update experimental gcc 6 patch to gcc 6.1.0 release
[AROS.git] / workbench / libs / jpeg / jcarith.c
bloba7f9ff7accaefb8a31079ac40d6c48b55e4f3745
1 /*
2 * jcarith.c
4 * Developed 1997-2012 by Guido Vollbeding.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
8 * This file contains portable arithmetic entropy encoding routines for JPEG
9 * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
11 * Both sequential and progressive modes are supported in this single module.
13 * Suspension is not currently supported in this module.
16 #define JPEG_INTERNALS
17 #include "jinclude.h"
18 #include "jpeglib.h"
21 /* Expanded entropy encoder object for arithmetic encoding. */
23 typedef struct {
24 struct jpeg_entropy_encoder pub; /* public fields */
26 INT32 c; /* C register, base of coding interval, layout as in sec. D.1.3 */
27 INT32 a; /* A register, normalized size of coding interval */
28 INT32 sc; /* counter for stacked 0xFF values which might overflow */
29 INT32 zc; /* counter for pending 0x00 output values which might *
30 * be discarded at the end ("Pacman" termination) */
31 int ct; /* bit shift counter, determines when next byte will be written */
32 int buffer; /* buffer for most recent output byte != 0xFF */
34 int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
35 int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
37 unsigned int restarts_to_go; /* MCUs left in this restart interval */
38 int next_restart_num; /* next restart number to write (0-7) */
40 /* Pointers to statistics areas (these workspaces have image lifespan) */
41 unsigned char * dc_stats[NUM_ARITH_TBLS];
42 unsigned char * ac_stats[NUM_ARITH_TBLS];
44 /* Statistics bin for coding with fixed probability 0.5 */
45 unsigned char fixed_bin[4];
46 } arith_entropy_encoder;
48 typedef arith_entropy_encoder * arith_entropy_ptr;
50 /* The following two definitions specify the allocation chunk size
51 * for the statistics area.
52 * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
53 * 49 statistics bins for DC, and 245 statistics bins for AC coding.
55 * We use a compact representation with 1 byte per statistics bin,
56 * thus the numbers directly represent byte sizes.
57 * This 1 byte per statistics bin contains the meaning of the MPS
58 * (more probable symbol) in the highest bit (mask 0x80), and the
59 * index into the probability estimation state machine table
60 * in the lower bits (mask 0x7F).
63 #define DC_STAT_BINS 64
64 #define AC_STAT_BINS 256
66 /* NOTE: Uncomment the following #define if you want to use the
67 * given formula for calculating the AC conditioning parameter Kx
68 * for spectral selection progressive coding in section G.1.3.2
69 * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4).
70 * Although the spec and P&M authors claim that this "has proven
71 * to give good results for 8 bit precision samples", I'm not
72 * convinced yet that this is really beneficial.
73 * Early tests gave only very marginal compression enhancements
74 * (a few - around 5 or so - bytes even for very large files),
75 * which would turn out rather negative if we'd suppress the
76 * DAC (Define Arithmetic Conditioning) marker segments for
77 * the default parameters in the future.
78 * Note that currently the marker writing module emits 12-byte
79 * DAC segments for a full-component scan in a color image.
80 * This is not worth worrying about IMHO. However, since the
81 * spec defines the default values to be used if the tables
82 * are omitted (unlike Huffman tables, which are required
83 * anyway), one might optimize this behaviour in the future,
84 * and then it would be disadvantageous to use custom tables if
85 * they don't provide sufficient gain to exceed the DAC size.
87 * On the other hand, I'd consider it as a reasonable result
88 * that the conditioning has no significant influence on the
89 * compression performance. This means that the basic
90 * statistical model is already rather stable.
92 * Thus, at the moment, we use the default conditioning values
93 * anyway, and do not use the custom formula.
95 #define CALCULATE_SPECTRAL_CONDITIONING
98 /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
99 * We assume that int right shift is unsigned if INT32 right shift is,
100 * which should be safe.
