2 * Copyright © 2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
25 * \file lower_mat_op_to_vec.cpp
27 * Breaks matrix operation expressions down to a series of vector operations.
29 * Generally this is how we have to codegen matrix operations for a
30 * GPU, so this gives us the chance to constant fold operations on a
35 #include "ir_expression_flattening.h"
36 #include "glsl_types.h"
38 class ir_mat_op_to_vec_visitor
: public ir_hierarchical_visitor
{
40 ir_mat_op_to_vec_visitor()
42 this->made_progress
= false;
46 ir_visitor_status
visit_leave(ir_assignment
*);
48 ir_dereference
*get_column(ir_variable
*var
, int col
);
49 ir_rvalue
*get_element(ir_variable
*var
, int col
, int row
);
51 void do_mul_mat_mat(ir_variable
*result_var
,
52 ir_variable
*a_var
, ir_variable
*b_var
);
53 void do_mul_mat_vec(ir_variable
*result_var
,
54 ir_variable
*a_var
, ir_variable
*b_var
);
55 void do_mul_vec_mat(ir_variable
*result_var
,
56 ir_variable
*a_var
, ir_variable
*b_var
);
57 void do_mul_mat_scalar(ir_variable
*result_var
,
58 ir_variable
*a_var
, ir_variable
*b_var
);
59 void do_equal_mat_mat(ir_variable
*result_var
, ir_variable
*a_var
,
60 ir_variable
*b_var
, bool test_equal
);
67 mat_op_to_vec_predicate(ir_instruction
*ir
)
69 ir_expression
*expr
= ir
->as_expression();
75 for (i
= 0; i
< expr
->get_num_operands(); i
++) {
76 if (expr
->operands
[i
]->type
->is_matrix())
84 do_mat_op_to_vec(exec_list
*instructions
)
86 ir_mat_op_to_vec_visitor v
;
88 /* Pull out any matrix expression to a separate assignment to a
89 * temp. This will make our handling of the breakdown to
90 * operations on the matrix's vector components much easier.
92 do_expression_flattening(instructions
, mat_op_to_vec_predicate
);
94 visit_list_elements(&v
, instructions
);
96 return v
.made_progress
;
100 ir_mat_op_to_vec_visitor::get_element(ir_variable
*var
, int col
, int row
)
102 ir_dereference
*deref
;
104 deref
= new(mem_ctx
) ir_dereference_variable(var
);
106 if (var
->type
->is_matrix()) {
107 deref
= new(mem_ctx
) ir_dereference_array(var
,
108 new(mem_ctx
) ir_constant(col
));
113 return new(mem_ctx
) ir_swizzle(deref
, row
, 0, 0, 0, 1);
117 ir_mat_op_to_vec_visitor::get_column(ir_variable
*var
, int row
)
119 ir_dereference
*deref
;
121 if (!var
->type
->is_matrix()) {
122 deref
= new(mem_ctx
) ir_dereference_variable(var
);
124 deref
= new(mem_ctx
) ir_dereference_variable(var
);
125 deref
= new(mem_ctx
) ir_dereference_array(deref
,
126 new(mem_ctx
) ir_constant(row
));
133 ir_mat_op_to_vec_visitor::do_mul_mat_mat(ir_variable
*result_var
,
138 ir_assignment
*assign
;
141 for (b_col
= 0; b_col
< b_var
->type
->matrix_columns
; b_col
++) {
142 ir_rvalue
*a
= get_column(a_var
, 0);
143 ir_rvalue
*b
= get_element(b_var
, b_col
, 0);
146 expr
= new(mem_ctx
) ir_expression(ir_binop_mul
,
151 /* following columns */
152 for (i
= 1; i
< a_var
->type
->matrix_columns
; i
++) {
153 ir_expression
*mul_expr
;
155 a
= get_column(a_var
, i
);
156 b
= get_element(b_var
, b_col
, i
);
158 mul_expr
= new(mem_ctx
) ir_expression(ir_binop_mul
,
162 expr
= new(mem_ctx
) ir_expression(ir_binop_add
,
168 ir_rvalue
*result
= get_column(result_var
, b_col
);
169 assign
= new(mem_ctx
) ir_assignment(result
,
172 base_ir
->insert_before(assign
);
177 ir_mat_op_to_vec_visitor::do_mul_mat_vec(ir_variable
*result_var
,
182 ir_rvalue
*a
= get_column(a_var
, 0);
183 ir_rvalue
*b
