WIP: add an initial skeleton for a real scsi.device based upon the ata device impleme...
[AROS.git] / compiler / stdc / math / k_log.h
blob7303fd8cbff15b9163fedd0d3ae8c0657512066d
2 /* @(#)e_log.c 1.3 95/01/18 */
3 /*
4 * ====================================================
5 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
7 * Developed at SunSoft, a Sun Microsystems, Inc. business.
8 * Permission to use, copy, modify, and distribute this
9 * software is freely granted, provided that this notice
10 * is preserved.
11 * ====================================================
14 #ifndef lint
15 static char rcsid[] = "$FreeBSD: src/lib/msun/src/k_log.h,v 1.2 2011/10/15 05:23:28 das Exp $");
16 #endif
19 * k_log1p(f):
20 * Return log(1+f) - f for 1+f in ~[sqrt(2)/2, sqrt(2)].
22 * The following describes the overall strategy for computing
23 * logarithms in base e. The argument reduction and adding the final
24 * term of the polynomial are done by the caller for increased accuracy
25 * when different bases are used.
27 * Method :
28 * 1. Argument Reduction: find k and f such that
29 * x = 2^k * (1+f),
30 * where sqrt(2)/2 < 1+f < sqrt(2) .
32 * 2. Approximation of log(1+f).
33 * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
34 * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
35 * = 2s + s*R
36 * We use a special Reme algorithm on [0,0.1716] to generate
37 * a polynomial of degree 14 to approximate R The maximum error
38 * of this polynomial approximation is bounded by 2**-58.45. In
39 * other words,
40 * 2 4 6 8 10 12 14
41 * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
42 * (the values of Lg1 to Lg7 are listed in the program)
43 * and
44 * | 2 14 | -58.45
45 * | Lg1*s +...+Lg7*s - R(z) | <= 2
46 * | |
47 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
48 * In order to guarantee error in log below 1ulp, we compute log
49 * by
50 * log(1+f) = f - s*(f - R) (if f is not too large)
51 * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
53 * 3. Finally, log(x) = k*ln2 + log(1+f).
54 * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
55 * Here ln2 is split into two floating point number:
56 * ln2_hi + ln2_lo,
57 * where n*ln2_hi is always exact for |n| < 2000.
59 * Special cases:
60 * log(x) is NaN with signal if x < 0 (including -INF) ;
61 * log(+INF) is +INF; log(0) is -INF with signal;
62 * log(NaN) is that NaN with no signal.
64 * Accuracy:
65 * according to an error analysis, the error is always less than
66 * 1 ulp (unit in the last place).
68 * Constants:
69 * The hexadecimal values are the intended ones for the following
70 * constants. The decimal values may be used, provided that the
71 * compiler will convert from decimal to binary accurately enough
72 * to produce the hexadecimal values shown.
75 static const double
76 Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
77 Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
78 Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
79 Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
80 Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
81 Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
82 Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
85 * We always inline k_log1p(), since doing so produces a
86 * substantial performance improvement (~40% on amd64).
88 static inline double
89 k_log1p(double f)
91 double hfsq,s,z,R,w,t1,t2;
93 s = f/(2.0+f);
94 z = s*s;
95 w = z*z;
96 t1= w*(Lg2+w*(Lg4+w*Lg6));
97 t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
98 R = t2+t1;
99 hfsq=0.5*f*f;
100 return s*(hfsq+R);