each branch of
1310 * the if-statement assigns a value to the anonymous temporary. This
1311 * temporary is the r-value of the expression.
1313 exec_list then_instructions
;
1314 exec_list else_instructions
;
1316 op
[1] = this->subexpressions
[1]->hir(&then_instructions
, state
);
1317 op
[2] = this->subexpressions
[2]->hir(&else_instructions
, state
);
1319 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1321 * "The second and third expressions can be any type, as
1322 * long their types match, or there is a conversion in
1323 * Section 4.1.10 "Implicit Conversions" that can be applied
1324 * to one of the expressions to make their types match. This
1325 * resulting matching type is the type of the entire
1328 if ((!apply_implicit_conversion(op
[1]->type
, op
[2], state
)
1329 && !apply_implicit_conversion(op
[2]->type
, op
[1], state
))
1330 || (op
[1]->type
!= op
[2]->type
)) {
1331 YYLTYPE loc
= this->subexpressions
[1]->get_location();
1333 _mesa_glsl_error(& loc
, state
, "Second and third operands of ?: "
1334 "operator must have matching types.");
1335 error_emitted
= true;
1336 type
= glsl_type::error_type
;
1341 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1343 * "The second and third expressions must be the same type, but can
1344 * be of any type other than an array."
1346 if ((state
->language_version
<= 110) && type
->is_array()) {
1347 _mesa_glsl_error(& loc
, state
, "Second and third operands of ?: "
1348 "operator must not be arrays.");
1349 error_emitted
= true;
1352 ir_constant
*cond_val
= op
[0]->constant_expression_value();
1353 ir_constant
*then_val
= op
[1]->constant_expression_value();
1354 ir_constant
*else_val
= op
[2]->constant_expression_value();
1356 if (then_instructions
.is_empty()
1357 && else_instructions
.is_empty()
1358 && (cond_val
!= NULL
) && (then_val
!= NULL
) && (else_val
!= NULL
)) {
1359 result
= (cond_val
->value
.b
[0]) ? then_val
: else_val
;
1361 ir_variable
*const tmp
=
1362 new(ctx
) ir_variable(type
, "conditional_tmp", ir_var_temporary
);
1363 instructions
->push_tail(tmp
);
1365 ir_if
*const stmt
= new(ctx
) ir_if(op
[0]);
1366 instructions
->push_tail(stmt
);
1368 then_instructions
.move_nodes_to(& stmt
->then_instructions
);
1369 ir_dereference
*const then_deref
=
1370 new(ctx
) ir_dereference_variable(tmp
);
1371 ir_assignment
*const then_assign
=
1372 new(ctx
) ir_assignment(then_deref
, op
[1], NULL
);
1373 stmt
->then_instructions
.push_tail(then_assign
);
1375 else_instructions
.move_nodes_to(& stmt
->else_instructions
);
1376 ir_dereference
*const else_deref
=
1377 new(ctx
) ir_dereference_variable(tmp
);
1378 ir_assignment
*const else_assign
=
1379 new(ctx
) ir_assignment(else_deref
, op
[2], NULL
);
1380 stmt
->else_instructions
.push_tail(else_assign
);
1382 result
= new(ctx
) ir_dereference_variable(tmp
);
1389 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
1390 if (op
[0]->type
->base_type
== GLSL_TYPE_FLOAT
)
1391 op
[1] = new(ctx
) ir_constant(1.0f
);
1393 op
[1] = new(ctx
) ir_constant(1);
1395 type
= arithmetic_result_type(op
[0], op
[1], false, state
, & loc
);
1397 ir_rvalue
*temp_rhs
;
1398 temp_rhs
= new(ctx
) ir_expression(operations
[this->oper
], type
,
1401 result
= do_assignment(instructions
, state
,
1402 op
[0]->clone(ctx
, NULL
), temp_rhs
, false,
1403 this->subexpressions
[0]->get_location());
1404 error_emitted
= op
[0]->type
->is_error();
1409 case ast_post_dec
: {
1410 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
1411 if (op
[0]->type
->base_type
== GLSL_TYPE_FLOAT
)
1412 op
[1] = new(ctx
) ir_constant(1.0f
);
1414 op
[1] = new(ctx
) ir_constant(1);
1416 error_emitted
= op
[0]->type
->is_error() || op
[1]->type
->is_error();
1418 type
= arithmetic_result_type(op
[0], op
[1], false, state
, & loc
);
1420 ir_rvalue
*temp_rhs
;
1421 temp_rhs
= new(ctx
) ir_expression(operations
[this->oper
], type
,
1424 /* Get a temporary of a copy of the lvalue before it's modified.
1425 * This may get thrown away later.
1427 result
= get_lvalue_copy(instructions
, op
[0]->clone(ctx
, NULL
));
1429 (void)do_assignment(instructions
, state
,
1430 op
[0]->clone(ctx
, NULL
), temp_rhs
, false,
1431 this->subexpressions
[0]->get_location());
1433 error_emitted
= op
[0]->type
->is_error();
1437 case ast_field_selection
:
1438 result
= _mesa_ast_field_selection_to_hir(this, instructions
, state
);
1441 case ast_array_index
: {
1442 YYLTYPE index_loc
= subexpressions
[1]->get_location();
1444 op
[0] = subexpressions
[0]->hir(instructions
, state
);
1445 op
[1] = subexpressions
[1]->hir(instructions
, state
);
1447 error_emitted
= op
[0]->type
->is_error() || op
[1]->type
->is_error();
1449 ir_rvalue
*const array
= op
[0];
1451 result
= new(ctx
) ir_dereference_array(op
[0], op
[1]);
1453 /* Do not use op[0] after this point. Use array.
1461 if (!array
->type
->is_array()
1462 && !array
->type
->is_matrix()
1463 && !array
->type
->is_vector()) {
1464 _mesa_glsl_error(& index_loc
, state
,
1465 "cannot dereference non-array / non-matrix / "
1467 error_emitted
= true;
1470 if (!op
[1]->type
->is_integer()) {
1471 _mesa_glsl_error(& index_loc
, state
,
1472 "array index must be integer type");
1473 error_emitted
= true;
1474 } else if (!op
[1]->type
->is_scalar()) {
1475 _mesa_glsl_error(& index_loc
, state
,
1476 "array index must be scalar");
1477 error_emitted
= true;
1480 /* If the array index is a constant expression and the array has a
1481 * declared size, ensure that the access is in-bounds. If the array
1482 * index is not a constant expression, ensure that the array has a
1485 ir_constant
*const const_index
= op
[1]->constant_expression_value();
1486 if (const_index
!= NULL
) {
1487 const int idx
= const_index
->value
.i
[0];
1488 const char *type_name
;
1491 if (array
->type
->is_matrix()) {
1492 type_name
= "matrix";
1493 } else if (array
->type
->is_vector()) {
1494 type_name
= "vector";
1496 type_name
= "array";
1499 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
1501 * "It is illegal to declare an array with a size, and then
1502 * later (in the same shader) index the same array with an
1503 * integral constant expression greater than or equal to the
1504 * declared size. It is also illegal to index an array with a
1505 * negative constant expression."
1507 if (array
->type
->is_matrix()) {
1508 if (array
->type
->row_type()->vector_elements
<= idx
) {
1509 bound
= array
->type
->row_type()->vector_elements
;
1511 } else if (array
->type
->is_vector()) {
1512 if (array
->type
->vector_elements
<= idx
) {
1513 bound
= array
->type
->vector_elements
;
1516 if ((array
->type
->array_size() > 0)
1517 && (array
->type
->array_size() <= idx
)) {
1518 bound
= array
->type
->array_size();
1523 _mesa_glsl_error(& loc
, state
, "%s index must be < %u",
1525 error_emitted
= true;
1526 } else if (idx
< 0) {
1527 _mesa_glsl_error(& loc
, state
, "%s index must be >= 0",
1529 error_emitted
= true;
1532 if (array
->type
->is_array()) {
1533 /* If the array is a variable dereference, it dereferences the
1534 * whole array, by definition. Use this to get the variable.
1536 * FINISHME: Should some methods for getting / setting / testing
1537 * FINISHME: array access limits be added to ir_dereference?
1539 ir_variable
*const v
= array
->whole_variable_referenced();
1540 if ((v
!= NULL
) && (unsigned(idx
) > v
->max_array_access
))
1541 v
->max_array_access
= idx
;
1543 } else if (array
->type
->array_size() == 0) {
1544 _mesa_glsl_error(&loc
, state
, "unsized array index must be constant");
1546 if (array
->type
->is_array()) {
1547 /* whole_variable_referenced can return NULL if the array is a
1548 * member of a structure. In this case it is safe to not update
1549 * the max_array_access field because it is never used for fields
1552 ir_variable
*v
= array
->whole_variable_referenced();
1554 v
->max_array_access
= array
->type
->array_size() - 1;
1558 /* From page 23 (29 of the PDF) of the GLSL 1.30 spec:
1560 * "Samplers aggregated into arrays within a shader (using square
1561 * brackets [ ]) can only be indexed with integral constant
1562 * expressions [...]."