103 #ifdef RIGHT_SHIFT_IS_UNSIGNED
104 #define ISHIFT_TEMPS int ishift_temp;
105 #define IRIGHT_SHIFT(x,shft) \
106 ((ishift_temp = (x)) < 0 ? \
107 (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
108 (ishift_temp >> (shft)))
109 #else
110 #define ISHIFT_TEMPS
111 #define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
112 #endif
115 LOCAL(void)
116 emit_byte (int val, j_compress_ptr cinfo)
117 /* Write next output byte; we do not support suspension in this module. */
119 struct jpeg_destination_mgr * dest = cinfo->dest;
121 *dest->next_output_byte++ = (JOCTET) val;
122 if (--dest->free_in_buffer == 0)
123 if (! (*dest->empty_output_buffer) (cinfo))
124 ERREXIT(cinfo, JERR_CANT_SUSPEND);
129 * Finish up at the end of an arithmetic-compressed scan.
132 METHODDEF(void)
133 finish_pass (j_compress_ptr cinfo)
135 arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
136 INT32 temp;
138 /* Section D.1.8: Termination of encoding */
140 /* Find the e->c in the coding interval with the largest
141 * number of trailing zero bits */
142 if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c)
143 e->c = temp + 0x8000L;
144 else
145 e->c = temp;
146 /* Send remaining bytes to output */
147 e->c <<= e->ct;
148 if (e->c & 0xF8000000L) {
149 /* One final overflow has to be handled */
150 if (e->buffer >= 0) {
151 if (e->zc)
152 do emit_byte(0x00, cinfo);
153 while (--e->zc);
154 emit_byte(e->buffer + 1, cinfo);
155 if (e->buffer + 1 == 0xFF)
156 emit_byte(0x00, cinfo);
158 e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */
159 e->sc = 0;
160 } else {
161 if (e->buffer == 0)
162 ++e->zc;
163 else if (e->buffer >= 0) {
164 if (e->zc)
165 do emit_byte(0x00, cinfo);
166 while (--e->zc);
167 emit_byte(e->buffer, cinfo);
169 if (e->sc) {
170 if (e->zc)
171 do emit_byte(0x00, cinfo);
172 while (--e->zc);
173 do {
174 emit_byte(0xFF, cinfo);
175 emit_byte(0x00, cinfo);
176 } while (--e->sc);
179 /* Output final bytes only if they are not 0x00 */
180 if (e->c & 0x7FFF800L) {
181 if (e->zc) /* output final pending zero bytes */
182 do emit_byte(0x00, cinfo);
183 while (--e->zc);
184 emit_byte((e->c >> 19) & 0xFF, cinfo);
185 if (((e->c >> 19) & 0xFF) == 0xFF)
186 emit_byte(0x00, cinfo);
187 if (e->c & 0x7F800L) {
188 emit_byte((e->c >> 11) & 0xFF, cinfo);
189 if (((e->c >> 11) & 0xFF) == 0xFF)
190 emit_byte(0x00, cinfo);
197 * The core arithmetic encoding routine (common in JPEG and JBIG).
198 * This needs to go as fast as possible.
199 * Machine-dependent optimization facilities
200 * are not utilized in this portable implementation.
201 * However, this code should be fairly efficient and
202 * may be a good base for further optimizations anyway.
204 * Parameter 'val' to be encoded may be 0 or 1 (binary decision).
206 * Note: I've added full "Pacman" termination support to the
207 * byte output routines, which is equivalent to the optional
208 * Discard_final_zeros procedure (Figure D.15) in the spec.
209 * Thus, we always produce the shortest possible output
210 * stream compliant to the spec (no trailing zero bytes,
211 * except for FF stuffing).
213 * I've also introduced a new scheme for accessing
214 * the probability estimation state machine table,
215 * derived from Markus Kuhn's JBIG implementation.