= get_element(b_var
, 0, 0);
184 ir_assignment
*assign
;
188 expr
= new(mem_ctx
) ir_expression(ir_binop_mul
,
193 /* following columns */
194 for (i
= 1; i
< a_var
->type
->matrix_columns
; i
++) {
195 ir_expression
*mul_expr
;
197 a
= get_column(a_var
, i
);
198 b
= get_element(b_var
, 0, i
);
200 mul_expr
= new(mem_ctx
) ir_expression(ir_binop_mul
,
204 expr
= new(mem_ctx
) ir_expression(ir_binop_add
,
210 ir_rvalue
*result
= new(mem_ctx
) ir_dereference_variable(result_var
);
211 assign
= new(mem_ctx
) ir_assignment(result
,
214 base_ir
->insert_before(assign
);
218 ir_mat_op_to_vec_visitor::do_mul_vec_mat(ir_variable
*result_var
,
224 for (i
= 0; i
< b_var
->type
->matrix_columns
; i
++) {
225 ir_rvalue
*a
= new(mem_ctx
) ir_dereference_variable(a_var
);
226 ir_rvalue
*b
= get_column(b_var
, i
);
228 ir_expression
*column_expr
;
229 ir_assignment
*column_assign
;
231 result
= new(mem_ctx
) ir_dereference_variable(result_var
);
232 result
= new(mem_ctx
) ir_swizzle(result
, i
, 0, 0, 0, 1);
234 column_expr
= new(mem_ctx
) ir_expression(ir_binop_dot
,
239 column_assign
= new(mem_ctx
) ir_assignment(result
,
242 base_ir
->insert_before(column_assign
);
247 ir_mat_op_to_vec_visitor::do_mul_mat_scalar(ir_variable
*result_var
,
253 for (i
= 0; i
< a_var
->type
->matrix_columns
; i
++) {
254 ir_rvalue
*a
= get_column(a_var
, i
);
255 ir_rvalue
*b
= new(mem_ctx
) ir_dereference_variable(b_var
);
256 ir_rvalue
*result
= get_column(result_var
, i
);
257 ir_expression
*column_expr
;
258 ir_assignment
*column_assign
;
260 column_expr
= new(mem_ctx
) ir_expression(ir_binop_mul
,
265 column_assign
= new(mem_ctx
) ir_assignment(result
,
268 base_ir
->insert_before(column_assign
);
273 ir_mat_op_to_vec_visitor::do_equal_mat_mat(ir_variable
*result_var
,
278 /* This essentially implements the following GLSL:
280 * bool equal(mat4 a, mat4 b)
282 * return !any(bvec4(a[0] != b[0],
288 * bool nequal(mat4 a, mat4 b)
290 * return any(bvec4(a[0] != b[0],
296 const unsigned columns
= a_var
->type
->matrix_columns
;
297 const glsl_type
*const bvec_type
=
298 glsl_type::get_instance(GLSL_TYPE_BOOL
, columns
, 1);
300 ir_variable
*const tmp_bvec
=
301 new(this->mem_ctx
) ir_variable(bvec_type
, "mat_cmp_bvec",
303 this->base_ir
->insert_before(tmp_bvec
);
305 for (unsigned i
= 0; i
< columns
; i
++) {
306 ir_dereference
*const op0
= get_column(a_var
, i
);
307 ir_dereference
*const op1
= get_column(b_var
, i
);
309 ir_expression
*const cmp
=
310 new(this->mem_ctx
) ir_expression(ir_binop_any_nequal
,
311 glsl_type::bool_type
, op0
, op1
);
313 ir_dereference
*const lhs
=
314 new(this->mem_ctx
) ir_dereference_variable(tmp_bvec
);
316 ir_assignment
*const assign
=
317 new(this->mem_ctx
) ir_assignment(lhs
, cmp
, NULL
, (1U << i
));
319 this->base_ir
->insert_before(assign
);
322 ir_rvalue
*const val
=
323 new(this->mem_ctx
) ir_dereference_variable(tmp_bvec
);
326 new(this->mem_ctx
) ir_expression(ir_unop_any
, glsl_type::bool_type
,
330 any
= new(this->mem_ctx
) ir_expression(ir_unop_logic_not
,
331 glsl_type::bool_type
,
334 ir_rvalue
*const result
=
335 new(this->mem_ctx
) ir_dereference_variable(result_var
);
337 ir_assignment
*const assign
=
338 new(mem_ctx
) ir_assignment(result
, any
, NULL
);
339 base_ir
->insert_before(assign
);
343 has_matrix_operand(const ir_expression
*expr
, unsigned &columns
)
345 for (unsigned i
= 0; i
< expr
->get_num_operands(); i
++) {
346 if (expr