1564 * This restriction was added in GLSL 1.30. Shaders using earlier version
1565 * of the language should not be rejected by the compiler front-end for
1566 * using this construct. This allows useful things such as using a loop
1567 * counter as the index to an array of samplers. If the loop in unrolled,
1568 * the code should compile correctly. Instead, emit a warning.
1570 if (array
->type
->is_array() &&
1571 array
->type
->element_type()->is_sampler() &&
1572 const_index
== NULL
) {
1574 if (state
->language_version
== 100) {
1575 _mesa_glsl_warning(&loc
, state
,
1576 "sampler arrays indexed with non-constant "
1577 "expressions is optional in GLSL ES 1.00");
1578 } else if (state
->language_version
< 130) {
1579 _mesa_glsl_warning(&loc
, state
,
1580 "sampler arrays indexed with non-constant "
1581 "expressions is forbidden in GLSL 1.30 and "
1584 _mesa_glsl_error(&loc
, state
,
1585 "sampler arrays indexed with non-constant "
1586 "expressions is forbidden in GLSL 1.30 and "
1588 error_emitted
= true;
1593 result
->type
= glsl_type::error_type
;
1598 case ast_function_call
:
1599 /* Should *NEVER* get here. ast_function_call should always be handled
1600 * by ast_function_expression::hir.
1605 case ast_identifier
: {
1606 /* ast_identifier can appear several places in a full abstract syntax
1607 * tree. This particular use must be at location specified in the grammar
1608 * as 'variable_identifier'.
1611 state
->symbols
->get_variable(this->primary_expression
.identifier
);
1613 result
= new(ctx
) ir_dereference_variable(var
);
1618 _mesa_glsl_error(& loc
, state
, "`%s' undeclared",
1619 this->primary_expression
.identifier
);
1621 error_emitted
= true;
1626 case ast_int_constant
:
1627 result
= new(ctx
) ir_constant(this->primary_expression
.int_constant
);
1630 case ast_uint_constant
:
1631 result
= new(ctx
) ir_constant(this->primary_expression
.uint_constant
);
1634 case ast_float_constant
:
1635 result
= new(ctx
) ir_constant(this->primary_expression
.float_constant
);
1638 case ast_bool_constant
:
1639 result
= new(ctx
) ir_constant(bool(this->primary_expression
.bool_constant
));
1642 case ast_sequence
: {
1643 /* It should not be possible to generate a sequence in the AST without
1644 * any expressions in it.
1646 assert(!this->expressions
.is_empty());
1648 /* The r-value of a sequence is the last expression in the sequence. If
1649 * the other expressions in the sequence do not have side-effects (and
1650 * therefore add instructions to the instruction list), they get dropped
1653 exec_node
*previous_tail_pred
= NULL
;
1654 YYLTYPE previous_operand_loc
= loc
;
1656 foreach_list_typed (ast_node
, ast
, link
, &this->expressions
) {
1657 /* If one of the operands of comma operator does not generate any
1658 * code, we want to emit a warning. At each pass through the loop
1659 * previous_tail_pred will point to the last instruction in the
1660 * stream *before* processing the previous operand. Naturally,
1661 * instructions->tail_pred will point to the last instruction in the
1662 * stream *after* processing the previous operand. If the two
1663 * pointers match, then the previous operand had no effect.
1665 * The warning behavior here differs slightly from GCC. GCC will
1666 * only emit a warning if none of the left-hand operands have an
1667 * effect. However, it will emit a warning for each. I believe that
1668 * there are some cases in C (especially with GCC extensions) where
1669 * it is useful to have an intermediate step in a sequence have no
1670 * effect, but I don't think these cases exist in GLSL. Either way,
1671 * it would be a giant hassle to replicate that behavior.
1673 if (previous_tail_pred
== instructions
->tail_pred
) {
1674 _mesa_glsl_warning(&previous_operand_loc
, state
,
1675 "left-hand operand of comma expression has "
1679 /* tail_pred is directly accessed instead of using the get_tail()
1680 * method for performance reasons. get_tail() has extra code to
1681 * return NULL when the list is empty. We don't care about that
1682 * here, so using tail_pred directly is fine.
1684 previous_tail_pred
= instructions
->tail_pred
;
1685 previous_operand_loc
= ast
->get_location();
1687 result
= ast
->hir(instructions
, state
);
1690 /* Any errors should have already been emitted in the loop above.
1692 error_emitted
= true;
1696 type
= NULL
; /* use result->type, not type. */
1697 assert(result
!= NULL
);
1699 if (result
->type
->is_error() && !error_emitted
)
1700 _mesa_glsl_error(& loc
, state
, "type mismatch");
1707 ast_expression_statement::hir(exec_list
*instructions
,
1708 struct _mesa_glsl_parse_state
*state
)
1710 /* It is possible to have expression statements that don't have an
1711 * expression. This is the solitary semicolon:
1713 * for (i = 0; i < 5; i++)
1716 * In this case the expression will be NULL. Test for NULL and don't do
1717 * anything in that case.
1719 if (expression
!= NULL
)
1720 expression
->hir(instructions
, state
);
1722 /* Statements do not have r-values.
1729 ast_compound_statement::hir(exec_list
*instructions
,
1730 struct _mesa_glsl_parse_state
*state
)
1733 state
->symbols
->push_scope();
1735 foreach_list_typed (ast_node
, ast
, link
, &this->statements
)
1736 ast
->hir(instructions
, state
);
1739 state
->symbols
->pop_scope();
1741 /* Compound statements do not have r-values.
1747 static const glsl_type
*
1748 process_array_type(YYLTYPE
*loc
, const glsl_type
*base
, ast_node
*array_size
,
1749 struct _mesa_glsl_parse_state
*state
)
1751 unsigned length
= 0;
1753 /* FINISHME: Reject delcarations of multidimensional arrays. */
1755 if (array_size
!= NULL
) {
1756 exec_list dummy_instructions
;
1757 ir_rvalue
*const ir
= array_size
->hir(& dummy_instructions
, state
);
1758 YYLTYPE loc
= array_size
->get_location();
1760 /* FINISHME: Verify that the grammar forbids side-effects in array
1761 * FINISHME: sizes. i.e., 'vec4 [x = 12] data'
1763 assert(dummy_instructions
.is_empty());
1766 if (!ir
->type
->is_integer()) {
1767 _mesa_glsl_error(& loc
, state
, "array size must be integer type");
1768 } else if (!ir
->type
->is_scalar()) {
1769 _mesa_glsl_error(& loc
, state
, "array size must be scalar type");
1771 ir_constant
*const size
= ir
->constant_expression_value();
1774 _mesa_glsl_error(& loc
, state
, "array size must be a "
1775 "constant valued expression");
1776 } else if (size
->value
.i
[0] <= 0) {
1777 _mesa_glsl_error(& loc
, state
, "array size must be > 0");
1779 assert(size
->type
== ir
->type
);
1780 length
= size
->value
.u
[0];
1784 } else if (state
->es_shader
) {
1785 /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1786 * array declarations have been removed from the language.
1788 _mesa_glsl_error(loc
, state
, "unsized array declarations are not "
1789 "allowed in GLSL ES 1.00.");
1792 return glsl_type::get_array_instance(base
, length
);
1797 ast_type_specifier::glsl_type(const char **name
,
1798 struct _mesa_glsl_parse_state
*state
) const
1800 const struct glsl_type
*type
;
1802 type
= state
->symbols
->get_type(this->type_name
);
1803 *name
= this->type_name
;
1805 if (this->is_array
) {
1806 YYLTYPE loc
= this->get_location();
1807 type
= process_array_type(&loc
, type
, this->array_size
, state
);
1815 apply_type_qualifier_to_variable(const struct ast_type_qualifier
*qual
,
1817 struct _mesa_glsl_parse_state
*state
,
1820 if (qual
->flags
.q
.invariant
) {
1822 _mesa_glsl_error(loc
, state
,
1823 "variable `%s' may not be redeclared "
1824 "`invariant' after being used",
1831 if (qual
->flags
.q
.constant
|| qual
->flags
.q
.attribute
1832 || qual
->flags
.q
.uniform
1833 || (qual
->flags
.q
.varying
&& (state
->target
== fragment_shader
)))
1836 if (qual
->flags
.q
.centroid
)
1839 if (qual
->flags
.q
.attribute
&& state
->target
!= vertex_shader
) {
1840 var
->type
= glsl_type::error_type
;
1841 _mesa_glsl_error(loc
, state
,
1842 "`attribute' variables may not be declared in the "
1844 _mesa_glsl_shader_target_name(state
->target
));
1847 /* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1849 * "The varying qualifier can be used only with the data types
1850 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1853 if (qual
->flags
.q
.varying
) {
1854 const glsl_type
*non_array_type
;
1856 if (var
->type
&& var
->type
->is_array())
1857 non_array_type
= var
->type
->fields
.array
;
1859 non_array_type
= var
->type
;
1861 if (non_array_type
&& non_array_type
->base_type
!= GLSL_TYPE_FLOAT
) {
1862 var
->type
= glsl_type::error_type
;
1863 _mesa_glsl_error(loc
, state
,
1864 "varying variables must be of base type float");
1868 /* If there is no qualifier that changes the mode of the variable, leave
1869 * the setting alone.