218 LOCAL(void)
219 arith_encode (j_compress_ptr cinfo, unsigned char *st, int val)
221 register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
222 register unsigned char nl, nm;
223 register INT32 qe, temp;
224 register int sv;
226 /* Fetch values from our compact representation of Table D.3(D.2):
227 * Qe values and probability estimation state machine
229 sv = *st;
230 qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */
231 nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */
232 nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */
234 /* Encode & estimation procedures per sections D.1.4 & D.1.5 */
235 e->a -= qe;
236 if (val != (sv >> 7)) {
237 /* Encode the less probable symbol */
238 if (e->a >= qe) {
239 /* If the interval size (qe) for the less probable symbol (LPS)
240 * is larger than the interval size for the MPS, then exchange
241 * the two symbols for coding efficiency, otherwise code the LPS
242 * as usual: */
243 e->c += e->a;
244 e->a = qe;
246 *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
247 } else {
248 /* Encode the more probable symbol */
249 if (e->a >= 0x8000L)
250 return; /* A >= 0x8000 -> ready, no renormalization required */
251 if (e->a < qe) {
252 /* If the interval size (qe) for the less probable symbol (LPS)
253 * is larger than the interval size for the MPS, then exchange
254 * the two symbols for coding efficiency: */
255 e->c += e->a;
256 e->a = qe;
258 *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
261 /* Renormalization & data output per section D.1.6 */
262 do {
263 e->a <<= 1;
264 e->c <<= 1;
265 if (--e->ct == 0) {
266 /* Another byte is ready for output */
267 temp = e->c >> 19;
268 if (temp > 0xFF) {
269 /* Handle overflow over all stacked 0xFF bytes */
270 if (e->buffer >= 0) {
271 if (e->zc)
272 do emit_byte(0x00, cinfo);
273 while (--e->zc);
274 emit_byte(e->buffer + 1, cinfo);
275 if (e->buffer + 1 == 0xFF)
276 emit_byte(0x00, cinfo);
278 e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */
279 e->sc = 0;
280 /* Note: The 3 spacer bits in the C register guarantee
281 * that the new buffer byte can't be 0xFF here
282 * (see page 160 in the P&M JPEG book). */
283 e->buffer = temp & 0xFF; /* new output byte, might overflow later */
284 } else if (temp == 0xFF) {
285 ++e->sc; /* stack 0xFF byte (which might overflow later) */
286 } else {
287 /* Output all stacked 0xFF bytes, they will not overflow any more */
288 if (e->buffer == 0)
289 ++e->zc;
290 else if (e->buffer >= 0) {
291 if (e->zc)
292 do emit_byte(0x00, cinfo);
293 while (--e->zc);
294 emit_byte(e->buffer, cinfo);
296 if (e->sc) {
297 if (e->zc)
298 do emit_byte(0x00, cinfo);
299 while (--e->zc);
300 do {
301 emit_byte(0xFF, cinfo);
302 emit_byte(0x00, cinfo);
303 } while (--e->sc);
305 e->buffer = temp & 0xFF; /* new output byte (can still overflow) */
307 e->c &= 0x7FFFFL;
308 e->ct += 8;
310 } while (e->a < 0x8000L);
315 * Emit a restart marker & resynchronize predictions.
318 LOCAL(void)
319 emit_restart (j_compress_ptr cinfo, int restart_num)
321 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
322 int ci;
323 jpeg_component_info * compptr;
325 finish_pass(cinfo);
327 emit_byte(0xFF, cinfo);
328 emit_byte(JPEG_RST0 + restart_num, cinfo);
330 /* Re-initialize statistics areas */
331 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
332 compptr = cinfo->cur_comp_info[ci];
333 /* DC needs no table for refinement scan */
334 if (cinfo->Ss == 0 && cinfo->Ah == 0) {
335 MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
336 /* Reset DC predictions to 0 */
337 entropy->last_dc_val[ci] = 0;
338 entropy->dc_context[ci] = 0;
340 /* AC needs no table when not present */
341 if (cinfo->Se) {
342 MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
346 /* Reset arithmetic encoding variables */
347 entropy->c = 0;
348 entropy->a = 0x10000L;
349 entropy->sc = 0;
350 entropy->zc = 0;
351 entropy->ct = 11;
352 entropy->buffer = -1; /* empty */
357 * MCU encoding for DC initial scan (either spectral selection,
358 * or first pass of successive approximation).
361 METHODDEF(boolean)
362 encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
364 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
365 JBLOCKROW block;
366 unsigned char *st;
367 int blkn, ci, tbl;
368 int v, v2, m;
369 ISHIFT_TEMPS
371 /* Emit restart marker if needed */
372 if (cinfo->restart_interval) {
373 if (entropy->restarts_to_go == 0) {
374 emit_restart(cinfo, entropy->next_restart_num);
375 entropy->restarts_to_go = cinfo->restart_interval;
376 entropy->next_restart_num++;
377 entropy->next_restart_num &= 7;
379 entropy->restarts_to_go--;
382 /* Encode the MCU data blocks */
383 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
384 block = MCU_data[blkn];
385 ci = cinfo->MCU_membership[blkn];
386 tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
388 /* Compute the DC value after the required point transform by Al.