->operands
[i
]->type
->is_matrix()) {
347 columns
= expr
->operands
[i
]->type
->matrix_columns
;
357 ir_mat_op_to_vec_visitor::visit_leave(ir_assignment
*orig_assign
)
359 ir_expression
*orig_expr
= orig_assign
->rhs
->as_expression();
360 unsigned int i
, matrix_columns
= 1;
361 ir_variable
*op_var
[2];
364 return visit_continue
;
366 if (!has_matrix_operand(orig_expr
, matrix_columns
))
367 return visit_continue
;
369 assert(orig_expr
->get_num_operands() <= 2);
371 mem_ctx
= ralloc_parent(orig_assign
);
373 ir_dereference_variable
*lhs_deref
=
374 orig_assign
->lhs
->as_dereference_variable();
377 ir_variable
*result_var
= lhs_deref
->var
;
379 /* Store the expression operands in temps so we can use them
382 for (i
= 0; i
< orig_expr
->get_num_operands(); i
++) {
383 ir_assignment
*assign
;
385 op_var
[i
] = new(mem_ctx
) ir_variable(orig_expr
->operands
[i
]->type
,
388 base_ir
->insert_before(op_var
[i
]);
390 lhs_deref
= new(mem_ctx
) ir_dereference_variable(op_var
[i
]);
391 assign
= new(mem_ctx
) ir_assignment(lhs_deref
,
392 orig_expr
->operands
[i
],
394 base_ir
->insert_before(assign
);
397 /* OK, time to break down this matrix operation. */
398 switch (orig_expr
->operation
) {
400 const unsigned mask
= (1U << result_var
->type
->vector_elements
) - 1;
402 /* Apply the operation to each column.*/
403 for (i
= 0; i
< matrix_columns
; i
++) {
404 ir_rvalue
*op0
= get_column(op_var
[0], i
);
405 ir_dereference
*result
= get_column(result_var
, i
);
406 ir_expression
*column_expr
;
407 ir_assignment
*column_assign
;
409 column_expr
= new(mem_ctx
) ir_expression(orig_expr
->operation
,
414 column_assign
= new(mem_ctx
) ir_assignment(result
,
418 assert(column_assign
->write_mask
!= 0);
419 base_ir
->insert_before(column_assign
);
427 const unsigned mask
= (1U << result_var
->type
->vector_elements
) - 1;
429 /* For most operations, the matrix version is just going
430 * column-wise through and applying the operation to each column
433 for (i
= 0; i
< matrix_columns
; i
++) {
434 ir_rvalue
*op0
= get_column(op_var
[0], i
);
435 ir_rvalue
*op1
= get_column(op_var
[1], i
);
436 ir_dereference
*result
= get_column(result_var
, i
);
437 ir_expression
*column_expr
;
438 ir_assignment
*column_assign
;
440 column_expr
= new(mem_ctx
) ir_expression(orig_expr
->operation
,
445 column_assign
= new(mem_ctx
) ir_assignment(result
,
449 assert(column_assign
->write_mask
!= 0);
450 base_ir
->insert_before(column_assign
);
455 if (op_var
[0]->type
->is_matrix()) {
456 if (op_var
[1]->type
->is_matrix()) {
457 do_mul_mat_mat(result_var
, op_var
[0], op_var
[1]);
458 } else if (op_var
[1]->type
->is_vector()) {
459 do_mul_mat_vec(result_var
, op_var
[0], op_var
[1]);
461 assert(op_var
[1]->type
->is_scalar());
462 do_mul_mat_scalar(result_var
, op_var
[0], op_var
[1]);
465 assert(op_var
[1]->type
->is_matrix());
466 if (op_var
[0]->type
->is_vector()) {
467 do_mul_vec_mat(result_var
, op_var
[0], op_var
[1]);
469 assert(op_var
[0]->type
->is_scalar());
470 do_mul_mat_scalar(result_var
, op_var
[1], op_var
[0]);
475 case ir_binop_all_equal
:
476 case ir_binop_any_nequal
:
477 do_equal_mat_mat(result_var
, op_var
[1], op_var
[0],
478 (orig_expr
->operation
== ir_binop_all_equal
));
482 printf("FINISHME: Handle matrix operation for %s\n",
483 orig_expr
->operator_string());
486 orig_assign
->remove();
487 this->made_progress
= true;
489 return visit_continue
;