1871 if (qual
->flags
.q
.in
&& qual
->flags
.q
.out
)
1872 var
->mode
= ir_var_inout
;
1873 else if (qual
->flags
.q
.attribute
|| qual
->flags
.q
.in
1874 || (qual
->flags
.q
.varying
&& (state
->target
== fragment_shader
)))
1875 var
->mode
= ir_var_in
;
1876 else if (qual
->flags
.q
.out
1877 || (qual
->flags
.q
.varying
&& (state
->target
== vertex_shader
)))
1878 var
->mode
= ir_var_out
;
1879 else if (qual
->flags
.q
.uniform
)
1880 var
->mode
= ir_var_uniform
;
1882 if (state
->all_invariant
&& (state
->current_function
== NULL
)) {
1883 switch (state
->target
) {
1885 if (var
->mode
== ir_var_out
)
1886 var
->invariant
= true;
1888 case geometry_shader
:
1889 if ((var
->mode
== ir_var_in
) || (var
->mode
== ir_var_out
))
1890 var
->invariant
= true;
1892 case fragment_shader
:
1893 if (var
->mode
== ir_var_in
)
1894 var
->invariant
= true;
1899 if (qual
->flags
.q
.flat
)
1900 var
->interpolation
= ir_var_flat
;
1901 else if (qual
->flags
.q
.noperspective
)
1902 var
->interpolation
= ir_var_noperspective
;
1904 var
->interpolation
= ir_var_smooth
;
1906 var
->pixel_center_integer
= qual
->flags
.q
.pixel_center_integer
;
1907 var
->origin_upper_left
= qual
->flags
.q
.origin_upper_left
;
1908 if ((qual
->flags
.q
.origin_upper_left
|| qual
->flags
.q
.pixel_center_integer
)
1909 && (strcmp(var
->name
, "gl_FragCoord") != 0)) {
1910 const char *const qual_string
= (qual
->flags
.q
.origin_upper_left
)
1911 ? "origin_upper_left" : "pixel_center_integer";
1913 _mesa_glsl_error(loc
, state
,
1914 "layout qualifier `%s' can only be applied to "
1915 "fragment shader input `gl_FragCoord'",
1919 if (qual
->flags
.q
.explicit_location
) {
1920 const bool global_scope
= (state
->current_function
== NULL
);
1922 const char *string
= "";
1924 /* In the vertex shader only shader inputs can be given explicit
1927 * In the fragment shader only shader outputs can be given explicit
1930 switch (state
->target
) {
1932 if (!global_scope
|| (var
->mode
!= ir_var_in
)) {
1938 case geometry_shader
:
1939 _mesa_glsl_error(loc
, state
,
1940 "geometry shader variables cannot be given "
1941 "explicit locations\n");
1944 case fragment_shader
:
1945 if (!global_scope
|| (var
->mode
!= ir_var_out
)) {
1953 _mesa_glsl_error(loc
, state
,
1954 "only %s shader %s variables can be given an "
1955 "explicit location\n",
1956 _mesa_glsl_shader_target_name(state
->target
),
1959 var
->explicit_location
= true;
1961 /* This bit of silliness is needed because invalid explicit locations
1962 * are supposed to be flagged during linking. Small negative values
1963 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
1964 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
1965 * The linker needs to be able to differentiate these cases. This
1966 * ensures that negative values stay negative.
1968 if (qual
->location
>= 0) {
1969 var
->location
= (state
->target
== vertex_shader
)
1970 ? (qual
->location
+ VERT_ATTRIB_GENERIC0
)
1971 : (qual
->location
+ FRAG_RESULT_DATA0
);
1973 var
->location
= qual
->location
;
1978 /* Does the declaration use the 'layout' keyword?
1980 const bool uses_layout
= qual
->flags
.q
.pixel_center_integer
1981 || qual
->flags
.q
.origin_upper_left
1982 || qual
->flags
.q
.explicit_location
;
1984 /* Does the declaration use the deprecated 'attribute' or 'varying'
1987 const bool uses_deprecated_qualifier
= qual
->flags
.q
.attribute
1988 || qual
->flags
.q
.varying
;
1990 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
1991 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
1992 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
1993 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
1994 * These extensions and all following extensions that add the 'layout'
1995 * keyword have been modified to require the use of 'in' or 'out'.
1997 * The following extension do not allow the deprecated keywords:
1999 * GL_AMD_conservative_depth
2000 * GL_ARB_gpu_shader5
2001 * GL_ARB_separate_shader_objects
2002 * GL_ARB_tesselation_shader
2003 * GL_ARB_transform_feedback3
2004 * GL_ARB_uniform_buffer_object
2006 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2007 * allow layout with the deprecated keywords.
2009 const bool relaxed_layout_qualifier_checking
=
2010 state
->ARB_fragment_coord_conventions_enable
;
2012 if (uses_layout
&& uses_deprecated_qualifier
) {
2013 if (relaxed_layout_qualifier_checking
) {
2014 _mesa_glsl_warning(loc
, state
,
2015 "`layout' qualifier may not be used with "
2016 "`attribute' or `varying'");
2018 _mesa_glsl_error(loc
, state
,
2019 "`layout' qualifier may not be used with "
2020 "`attribute' or `varying'");
2024 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2025 * AMD_conservative_depth.
2027 int depth_layout_count
= qual
->flags
.q
.depth_any
2028 + qual
->flags
.q
.depth_greater
2029 + qual
->flags
.q
.depth_less
2030 + qual
->flags
.q
.depth_unchanged
;
2031 if (depth_layout_count
> 0
2032 && !state
->AMD_conservative_depth_enable
) {
2033 _mesa_glsl_error(loc
, state
,
2034 "extension GL_AMD_conservative_depth must be enabled "
2035 "to use depth layout qualifiers");
2036 } else if (depth_layout_count
> 0
2037 && strcmp(var
->name
, "gl_FragDepth") != 0) {
2038 _mesa_glsl_error(loc
, state
,
2039 "depth layout qualifiers can be applied only to "
2041 } else if (depth_layout_count
> 1
2042 && strcmp(var
->name
, "gl_FragDepth") == 0) {
2043 _mesa_glsl_error(loc
, state
,
2044 "at most one depth layout qualifier can be applied to "
2047 if (qual
->flags
.q
.depth_any
)
2048 var
->depth_layout
= ir_depth_layout_any
;
2049 else if (qual
->flags
.q
.depth_greater
)
2050 var
->depth_layout
= ir_depth_layout_greater
;
2051 else if (qual
->flags
.q
.depth_less
)
2052 var
->depth_layout
= ir_depth_layout_less
;
2053 else if (qual
->flags
.q
.depth_unchanged
)
2054 var
->depth_layout
= ir_depth_layout_unchanged
;
2056 var
->depth_layout
= ir_depth_layout_none
;
2058 if (var
->type
->is_array() && state
->language_version
!= 110) {
2059 var
->array_lvalue
= true;
2064 * Get the variable that is being redeclared by this declaration
2066 * Semantic checks to verify the validity of the redeclaration are also
2067 * performed. If semantic checks fail, compilation error will be emitted via
2068 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2071 * A pointer to an existing variable in the current scope if the declaration
2072 * is a redeclaration, \c NULL otherwise.
2075 get_variable_being_redeclared(ir_variable
*var
, ast_declaration
*decl
,
2076 struct _mesa_glsl_parse_state
*state
)
2078 /* Check if this declaration is actually a re-declaration, either to
2079 * resize an array or add qualifiers to an existing variable.
2081 * This is allowed for variables in the current scope, or when at
2082 * global scope (for built-ins in the implicit outer scope).
2084 ir_variable
*earlier
= state
->symbols
->get_variable(decl
->identifier
);
2085 if (earlier
== NULL
||
2086 (state
->current_function
!= NULL
&&
2087 !state
->symbols
->name_declared_this_scope(decl
->identifier
))) {
2092 YYLTYPE loc
= decl
->get_location();
2094 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2096 * "It is legal to declare an array without a size and then
2097 * later re-declare the same name as an array of the same
2098 * type and specify a size."
2100 if ((earlier
->type
->array_size() == 0)
2101 && var
->type
->is_array()
2102 && (var
->type
->element_type() == earlier
->type
->element_type())) {
2103 /* FINISHME: This doesn't match the qualifiers on the two
2104 * FINISHME: declarations. It's not 100% clear whether this is
2105 * FINISHME: required or not.
2108 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
2110 * "The size [of gl_TexCoord] can be at most
2111 * gl_MaxTextureCoords."