389 * This is simply an arithmetic right shift.
391 m = IRIGHT_SHIFT((int) ((*block)[0]), cinfo->Al);
393 /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
395 /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
396 st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
398 /* Figure F.4: Encode_DC_DIFF */
399 if ((v = m - entropy->last_dc_val[ci]) == 0) {
400 arith_encode(cinfo, st, 0);
401 entropy->dc_context[ci] = 0; /* zero diff category */
402 } else {
403 entropy->last_dc_val[ci] = m;
404 arith_encode(cinfo, st, 1);
405 /* Figure F.6: Encoding nonzero value v */
406 /* Figure F.7: Encoding the sign of v */
407 if (v > 0) {
408 arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
409 st += 2; /* Table F.4: SP = S0 + 2 */
410 entropy->dc_context[ci] = 4; /* small positive diff category */
411 } else {
412 v = -v;
413 arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
414 st += 3; /* Table F.4: SN = S0 + 3 */
415 entropy->dc_context[ci] = 8; /* small negative diff category */
417 /* Figure F.8: Encoding the magnitude category of v */
418 m = 0;
419 if (v -= 1) {
420 arith_encode(cinfo, st, 1);
421 m = 1;
422 v2 = v;
423 st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
424 while (v2 >>= 1) {
425 arith_encode(cinfo, st, 1);
426 m <<= 1;
427 st += 1;
430 arith_encode(cinfo, st, 0);
431 /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
432 if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
433 entropy->dc_context[ci] = 0; /* zero diff category */
434 else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
435 entropy->dc_context[ci] += 8; /* large diff category */
436 /* Figure F.9: Encoding the magnitude bit pattern of v */
437 st += 14;
438 while (m >>= 1)
439 arith_encode(cinfo, st, (m & v) ? 1 : 0);
443 return TRUE;
448 * MCU encoding for AC initial scan (either spectral selection,
449 * or first pass of successive approximation).
452 METHODDEF(boolean)
453 encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
455 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
456 JBLOCKROW block;
457 unsigned char *st;
458 int tbl, k, ke;
459 int v, v2, m;
460 const int * natural_order;
462 /* Emit restart marker if needed */
463 if (cinfo->restart_interval) {
464 if (entropy->restarts_to_go == 0) {
465 emit_restart(cinfo, entropy->next_restart_num);
466 entropy->restarts_to_go = cinfo->restart_interval;
467 entropy->next_restart_num++;
468 entropy->next_restart_num &= 7;
470 entropy->restarts_to_go--;
473 natural_order = cinfo->natural_order;
475 /* Encode the MCU data block */
476 block = MCU_data[0];
477 tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
479 /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
481 /* Establish EOB (end-of-block) index */
482 ke = cinfo->Se;
483 do {
484 /* We must apply the point transform by Al. For AC coefficients this
485 * is an integer division with rounding towards 0. To do this portably
486 * in C, we shift after obtaining the absolute value.
488 if ((v = (*block)[natural_order[ke]]) >= 0) {
489 if (v >>= cinfo->Al) break;
490 } else {
491 v = -v;
492 if (v >>= cinfo->Al) break;
494 } while (--ke);
496 /* Figure F.5: Encode_AC_Coefficients */
497 for (k = cinfo->Ss - 1; k < ke;) {
498 st = entropy->ac_stats[tbl] + 3 * k;
499 arith_encode(cinfo, st, 0); /* EOB decision */
500 for (;;) {
501 if ((v = (*block)[natural_order[++k]]) >= 0) {
502 if (v >>= cinfo->Al) {
503 arith_encode(cinfo, st + 1, 1);
504 arith_encode(cinfo, entropy->fixed_bin, 0);
505 break;
507 } else {
508 v = -v;
509 if (v >>= cinfo->Al) {
510 arith_encode(cinfo, st + 1, 1);
511 arith_encode(cinfo, entropy->fixed_bin, 1);
512 break;
515 arith_encode(cinfo, st + 1, 0);
516 st += 3;
518 st += 2;
519 /* Figure F.8: Encoding the magnitude category of v */
520 m = 0;
521 if (v -= 1) {
522 arith_encode(cinfo, st, 1);
523 m = 1;
524 v2 = v;
525 if (v2 >>= 1) {
526 arith_encode(cinfo, st, 1);
527 m <<= 1;
528 st = entropy->ac_stats[tbl] +
529 (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
530 while (v2 >>= 1) {
531 arith_encode(cinfo, st, 1);
532 m <<= 1;
533 st += 1;
537 arith_encode(cinfo, st, 0);
538 /* Figure F.9: Encoding the magnitude bit pattern of v */
539 st += 14;
540 while (m >>= 1)
541 arith_encode(cinfo, st, (m & v) ? 1 : 0);
543 /* Encode EOB decision only if k < cinfo->Se */
544 if (k < cinfo->Se) {
545 st = entropy->ac_stats[tbl] + 3 * k;
546 arith_encode(cinfo, st, 1);
549 return TRUE;
554 * MCU encoding for DC successive approximation refinement scan.