2113 const unsigned size
= unsigned(var
->type
->array_size());
2114 if ((strcmp("gl_TexCoord", var
->name
) == 0)
2115 && (size
> state
->Const
.MaxTextureCoords
)) {
2116 _mesa_glsl_error(& loc
, state
, "`gl_TexCoord' array size cannot "
2117 "be larger than gl_MaxTextureCoords (%u)\n",
2118 state
->Const
.MaxTextureCoords
);
2119 } else if ((size
> 0) && (size
<= earlier
->max_array_access
)) {
2120 _mesa_glsl_error(& loc
, state
, "array size must be > %u due to "
2122 earlier
->max_array_access
);
2125 earlier
->type
= var
->type
;
2128 } else if (state
->ARB_fragment_coord_conventions_enable
2129 && strcmp(var
->name
, "gl_FragCoord") == 0
2130 && earlier
->type
== var
->type
2131 && earlier
->mode
== var
->mode
) {
2132 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2135 earlier
->origin_upper_left
= var
->origin_upper_left
;
2136 earlier
->pixel_center_integer
= var
->pixel_center_integer
;
2138 /* According to section 4.3.7 of the GLSL 1.30 spec,
2139 * the following built-in varaibles can be redeclared with an
2140 * interpolation qualifier:
2143 * * gl_FrontSecondaryColor
2144 * * gl_BackSecondaryColor
2146 * * gl_SecondaryColor
2148 } else if (state
->language_version
>= 130
2149 && (strcmp(var
->name
, "gl_FrontColor") == 0
2150 || strcmp(var
->name
, "gl_BackColor") == 0
2151 || strcmp(var
->name
, "gl_FrontSecondaryColor") == 0
2152 || strcmp(var
->name
, "gl_BackSecondaryColor") == 0
2153 || strcmp(var
->name
, "gl_Color") == 0
2154 || strcmp(var
->name
, "gl_SecondaryColor") == 0)
2155 && earlier
->type
== var
->type
2156 && earlier
->mode
== var
->mode
) {
2157 earlier
->interpolation
= var
->interpolation
;
2159 /* Layout qualifiers for gl_FragDepth. */
2160 } else if (state
->AMD_conservative_depth_enable
2161 && strcmp(var
->name
, "gl_FragDepth") == 0
2162 && earlier
->type
== var
->type
2163 && earlier
->mode
== var
->mode
) {
2165 /** From the AMD_conservative_depth spec:
2166 * Within any shader, the first redeclarations of gl_FragDepth
2167 * must appear before any use of gl_FragDepth.
2169 if (earlier
->used
) {
2170 _mesa_glsl_error(&loc
, state
,
2171 "the first redeclaration of gl_FragDepth "
2172 "must appear before any use of gl_FragDepth");
2175 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2176 if (earlier
->depth_layout
!= ir_depth_layout_none
2177 && earlier
->depth_layout
!= var
->depth_layout
) {
2178 _mesa_glsl_error(&loc
, state
,
2179 "gl_FragDepth: depth layout is declared here "
2180 "as '%s, but it was previously declared as "
2182 depth_layout_string(var
->depth_layout
),
2183 depth_layout_string(earlier
->depth_layout
));
2186 earlier
->depth_layout
= var
->depth_layout
;
2189 _mesa_glsl_error(&loc
, state
, "`%s' redeclared", decl
->identifier
);
2196 * Generate the IR for an initializer in a variable declaration
2199 process_initializer(ir_variable
*var
, ast_declaration
*decl
,
2200 ast_fully_specified_type
*type
,
2201 exec_list
*initializer_instructions
,
2202 struct _mesa_glsl_parse_state
*state
)
2204 ir_rvalue
*result
= NULL
;
2206 YYLTYPE initializer_loc
= decl
->initializer
->get_location();
2208 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2210 * "All uniform variables are read-only and are initialized either
2211 * directly by an application via API commands, or indirectly by
2214 if ((state
->language_version
<= 110)
2215 && (var
->mode
== ir_var_uniform
)) {
2216 _mesa_glsl_error(& initializer_loc
, state
,
2217 "cannot initialize uniforms in GLSL 1.10");
2220 if (var
->type
->is_sampler()) {
2221 _mesa_glsl_error(& initializer_loc
, state
,
2222 "cannot initialize samplers");
2225 if ((var
->mode
== ir_var_in
) && (state
->current_function
== NULL
)) {
2226 _mesa_glsl_error(& initializer_loc
, state
,
2227 "cannot initialize %s shader input / %s",
2228 _mesa_glsl_shader_target_name(state
->target
),
2229 (state
->target
== vertex_shader
)
2230 ? "attribute" : "varying");
2233 ir_dereference
*const lhs
= new(state
) ir_dereference_variable(var
);
2234 ir_rvalue
*rhs
= decl
->initializer
->hir(initializer_instructions
,
2237 /* Calculate the constant value if this is a const or uniform
2240 if (type
->qualifier
.flags
.q
.constant
2241 || type
->qualifier
.flags
.q
.uniform
) {
2242 ir_rvalue
*new_rhs
= validate_assignment(state
, var
->type
, rhs
, true);
2243 if (new_rhs
!= NULL
) {
2246 ir_constant
*constant_value
= rhs
->constant_expression_value();
2247 if (!constant_value
) {
2248 _mesa_glsl_error(& initializer_loc
, state
,
2249 "initializer of %s variable `%s' must be a "
2250 "constant expression",
2251 (type
->qualifier
.flags
.q
.constant
)
2252 ? "const" : "uniform",
2254 if (var
->type
->is_numeric()) {
2255 /* Reduce cascading errors. */
2256 var
->constant_value
= ir_constant::zero(state
, var
->type
);
2259 rhs
= constant_value
;
2260 var
->constant_value
= constant_value
;
2263 _mesa_glsl_error(&initializer_loc
, state
,
2264 "initializer of type %s cannot be assigned to "
2265 "variable of type %s",
2266 rhs
->type
->name
, var
->type
->name
);
2267 if (var
->type
->is_numeric()) {
2268 /* Reduce cascading errors. */
2269 var
->constant_value
= ir_constant::zero(state
, var
->type
);
2274 if (rhs
&& !rhs
->type
->is_error()) {
2275 bool temp
= var
->read_only
;
2276 if (type
->qualifier
.flags
.q
.constant
)
2277 var
->read_only
= false;
2279 /* Never emit code to initialize a uniform.
2281 const glsl_type
*initializer_type
;
2282 if (!type
->qualifier
.flags
.q
.uniform
) {
2283 result
= do_assignment(initializer_instructions
, state
,
2285 type
->get_location());
2286 initializer_type
= result
->type
;
2288 initializer_type
= rhs
->type
;
2290 /* If the declared variable is an unsized array, it must inherrit
2291 * its full type from the initializer. A declaration such as
2293 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2297 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2299 * The assignment generated in the if-statement (below) will also
2300 * automatically handle this case for non-uniforms.
2302 * If the declared variable is not an array, the types must
2303 * already match exactly. As a result, the type assignment
2304 * here can be done unconditionally. For non-uniforms the call
2305 * to do_assignment can change the type of the initializer (via
2306 * the implicit conversion rules). For uniforms the initializer
2307 * must be a constant expression, and the type of that expression
2308 * was validated above.
2310 var
->type
= initializer_type
;
2312 var
->read_only
= temp
;
2319 ast_declarator_list::hir(exec_list
*instructions
,
2320 struct _mesa_glsl_parse_state
*state
)
2323 const struct glsl_type
*decl_type
;
2324 const char *type_name
= NULL
;
2325 ir_rvalue
*result
= NULL
;
2326 YYLTYPE loc
= this->get_location();
2328 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2330 * "To ensure that a particular output variable is invariant, it is
2331 * necessary to use the invariant qualifier. It can either be used to
2332 * qualify a previously declared variable as being invariant
2334 * invariant gl_Position; // make existing gl_Position be invariant"
2336 * In these cases the parser will set the 'invariant' flag in the declarator
2337 * list, and the type will be NULL.
2339 if (this->invariant
) {
2340 assert(this->type
== NULL
);
2342 if (state
->current_function
!= NULL
) {
2343 _mesa_glsl_error(& loc
, state
,
2344 "All uses of `invariant' keyword must be at global "
2348 foreach_list_typed (ast_declaration
, decl
, link
, &this->declarations
) {
2349 assert(!decl
->is_array
);
2350 assert(decl
->array_size
== NULL
);
2351 assert(decl
->initializer
== NULL
);
2353 ir_variable
*const earlier
=
2354 state
->symbols
->get_variable(decl
->identifier
);
2355 if (earlier
== NULL
) {
2356 _mesa_glsl_error(& loc
, state
,
2357 "Undeclared variable `%s' cannot be marked "
2358 "invariant\n", decl
->identifier
);
2359 } else if ((state
->target
== vertex_shader
)
2360 && (earlier
->mode
!= ir_var_out
)) {
2361 _mesa_glsl_error(& loc
, state
,
2362 "`%s' cannot be marked invariant, vertex shader "
2363 "outputs only\n", decl
->identifier
);
2364 } else if ((state
->target
== fragment_shader
)
2365 && (earlier
->mode
!= ir_var_in
)) {
2366 _mesa_glsl_error(& loc
, state
,
2367 "`%s' cannot be marked invariant, fragment shader "
2368 "inputs only\n", decl
->identifier
);
2369 } else if (earlier
->used
) {
2370 _mesa_glsl_error(& loc
, state
,
2371 "variable `%s' may not be redeclared "
2372 "`invariant' after being used",
2375 earlier
->invariant
= true;
2379 /* Invariant redeclarations do not have r-values.
2384 assert(this->type
!= NULL
);
2385 assert(!this->invariant
);
2387 /* The type specifier may contain a structure definition. Process that
2388 * before any of the variable declarations.
2390 (void) this->type
->specifier
->hir(instructions
, state
);
2392 decl_type
= this->type
->specifier
->glsl_type(& type_name
, state
);
2393 if (this->declarations
.is_empty()) {
2394 /* The only valid case where the declaration list can be empty is when
2395 * the declaration is setting the default precision of a built-in type
2396 * (e.g., 'precision highp vec4;').
2399 if (decl_type
!= NULL
) {
2401 _mesa_glsl_error(& loc
, state
, "incomplete declaration");
2405 foreach_list_typed (ast_declaration
, decl
, link
, &this->declarations
) {
2406 const struct glsl_type
*var_type
;
2409 /* FINISHME: Emit a warning if a variable declaration shadows a
2410 * FINISHME: declaration at a higher scope.
2413 if ((decl_type
== NULL
) || decl_type
->is_void()) {
2414 if (type_name
!= NULL
) {
2415 _mesa_glsl_error(& loc
, state
,
2416 "invalid type `%s' in declaration of `%s'",
2417 type_name
, decl
->identifier
);
2419 _mesa_glsl_error(& loc
, state
,
2420 "invalid type in declaration of `%s'",
2426 if (decl
->is_array
) {
2427 var_type
= process_array_type(&loc
, decl_type
, decl
->array_size
,
2430 var_type
= decl_type
;
2433 var
= new(ctx
) ir_variable(var_type
, decl
->identifier
, ir_var_auto
);
2435 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2437 * "Global variables can only use the qualifiers const,
2438 * attribute, uni form, or varying. Only one may be
2441 * Local variables can only use the qualifier const."
2443 * This is relaxed in GLSL 1.30. It is also relaxed by any extension
2444 * that adds the 'layout' keyword.
2446 if ((state
->language_version
< 130)
2447 && !state
->ARB_explicit_attrib_location_enable
2448 && !state
->ARB_fragment_coord_conventions_enable
) {
2449 if (this->type
->qualifier
.flags
.q
.out
) {
2450 _mesa_glsl_error(& loc
, state
,
2451 "`out' qualifier in declaration of `%s' "
2452 "only valid for function parameters in %s.",
2453 decl
->identifier
, state
->version_string
);
2455 if (this->type
->qualifier
.flags
.q
.in
) {
2456 _mesa_glsl_error(& loc
, state
,
2457 "`in' qualifier in declaration of `%s' "
2458 "only valid for function parameters in %s.",
2459 decl
->identifier
, state
->version_string
);
2461 /* FINISHME: Test for other invalid qualifiers. */
2464 apply_type_qualifier_to_variable(& this->type
->qualifier
, var
, state
,
2467 if (this->type
->qualifier
.flags
.q
.invariant
) {
2468 if ((state
->target
== vertex_shader
) && !(var
->mode
== ir_var_out
||
2469 var
->mode
== ir_var_inout
)) {
2470 /* FINISHME: Note that this doesn't work for invariant on
2471 * a function signature outval
2473 _mesa_glsl_error(& loc
, state
,
2474 "`%s' cannot be marked invariant, vertex shader "
2475 "outputs only\n", var
->name
);
2476 } else if ((state
->target
== fragment_shader
) &&
2477 !(var
->mode
== ir_var_in
|| var
->mode
== ir_var_inout
)) {
2478 /* FINISHME: Note that this doesn't work for invariant on
2479 * a function signature inval
2481 _mesa_glsl_error(& loc
, state
,
2482 "`%s' cannot be marked invariant, fragment shader "
2483 "inputs only\n", var
->name
);
2487 if (state
->current_function
!= NULL
) {
2488 const char *mode
= NULL
;
2489 const char *extra
= "";
2491 /* There is no need to check for 'inout' here because the parser will
2492 * only allow that in function parameter lists.
2494 if (this->type
->qualifier
.flags
.q
.attribute
) {
2496 } else if (this->type
->qualifier
.flags
.q
.uniform
) {
2498 } else if (this->type
->qualifier
.flags
.q
.varying
) {
2500 } else if (this->type
->qualifier
.flags
.q
.in
) {
2502 extra
= " or in function parameter list";
2503 } else if (this->type
->qualifier
.flags
.q
.out
) {
2505 extra
= " or in function parameter list";
2509 _mesa_glsl_error(& loc
, state
,
2510 "%s variable `%s' must be declared at "
2512 mode
, var
->name
, extra
);
2514 } else if (var
->mode
== ir_var_in
) {
2515 var
->read_only
= true;
2517 if (state
->target
== vertex_shader
) {
2518 bool error_emitted
= false;
2520 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2522 * "Vertex shader inputs can only be float, floating-point
2523 * vectors, matrices, signed and unsigned integers and integer
2524 * vectors. Vertex shader inputs can also form arrays of these
2525 * types, but not structures."
2527 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2529 * "Vertex shader inputs can only be float, floating-point
2530 * vectors, matrices, signed and unsigned integers and integer
2531 * vectors. They cannot be arrays or structures."
2533 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2535 * "The attribute qualifier can be used only with float,
2536 * floating-point vectors, and matrices. Attribute variables
2537 * cannot be declared as arrays or structures."
2539 const glsl_type
*check_type
= var
->type
->is_array()
2540 ? var
->type
->fields
.array
: var
->type
;
2542 switch (check_type
->base_type
) {
2543 case GLSL_TYPE_FLOAT
:
2545 case GLSL_TYPE_UINT
:
2547 if (state
->language_version
> 120)
2551 _mesa_glsl_error(& loc
, state
,
2552 "vertex shader input / attribute cannot have "
2554 var
->type
->is_array() ? "array of " : "",
2556 error_emitted
= true;
2559 if (!error_emitted
&& (state
->language_version
<= 130)
2560 && var
->type
->is_array()) {
2561 _mesa_glsl_error(& loc
, state
,
2562 "vertex shader input / attribute cannot have "
2564 error_emitted
= true;
2569 /* Integer vertex outputs must be qualified with 'flat'.
2571 * From section 4.3.6 of the GLSL 1.30 spec:
2572 * "If a vertex output is a signed or unsigned integer or integer
2573 * vector, then it must be qualified with the interpolation qualifier
2576 if (state
->language_version
>= 130
2577 && state
->target
== vertex_shader
2578 && state
->current_function
== NULL
2579 && var
->type
->is_integer()
2580 && var
->mode
== ir_var_out
2581 && var
->interpolation
!= ir_var_flat
) {
2583 _mesa_glsl_error(&loc
, state
, "If a vertex output is an integer, "
2584 "then it must be qualified with 'flat'");
2588 /* Interpolation qualifiers cannot be applied to 'centroid' and
2589 * 'centroid varying'.
2591 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2592 * "interpolation qualifiers may only precede the qualifiers in,
2593 * centroid in, out, or centroid out in a declaration. They do not apply
2594 * to the deprecated storage qualifiers varying or centroid varying."
2596 if (state
->language_version
>= 130
2597 && this->type
->qualifier
.has_interpolation()
2598 && this->type
->qualifier
.flags
.q
.varying
) {
2600 const char *i
= this->type
->qualifier
.interpolation_string();
2603 if (this->type
->qualifier
.flags
.q
.centroid
)
2604 s
= "centroid varying";
2608 _mesa_glsl_error(&loc
, state
,
2609 "qualifier '%s' cannot be applied to the "
2610 "deprecated storage qualifier '%s'", i
, s
);
2614 /* Interpolation qualifiers can only apply to vertex shader outputs and
2615 * fragment shader inputs.
2617 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2618 * "Outputs from a vertex shader (out) and inputs to a fragment
2619 * shader (in) can be further qualified with one or more of these
2620 * interpolation qualifiers"
2622 if (state
->language_version
>= 130
2623 && this->type
->qualifier
.has_interpolation()) {
2625 const char *i
= this->type
->qualifier
.interpolation_string();
2628 switch (state
->target
) {
2630 if (this->type
->qualifier
.flags
.q
.in
) {
2631 _mesa_glsl_error(&loc
, state
,
2632 "qualifier '%s' cannot be applied to vertex "
2633 "shader inputs", i
);
2636 case fragment_shader
:
2637 if (this->type
->qualifier
.flags
.q
.out
) {
2638 _mesa_glsl_error(&loc
, state
,
2639 "qualifier '%s' cannot be applied to fragment "
2640 "shader outputs", i
);
2649 /* From section 4.3.4 of the GLSL 1.30 spec:
2650 * "It is an error to use centroid in in a vertex shader."