557 METHODDEF(boolean)
558 encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
560 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
561 unsigned char *st;
562 int Al, blkn;
564 /* Emit restart marker if needed */
565 if (cinfo->restart_interval) {
566 if (entropy->restarts_to_go == 0) {
567 emit_restart(cinfo, entropy->next_restart_num);
568 entropy->restarts_to_go = cinfo->restart_interval;
569 entropy->next_restart_num++;
570 entropy->next_restart_num &= 7;
572 entropy->restarts_to_go--;
575 st = entropy->fixed_bin; /* use fixed probability estimation */
576 Al = cinfo->Al;
578 /* Encode the MCU data blocks */
579 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
580 /* We simply emit the Al'th bit of the DC coefficient value. */
581 arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1);
584 return TRUE;
589 * MCU encoding for AC successive approximation refinement scan.
592 METHODDEF(boolean)
593 encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
595 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
596 JBLOCKROW block;
597 unsigned char *st;
598 int tbl, k, ke, kex;
599 int v;
600 const int * natural_order;
602 /* Emit restart marker if needed */
603 if (cinfo->restart_interval) {
604 if (entropy->restarts_to_go == 0) {
605 emit_restart(cinfo, entropy->next_restart_num);
606 entropy->restarts_to_go = cinfo->restart_interval;
607 entropy->next_restart_num++;
608 entropy->next_restart_num &= 7;
610 entropy->restarts_to_go--;
613 natural_order = cinfo->natural_order;
615 /* Encode the MCU data block */
616 block = MCU_data[0];
617 tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
619 /* Section G.1.3.3: Encoding of AC coefficients */
621 /* Establish EOB (end-of-block) index */
622 ke = cinfo->Se;
623 do {
624 /* We must apply the point transform by Al. For AC coefficients this
625 * is an integer division with rounding towards 0. To do this portably
626 * in C, we shift after obtaining the absolute value.
628 if ((v = (*block)[natural_order[ke]]) >= 0) {
629 if (v >>= cinfo->Al) break;
630 } else {
631 v = -v;
632 if (v >>= cinfo->Al) break;
634 } while (--ke);
636 /* Establish EOBx (previous stage end-of-block) index */
637 for (kex = ke; kex > 0; kex--)
638 if ((v = (*block)[natural_order[kex]]) >= 0) {
639 if (v >>= cinfo->Ah) break;
640 } else {
641 v = -v;
642 if (v >>= cinfo->Ah) break;
645 /* Figure G.10: Encode_AC_Coefficients_SA */
646 for (k = cinfo->Ss - 1; k < ke;) {
647 st = entropy->ac_stats[tbl] + 3 * k;
648 if (k >= kex)
649 arith_encode(cinfo, st, 0); /* EOB decision */
650 for (;;) {
651 if ((v = (*block)[natural_order[++k]]) >= 0) {
652 if (v >>= cinfo->Al) {
653 if (v >> 1) /* previously nonzero coef */
654 arith_encode(cinfo, st + 2, (v & 1));
655 else { /* newly nonzero coef */
656 arith_encode(cinfo, st + 1, 1);
657 arith_encode(cinfo, entropy->fixed_bin, 0);
659 break;
661 } else {
662 v = -v;
663 if (v >>= cinfo->Al) {
664 if (v >> 1) /* previously nonzero coef */
665 arith_encode(cinfo, st + 2, (v & 1));
666 else { /* newly nonzero coef */
667 arith_encode(cinfo, st + 1, 1);
668 arith_encode(cinfo, entropy->fixed_bin, 1);
670 break;
673 arith_encode(cinfo, st + 1, 0);
674 st += 3;
677 /* Encode EOB decision only if k < cinfo->Se */
678 if (k < cinfo->Se) {
679 st = entropy->ac_stats[tbl] + 3 * k;
680 arith_encode(cinfo, st, 1);
683 return TRUE;
688 * Encode and output one MCU's worth of arithmetic-compressed coefficients.