2652 if (state
->language_version
>= 130
2653 && this->type
->qualifier
.flags
.q
.centroid
2654 && this->type
->qualifier
.flags
.q
.in
2655 && state
->target
== vertex_shader
) {
2657 _mesa_glsl_error(&loc
, state
,
2658 "'centroid in' cannot be used in a vertex shader");
2662 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
2664 if (this->type
->specifier
->precision
!= ast_precision_none
2665 && state
->language_version
!= 100
2666 && state
->language_version
< 130) {
2668 _mesa_glsl_error(&loc
, state
,
2669 "precision qualifiers are supported only in GLSL ES "
2670 "1.00, and GLSL 1.30 and later");
2674 /* Precision qualifiers only apply to floating point and integer types.
2676 * From section 4.5.2 of the GLSL 1.30 spec:
2677 * "Any floating point or any integer declaration can have the type
2678 * preceded by one of these precision qualifiers [...] Literal
2679 * constants do not have precision qualifiers. Neither do Boolean
2682 * In GLSL ES, sampler types are also allowed.
2684 * From page 87 of the GLSL ES spec:
2685 * "RESOLUTION: Allow sampler types to take a precision qualifier."
2687 if (this->type
->specifier
->precision
!= ast_precision_none
2688 && !var
->type
->is_float()
2689 && !var
->type
->is_integer()
2690 && !(var
->type
->is_sampler() && state
->es_shader
)
2691 && !(var
->type
->is_array()
2692 && (var
->type
->fields
.array
->is_float()
2693 || var
->type
->fields
.array
->is_integer()))) {
2695 _mesa_glsl_error(&loc
, state
,
2696 "precision qualifiers apply only to floating point"
2697 "%s types", state
->es_shader
? ", integer, and sampler"
2701 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
2703 * "[Sampler types] can only be declared as function
2704 * parameters or uniform variables (see Section 4.3.5
2707 if (var_type
->contains_sampler() &&
2708 !this->type
->qualifier
.flags
.q
.uniform
) {
2709 _mesa_glsl_error(&loc
, state
, "samplers must be declared uniform");
2712 /* Process the initializer and add its instructions to a temporary
2713 * list. This list will be added to the instruction stream (below) after
2714 * the declaration is added. This is done because in some cases (such as
2715 * redeclarations) the declaration may not actually be added to the
2716 * instruction stream.
2718 exec_list initializer_instructions
;
2719 ir_variable
*earlier
= get_variable_being_redeclared(var
, decl
, state
);
2721 if (decl
->initializer
!= NULL
) {
2722 result
= process_initializer((earlier
== NULL
) ? var
: earlier
,
2724 &initializer_instructions
, state
);
2727 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
2729 * "It is an error to write to a const variable outside of
2730 * its declaration, so they must be initialized when
2733 if (this->type
->qualifier
.flags
.q
.constant
&& decl
->initializer
== NULL
) {
2734 _mesa_glsl_error(& loc
, state
,
2735 "const declaration of `%s' must be initialized",
2739 /* If the declaration is not a redeclaration, there are a few additional
2740 * semantic checks that must be applied. In addition, variable that was
2741 * created for the declaration should be added to the IR stream.
2743 if (earlier
== NULL
) {
2744 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2746 * "Identifiers starting with "gl_" are reserved for use by
2747 * OpenGL, and may not be declared in a shader as either a
2748 * variable or a function."
2750 if (strncmp(decl
->identifier
, "gl_", 3) == 0)
2751 _mesa_glsl_error(& loc
, state
,
2752 "identifier `%s' uses reserved `gl_' prefix",
2755 /* Add the variable to the symbol table. Note that the initializer's
2756 * IR was already processed earlier (though it hasn't been emitted
2757 * yet), without the variable in scope.
2759 * This differs from most C-like languages, but it follows the GLSL
2760 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
2763 * "Within a declaration, the scope of a name starts immediately
2764 * after the initializer if present or immediately after the name
2765 * being declared if not."
2767 if (!state
->symbols
->add_variable(var
)) {
2768 YYLTYPE loc
= this->get_location();
2769 _mesa_glsl_error(&loc
, state
, "name `%s' already taken in the "
2770 "current scope", decl
->identifier
);
2774 /* Push the variable declaration to the top. It means that all the
2775 * variable declarations will appear in a funny last-to-first order,
2776 * but otherwise we run into trouble if a function is prototyped, a
2777 * global var is decled, then the function is defined with usage of
2778 * the global var. See glslparsertest's CorrectModule.frag.
2780 instructions
->push_head(var
);
2783 instructions
->append_list(&initializer_instructions
);
2787 /* Generally, variable declarations do not have r-values. However,
2788 * one is used for the declaration in
2790 * while (bool b = some_condition()) {
2794 * so we return the rvalue from the last seen declaration here.
2801 ast_parameter_declarator::hir(exec_list
*instructions
,
2802 struct _mesa_glsl_parse_state
*state
)
2805 const struct glsl_type
*type
;
2806 const char *name
= NULL
;
2807 YYLTYPE loc
= this->get_location();
2809 type
= this->type
->specifier
->glsl_type(& name
, state
);
2813 _mesa_glsl_error(& loc
, state
,
2814 "invalid type `%s' in declaration of `%s'",
2815 name
, this->identifier
);
2817 _mesa_glsl_error(& loc
, state
,
2818 "invalid type in declaration of `%s'",
2822 type
= glsl_type::error_type
;
2825 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
2827 * "Functions that accept no input arguments need not use void in the
2828 * argument list because prototypes (or definitions) are required and
2829 * therefore there is no ambiguity when an empty argument list "( )" is
2830 * declared. The idiom "(void)" as a parameter list is provided for
2833 * Placing this check here prevents a void parameter being set up
2834 * for a function, which avoids tripping up checks for main taking
2835 * parameters and lookups of an unnamed symbol.
2837 if (type
->is_void()) {
2838 if (this->identifier
!= NULL
)
2839 _mesa_glsl_error(& loc
, state
,
2840 "named parameter cannot have type `void'");
2846 if (formal_parameter
&& (this->identifier
== NULL
)) {
2847 _mesa_glsl_error(& loc
, state
, "formal parameter lacks a name");
2851 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
2852 * call already handled the "vec4[..] foo" case.
2854 if (this->is_array
) {
2855 type
= process_array_type(&loc
, type
, this->array_size
, state
);
2858 if (type
->array_size() == 0) {
2859 _mesa_glsl_error(&loc
, state
, "arrays passed as parameters must have "
2860 "a declared size.");
2861 type
= glsl_type::error_type
;
2865 ir_variable
*var
= new(ctx
) ir_variable(type
, this->identifier
, ir_var_in
);
2867 /* Apply any specified qualifiers to the parameter declaration. Note that
2868 * for function parameters the default mode is 'in'.
2870 apply_type_qualifier_to_variable(& this->type
->qualifier
, var
, state
, & loc
);
2872 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
2874 * "Samplers cannot be treated as l-values; hence cannot be used
2875 * as out or inout function parameters, nor can they be assigned
2878 if ((var
->mode
== ir_var_inout
|| var
->mode
== ir_var_out
)
2879 && type
->contains_sampler()) {
2880 _mesa_glsl_error(&loc
, state
, "out and inout parameters cannot contain samplers");
2881 type
= glsl_type::error_type
;
2884 instructions
->push_tail(var
);
2886 /* Parameter declarations do not have r-values.
2893 ast_parameter_declarator::parameters_to_hir(exec_list
*ast_parameters
,
2895 exec_list
*ir_parameters
,
2896 _mesa_glsl_parse_state
*state
)
2898 ast_parameter_declarator
*void_param
= NULL
;
2901 foreach_list_typed (ast_parameter_declarator
, param
, link
, ast_parameters
) {
2902 param
->formal_parameter
= formal
;
2903 param
->hir(ir_parameters
, state
);
2911 if ((void_param
!= NULL
) && (count
> 1)) {
2912 YYLTYPE loc
= void_param
->get_location();
2914 _mesa_glsl_error(& loc
, state
,
2915 "`void' parameter must be only parameter");
2921 emit_function(_mesa_glsl_parse_state
*state
, exec_list
*instructions
,
2924 /* Emit the new function header */
2925 if (state
->current_function
== NULL
) {
2926 instructions
->push_tail(f
);
2928 /* IR invariants disallow function declarations or definitions nested
2929 * within other function definitions. Insert the new ir_function
2930 * block in the instruction sequence before the ir_function block
2931 * containing the current ir_function_signature.
2933 ir_function
*const curr
=
2934 const_cast<ir_function
*>(state
->current_function
->function());
2936 curr
->insert_before(f
);
2942 ast_function::hir(exec_list
*instructions
,
2943 struct _mesa_glsl_parse_state
*state
)
2946 ir_function
*f
= NULL
;
2947 ir_function_signature
*sig
= NULL
;
2948 exec_list hir_parameters
;
2950 const char *const name
= identifier
;
2952 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
2954 * "Function declarations (prototypes) cannot occur inside of functions;
2955 * they must be at global scope, or for the built-in functions, outside
2956 * the global scope."
2958 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
2960 * "User defined functions may only be defined within the global scope."
2962 * Note that this language does not appear in GLSL 1.10.
2964 if ((state
->current_function
!= NULL
) && (state
->language_version
!= 110)) {
2965 YYLTYPE loc
= this->get_location();
2966 _mesa_glsl_error(&loc
, state
,
2967 "declaration of function `%s' not allowed within "
2968 "function body", name
);
2971 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2973 * "Identifiers starting with "gl_" are reserved for use by
2974 * OpenGL, and may not be declared in a shader as either a
2975 * variable or a function."
2977 if (strncmp(name
, "gl_", 3) == 0) {
2978 YYLTYPE loc
= this->get_location();
2979 _mesa_glsl_error(&loc
, state
,
2980 "identifier `%s' uses reserved `gl_' prefix", name
);
2983 /* Convert the list of function parameters to HIR now so that they can be
2984 * used below to compare this function's signature with previously seen
2985 * signatures for functions with the same name.
2987 ast_parameter_declarator::parameters_to_hir(& this->parameters
,
2989 & hir_parameters
, state
);
2991 const char *return_type_name
;
2992 const glsl_type
*return_type
=
2993 this->return_type
->specifier
->glsl_type(& return_type_name
, state
);
2996 YYLTYPE loc
= this->get_location();
2997 _mesa_glsl_error(&loc
, state
,
2998 "function `%s' has undeclared return type `%s'",
2999 name
, return_type_name
);
3000 return_type
= glsl_type::error_type
;
3003 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
3004 * "No qualifier is allowed on the return type of a function."
3006 if (this->return_type
->has_qualifiers()) {
3007 YYLTYPE loc
= this->get_location();
3008 _mesa_glsl_error(& loc
, state
,
3009 "function `%s' return type has qualifiers", name
);
3012 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3014 * "[Sampler types] can only be declared as function parameters
3015 * or uniform variables (see Section 4.3.5 "Uniform")".
3017 if (return_type
->contains_sampler()) {
3018 YYLTYPE loc
= this->get_location();
3019 _mesa_glsl_error(&loc
, state
,
3020 "function `%s' return type can't contain a sampler",
3024 /* Verify that this function's signature either doesn't match a previously
3025 * seen signature for a function with the same name, or, if a match is found,
3026 * that the previously seen signature does not have an associated definition.
3028 f
= state
->symbols
->get_function(name
);
3029 if (f
!= NULL
&& (state
->es_shader
|| f
->has_user_signature())) {
3030 sig
= f
->exact_matching_signature(&hir_parameters
);
3032 const char *badvar
= sig
->qualifiers_match(&hir_parameters
);
3033 if (badvar
!= NULL
) {
3034 YYLTYPE loc
= this->get_location();
3036 _mesa_glsl_error(&loc
, state
, "function `%s' parameter `%s' "
3037 "qualifiers don't match prototype", name
, badvar
);
3040 if (sig
->return_type
!= return_type
) {
3041 YYLTYPE loc
= this->get_location();
3043 _mesa_glsl_error(&loc
, state
, "function `%s' return type doesn't "
3044 "match prototype", name
);
3047 if (is_definition
&& sig
->is_defined
) {
3048 YYLTYPE loc
= this->get_location();
3050 _mesa_glsl_error(& loc
, state
, "function `%s' redefined", name
);
3054 f
= new(ctx
) ir_function(name
);
3055 if (!state
->symbols
->add_function(f
)) {
3056 /* This function name shadows a non-function use of the same name. */
3057 YYLTYPE loc
= this->get_location();
3059 _mesa_glsl_error(&loc
, state
, "function name `%s' conflicts with "
3060 "non-function", name
);
3064 emit_function(state
, instructions
, f
);
3067 /* Verify the return type of main() */
3068 if (strcmp(name
, "main") == 0) {
3069 if (! return_type
->is_void()) {
3070 YYLTYPE loc
= this->get_location();
3072 _mesa_glsl_error(& loc
, state
, "main() must return void");
3075 if (!hir_parameters
.is_empty()) {
3076 YYLTYPE loc
= this->get_location();
3078 _mesa_glsl_error(& loc
, state
, "main() must not take any parameters");
3082 /* Finish storing the information about this new function in its signature.
3085 sig
= new(ctx
) ir_function_signature(return_type
);
3086 f
->add_signature(sig
);
3089 sig
->replace_parameters(&hir_parameters
);
3092 /* Function declarations (prototypes) do not have r-values.
3099 ast_function_definition::hir(exec_list
*instructions
,
3100 struct _mesa_glsl_parse_state
*state
)
3102 prototype
->is_definition
= true;
3103 prototype
->hir(instructions
, state
);
3105 ir_function_signature
*signature
= prototype
->signature
;
3106 if (signature
== NULL
)
3109 assert(state
->current_function
== NULL
);
3110 state
->current_function
= signature
;
3111 state
->found_return
= false;
3113 /* Duplicate parameters declared in the prototype as concrete variables.
3114 * Add these to the symbol table.
3116 state
->symbols
->push_scope();
3117 foreach_iter(exec_list_iterator
, iter
, signature
->parameters
) {
3118 ir_variable
*const var
= ((ir_instruction
*) iter
.get())->as_variable();
3120 assert(var
!= NULL
);
3122 /* The only way a parameter would "exist" is if two parameters have
3125 if (state
->symbols
->name_declared_this_scope(var
->name
)) {
3126 YYLTYPE loc
= this->get_location();
3128 _mesa_glsl_error(& loc
, state
, "parameter `%s' redeclared", var
->name
);
3130 state
->symbols
->add_variable(var
);
3134 /* Convert the body of the function to HIR. */
3135 this->body
->hir(&signature
->body
, state
);
3136 signature
->is_defined
= true;
3138 state
->symbols
->pop_scope();
3140 assert(state
->current_function
== signature
);
3141 state
->current_function
= NULL
;
3143 if (!signature
->return_type
->is_void() && !state
->found_return
) {
3144 YYLTYPE loc
= this->get_location();
3145 _mesa_glsl_error(& loc
, state
, "function `%s' has non-void return type "
3146 "%s, but no return statement",
3147 signature
->function_name(),
3148 signature
->return_type
->name
);
3151 /* Function definitions do not have r-values.
3158 ast_jump_statement::hir(exec_list
*instructions
,
3159 struct _mesa_glsl_parse_state
*state
)
3166 assert(state
->current_function
);
3168 if (opt_return_value
) {
3169 ir_rvalue
*const ret
= opt_return_value
->hir(instructions
, state
);
3171 /* The value of the return type can be NULL if the shader says
3172 * 'return foo();' and foo() is a function that returns void.
3174 * NOTE: The GLSL spec doesn't say that this is an error. The type
3175 * of the return value is void. If the return type of the function is
3176 * also void, then this should compile without error. Seriously.
3178 const glsl_type
*const ret_type
=
3179 (ret
== NULL
) ? glsl_type::void_type
: ret
->type
;
3181 /* Implicit conversions are not allowed for return values. */
3182 if (state
->current_function
->return_type
!= ret_type
) {
3183 YYLTYPE loc
= this->get_location();
3185 _mesa_glsl_error(& loc
, state
,
3186 "`return' with wrong type %s, in function `%s' "
3189 state
->current_function
->function_name(),
3190 state
->current_function
->return_type
->name
);
3193 inst
= new(ctx
) ir_return(ret
);
3195 if (state
->current_function
->return_type
->base_type
!=
3197 YYLTYPE loc
= this->get_location();
3199 _mesa_glsl_error(& loc
, state
,
3200 "`return' with no value, in function %s returning "
3202 state
->current_function
->function_name());
3204 inst
= new(ctx
) ir_return
;
3207 state
->found_return
= true;
3208 instructions
->push_tail(inst
);
3213 if (state
->target
!= fragment_shader
) {
3214 YYLTYPE loc
= this->get_location();
3216 _mesa_glsl_error(& loc
, state
,
3217 "`discard' may only appear in a fragment shader");
3219 instructions
->push_tail(new(ctx
) ir_discard
);
3224 /* FINISHME: Handle switch-statements. They cannot contain 'continue',
3225 * FINISHME: and they use a different IR instruction for 'break'.
3227 /* FINISHME: Correctly handle the nesting. If a switch-statement is
3228 * FINISHME: inside a loop, a 'continue' is valid and will bind to the
3231 if (state
->loop_or_switch_nesting
== NULL
) {
3232 YYLTYPE loc
= this->get_location();
3234 _mesa_glsl_error(& loc
, state
,
3235 "`%s' may only appear in a loop",
3236 (mode
== ast_break
) ? "break" : "continue");
3238 ir_loop
*const loop
= state
->loop_or_switch_nesting
->as_loop();
3240 /* Inline the for loop expression again, since we don't know
3241 * where near the end of the loop body the normal copy of it
3242 * is going to be placed.