691 METHODDEF(boolean)
692 encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
694 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
695 jpeg_component_info * compptr;
696 JBLOCKROW block;
697 unsigned char *st;
698 int blkn, ci, tbl, k, ke;
699 int v, v2, m;
700 const int * natural_order;
702 /* Emit restart marker if needed */
703 if (cinfo->restart_interval) {
704 if (entropy->restarts_to_go == 0) {
705 emit_restart(cinfo, entropy->next_restart_num);
706 entropy->restarts_to_go = cinfo->restart_interval;
707 entropy->next_restart_num++;
708 entropy->next_restart_num &= 7;
710 entropy->restarts_to_go--;
713 natural_order = cinfo->natural_order;
715 /* Encode the MCU data blocks */
716 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
717 block = MCU_data[blkn];
718 ci = cinfo->MCU_membership[blkn];
719 compptr = cinfo->cur_comp_info[ci];
721 /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
723 tbl = compptr->dc_tbl_no;
725 /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
726 st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
728 /* Figure F.4: Encode_DC_DIFF */
729 if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) {
730 arith_encode(cinfo, st, 0);
731 entropy->dc_context[ci] = 0; /* zero diff category */
732 } else {
733 entropy->last_dc_val[ci] = (*block)[0];
734 arith_encode(cinfo, st, 1);
735 /* Figure F.6: Encoding nonzero value v */
736 /* Figure F.7: Encoding the sign of v */
737 if (v > 0) {
738 arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
739 st += 2; /* Table F.4: SP = S0 + 2 */
740 entropy->dc_context[ci] = 4; /* small positive diff category */
741 } else {
742 v = -v;
743 arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
744 st += 3; /* Table F.4: SN = S0 + 3 */
745 entropy->dc_context[ci] = 8; /* small negative diff category */
747 /* Figure F.8: Encoding the magnitude category of v */
748 m = 0;
749 if (v -= 1) {
750 arith_encode(cinfo, st, 1);
751 m = 1;
752 v2 = v;
753 st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
754 while (v2 >>= 1) {
755 arith_encode(cinfo, st, 1);
756 m <<= 1;
757 st += 1;
760 arith_encode(cinfo, st, 0);
761 /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
762 if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
763 entropy->dc_context[ci] = 0; /* zero diff category */
764 else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
765 entropy->dc_context[ci] += 8; /* large diff category */
766 /* Figure F.9: Encoding the magnitude bit pattern of v */
767 st += 14;
768 while (m >>= 1)
769 arith_encode(cinfo, st, (m & v) ? 1 : 0);
772 /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
774 if ((ke = cinfo->lim_Se) == 0) continue;
775 tbl = compptr->ac_tbl_no;
777 /* Establish EOB (end-of-block) index */
778 do {
779 if ((*block)[natural_order[ke]]) break;
780 } while (--ke);
782 /* Figure F.5: Encode_AC_Coefficients */
783 for (k = 0; k < ke;) {
784 st = entropy->ac_stats[tbl] + 3 * k;
785 arith_encode(cinfo, st, 0); /* EOB decision */
786 while ((v = (*block)[natural_order[++k]]) == 0) {
787 arith_encode(cinfo, st + 1, 0);
788 st += 3;
790 arith_encode(cinfo, st + 1, 1);
791 /* Figure F.6: Encoding nonzero value v */
792 /* Figure F.7: Encoding the sign of v */
793 if (v > 0) {
794 arith_encode(cinfo, entropy->fixed_bin, 0);
795 } else {
796 v = -v;
797 arith_encode(cinfo, entropy->fixed_bin, 1);
799 st += 2;
800 /* Figure F.8: Encoding the magnitude category of v */
801 m = 0;
802 if (v -= 1) {
803 arith_encode(cinfo, st, 1);
804 m = 1;
805 v2 = v;
806 if (v2 >>= 1) {
807 arith_encode(cinfo, st, 1);
808 m <<= 1;
809 st = entropy->ac_stats[tbl] +
810 (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
811 while (v2 >>= 1) {
812 arith_encode(cinfo, st, 1);
813 m <<= 1;
814 st += 1;
818 arith_encode(cinfo, st, 0);
819 /* Figure F.9: Encoding the magnitude bit pattern of v */
820 st += 14;
821 while (m >>= 1)
822 arith_encode(cinfo, st, (m & v) ? 1 : 0);
824 /* Encode EOB decision only if k < cinfo->lim_Se */
825 if (k < cinfo->lim_Se) {
826 st = entropy->ac_stats[tbl] + 3 * k;
827 arith_encode(cinfo, st, 1);
831 return TRUE;
836 * Initialize for an arithmetic-compressed scan.