3244 if (mode
== ast_continue
&&
3245 state
->loop_or_switch_nesting_ast
->rest_expression
) {
3246 state
->loop_or_switch_nesting_ast
->rest_expression
->hir(instructions
,
3251 ir_loop_jump
*const jump
=
3252 new(ctx
) ir_loop_jump((mode
== ast_break
)
3253 ? ir_loop_jump::jump_break
3254 : ir_loop_jump::jump_continue
);
3255 instructions
->push_tail(jump
);
3262 /* Jump instructions do not have r-values.
3269 ast_selection_statement::hir(exec_list
*instructions
,
3270 struct _mesa_glsl_parse_state
*state
)
3274 ir_rvalue
*const condition
= this->condition
->hir(instructions
, state
);
3276 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
3278 * "Any expression whose type evaluates to a Boolean can be used as the
3279 * conditional expression bool-expression. Vector types are not accepted
3280 * as the expression to if."
3282 * The checks are separated so that higher quality diagnostics can be
3283 * generated for cases where both rules are violated.
3285 if (!condition
->type
->is_boolean() || !condition
->type
->is_scalar()) {
3286 YYLTYPE loc
= this->condition
->get_location();
3288 _mesa_glsl_error(& loc
, state
, "if-statement condition must be scalar "
3292 ir_if
*const stmt
= new(ctx
) ir_if(condition
);
3294 if (then_statement
!= NULL
) {
3295 state
->symbols
->push_scope();
3296 then_statement
->hir(& stmt
->then_instructions
, state
);
3297 state
->symbols
->pop_scope();
3300 if (else_statement
!= NULL
) {
3301 state
->symbols
->push_scope();
3302 else_statement
->hir(& stmt
->else_instructions
, state
);
3303 state
->symbols
->pop_scope();
3306 instructions
->push_tail(stmt
);
3308 /* if-statements do not have r-values.
3315 ast_iteration_statement::condition_to_hir(ir_loop
*stmt
,
3316 struct _mesa_glsl_parse_state
*state
)
3320 if (condition
!= NULL
) {
3321 ir_rvalue
*const cond
=
3322 condition
->hir(& stmt
->body_instructions
, state
);
3325 || !cond
->type
->is_boolean() || !cond
->type
->is_scalar()) {
3326 YYLTYPE loc
= condition
->get_location();
3328 _mesa_glsl_error(& loc
, state
,
3329 "loop condition must be scalar boolean");
3331 /* As the first code in the loop body, generate a block that looks
3332 * like 'if (!condition) break;' as the loop termination condition.
3334 ir_rvalue
*const not_cond
=
3335 new(ctx
) ir_expression(ir_unop_logic_not
, glsl_type::bool_type
, cond
,
3338 ir_if
*const if_stmt
= new(ctx
) ir_if(not_cond
);
3340 ir_jump
*const break_stmt
=
3341 new(ctx
) ir_loop_jump(ir_loop_jump::jump_break
);
3343 if_stmt
->then_instructions
.push_tail(break_stmt
);
3344 stmt
->body_instructions
.push_tail(if_stmt
);
3351 ast_iteration_statement::hir(exec_list
*instructions
,
3352 struct _mesa_glsl_parse_state
*state
)
3356 /* For-loops and while-loops start a new scope, but do-while loops do not.
3358 if (mode
!= ast_do_while
)
3359 state
->symbols
->push_scope();
3361 if (init_statement
!= NULL
)
3362 init_statement
->hir(instructions
, state
);
3364 ir_loop
*const stmt
= new(ctx
) ir_loop();
3365 instructions
->push_tail(stmt
);
3367 /* Track the current loop and / or switch-statement nesting.
3369 ir_instruction
*const nesting
= state
->loop_or_switch_nesting
;
3370 ast_iteration_statement
*nesting_ast
= state
->loop_or_switch_nesting_ast
;
3372 state
->loop_or_switch_nesting
= stmt
;
3373 state
->loop_or_switch_nesting_ast
= this;
3375 if (mode
!= ast_do_while
)
3376 condition_to_hir(stmt
, state
);
3379 body
->hir(& stmt
->body_instructions
, state
);
3381 if (rest_expression
!= NULL
)
3382 rest_expression
->hir(& stmt
->body_instructions
, state
);
3384 if (mode
== ast_do_while
)
3385 condition_to_hir(stmt
, state
);
3387 if (mode
!= ast_do_while
)
3388 state
->symbols
->pop_scope();
3390 /* Restore previous nesting before returning.
3392 state
->loop_or_switch_nesting
= nesting
;
3393 state
->loop_or_switch_nesting_ast
= nesting_ast
;
3395 /* Loops do not have r-values.
3402 ast_type_specifier::hir(exec_list
*instructions
,
3403 struct _mesa_glsl_parse_state
*state
)
3405 if (!this->is_precision_statement
&& this->structure
== NULL
)
3408 YYLTYPE loc
= this->get_location();
3410 if (this->precision
!= ast_precision_none
3411 && state
->language_version
!= 100
3412 && state
->language_version
< 130) {
3413 _mesa_glsl_error(&loc
, state
,
3414 "precision qualifiers exist only in "
3415 "GLSL ES 1.00, and GLSL 1.30 and later");
3418 if (this->precision
!= ast_precision_none
3419 && this->structure
!= NULL
) {
3420 _mesa_glsl_error(&loc
, state
,
3421 "precision qualifiers do not apply to structures");
3425 /* If this is a precision statement, check that the type to which it is
3426 * applied is either float or int.
3428 * From section 4.5.3 of the GLSL 1.30 spec:
3429 * "The precision statement
3430 * precision precision-qualifier type;
3431 * can be used to establish a default precision qualifier. The type
3432 * field can be either int or float [...]. Any other types or
3433 * qualifiers will result in an error.
3435 if (this->is_precision_statement
) {
3436 assert(this->precision
!= ast_precision_none
);
3437 assert(this->structure
== NULL
); /* The check for structures was
3438 * performed above. */
3439 if (this->is_array
) {
3440 _mesa_glsl_error(&loc
, state
,
3441 "default precision statements do not apply to "
3445 if (this->type_specifier
!= ast_float
3446 && this->type_specifier
!= ast_int
) {
3447 _mesa_glsl_error(&loc
, state
,
3448 "default precision statements apply only to types "
3453 /* FINISHME: Translate precision statements into IR. */
3457 if (this->structure
!= NULL
)
3458 return this->structure
->hir(instructions
, state
);
3465 ast_struct_specifier::hir(exec_list
*instructions
,
3466 struct _mesa_glsl_parse_state
*state
)
3468 unsigned decl_count
= 0;
3470 /* Make an initial pass over the list of structure fields to determine how
3471 * many there are. Each element in this list is an ast_declarator_list.
3472 * This means that we actually need to count the number of elements in the
3473 * 'declarations' list in each of the elements.
3475 foreach_list_typed (ast_declarator_list
, decl_list
, link
,
3476 &this->declarations
) {
3477 foreach_list_const (decl_ptr
, & decl_list
->declarations
) {
3482 /* Allocate storage for the structure fields and process the field
3483 * declarations. As the declarations are processed, try to also convert
3484 * the types to HIR. This ensures that structure definitions embedded in
3485 * other structure definitions are processed.
3487 glsl_struct_field
*const fields
= ralloc_array(state
, glsl_struct_field
,
3491 foreach_list_typed (ast_declarator_list
, decl_list
, link
,
3492 &this->declarations
) {
3493 const char *type_name
;
3495 decl_list
->type
->specifier
->hir(instructions
, state
);
3497 /* Section 10.9 of the GLSL ES 1.00 specification states that
3498 * embedded structure definitions have been removed from the language.
3500 if (state
->es_shader
&& decl_list
->type
->specifier
->structure
!= NULL
) {
3501 YYLTYPE loc
= this->get_location();
3502 _mesa_glsl_error(&loc
, state
, "Embedded structure definitions are "
3503 "not allowed in GLSL ES 1.00.");
3506 const glsl_type
*decl_type
=
3507 decl_list
->type
->specifier
->glsl_type(& type_name
, state
);
3509 foreach_list_typed (ast_declaration
, decl
, link
,
3510 &decl_list
->declarations
) {
3511 const struct glsl_type
*field_type
= decl_type
;
3512 if (decl
->is_array
) {
3513 YYLTYPE loc
= decl
->get_location();
3514 field_type
= process_array_type(&loc
, decl_type
, decl
->array_size
,
3517 fields
[i
].type
= (field_type
!= NULL
)
3518 ? field_type
: glsl_type::error_type
;
3519 fields
[i
].name
= decl
->identifier
;
3524 assert(i
== decl_count
);
3526 const glsl_type
*t
=
3527 glsl_type::get_record_instance(fields
, decl_count
, this->name
);
3529 YYLTYPE loc
= this->get_location();
3530 if (!state
->symbols
->add_type(name
, t
)) {
3531 _mesa_glsl_error(& loc
, state
, "struct `%s' previously defined", name
);
3533 const glsl_type
**s
= reralloc(state
, state
->user_structures
,
3535 state
->num_user_structures
+ 1);
3537 s
[state
->num_user_structures
] = t
;
3538 state
->user_structures
= s
;
3539 state
->num_user_structures
++;
3543 /* Structure type definitions do not have r-values.