839 METHODDEF(void)
840 start_pass (j_compress_ptr cinfo, boolean gather_statistics)
842 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
843 int ci, tbl;
844 jpeg_component_info * compptr;
846 if (gather_statistics)
847 /* Make sure to avoid that in the master control logic!
848 * We are fully adaptive here and need no extra
849 * statistics gathering pass!
851 ERREXIT(cinfo, JERR_NOT_COMPILED);
853 /* We assume jcmaster.c already validated the progressive scan parameters. */
855 /* Select execution routines */
856 if (cinfo->progressive_mode) {
857 if (cinfo->Ah == 0) {
858 if (cinfo->Ss == 0)
859 entropy->pub.encode_mcu = encode_mcu_DC_first;
860 else
861 entropy->pub.encode_mcu = encode_mcu_AC_first;
862 } else {
863 if (cinfo->Ss == 0)
864 entropy->pub.encode_mcu = encode_mcu_DC_refine;
865 else
866 entropy->pub.encode_mcu = encode_mcu_AC_refine;
868 } else
869 entropy->pub.encode_mcu = encode_mcu;
871 /* Allocate & initialize requested statistics areas */
872 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
873 compptr = cinfo->cur_comp_info[ci];
874 /* DC needs no table for refinement scan */
875 if (cinfo->Ss == 0 && cinfo->Ah == 0) {
876 tbl = compptr->dc_tbl_no;
877 if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
878 ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
879 if (entropy->dc_stats[tbl] == NULL)
880 entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
881 ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
882 MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
883 /* Initialize DC predictions to 0 */
884 entropy->last_dc_val[ci] = 0;
885 entropy->dc_context[ci] = 0;
887 /* AC needs no table when not present */
888 if (cinfo->Se) {
889 tbl = compptr->ac_tbl_no;
890 if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
891 ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
892 if (entropy->ac_stats[tbl] == NULL)
893 entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
894 ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
895 MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
896 #ifdef CALCULATE_SPECTRAL_CONDITIONING
897 if (cinfo->progressive_mode)
898 /* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */
899 cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4);
900 #endif
904 /* Initialize arithmetic encoding variables */
905 entropy->c = 0;
906 entropy->a = 0x10000L;
907 entropy->sc = 0;
908 entropy->zc = 0;
909 entropy->ct = 11;
910 entropy->buffer = -1; /* empty */
912 /* Initialize restart stuff */
913 entropy->restarts_to_go = cinfo->restart_interval;
914 entropy->next_restart_num = 0;
919 * Module initialization routine for arithmetic entropy encoding.
922 GLOBAL(void)
923 jinit_arith_encoder (j_compress_ptr cinfo)
925 arith_entropy_ptr entropy;
926 int i;
928 entropy = (arith_entropy_ptr)
929 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
930 SIZEOF(arith_entropy_encoder));
931 cinfo->entropy = &entropy->pub;
932 entropy->pub.start_pass = start_pass;
933 entropy->pub.finish_pass = finish_pass;
935 /* Mark tables unallocated */
936 for (i = 0; i < NUM_ARITH_TBLS; i++) {
937 entropy->dc_stats[i] = NULL;
938 entropy->ac_stats[i] = NULL;
941 /* Initialize index for fixed probability estimation */
942 entropy->fixed_bin[0] = 113;