1 /* $OpenBSD: e_expl.c,v 1.3 2013/11/12 20:35:18 martynas Exp $ */
4 * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 * Exponential function, 128-bit long double precision
27 * long double x, y, expl();
35 * Returns e (2.71828...) raised to the x power.
37 * Range reduction is accomplished by separating the argument
38 * into an integer k and fraction f such that
43 * A Pade' form of degree 2/3 is used to approximate exp(f) - 1
44 * in the basic range [-0.5 ln 2, 0.5 ln 2].
50 * arithmetic domain # trials peak rms
51 * IEEE +-MAXLOG 100,000 2.6e-34 8.6e-35
54 * Error amplification in the exponential function can be
55 * a serious matter. The error propagation involves
56 * exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ),
57 * which shows that a 1 lsb error in representing X produces
58 * a relative error of X times 1 lsb in the function.
59 * While the routine gives an accurate result for arguments
60 * that are exactly represented by a long double precision
61 * computer number, the result contains amplified roundoff
62 * error for large arguments not exactly represented.
67 * message condition value returned
68 * exp underflow x < MINLOG 0.0
69 * exp overflow x > MAXLOG MAXNUM
73 /* Exponential function */
78 #include "math_private.h"
80 /* Pade' coefficients for exp(x) - 1
81 Theoretical peak relative error = 2.2e-37,
82 relative peak error spread = 9.2e-38
84 static long double P
[5] = {
85 3.279723985560247033712687707263393506266E-10L,
86 6.141506007208645008909088812338454698548E-7L,
87 2.708775201978218837374512615596512792224E-4L,
88 3.508710990737834361215404761139478627390E-2L,
89 9.999999999999999999999999999999999998502E-1L
91 static long double Q
[6] = {
92 2.980756652081995192255342779918052538681E-12L,
93 1.771372078166251484503904874657985291164E-8L,
94 1.504792651814944826817779302637284053660E-5L,
95 3.611828913847589925056132680618007270344E-3L,
96 2.368408864814233538909747618894558968880E-1L,
97 2.000000000000000000000000000000000000150E0L
100 static const long double C1
= -6.93145751953125E-1L;
101 static const long double C2
= -1.428606820309417232121458176568075500134E-6L;
103 static const long double LOG2EL
= 1.442695040888963407359924681001892137426646L;
104 static const long double MAXLOGL
= 1.1356523406294143949491931077970764891253E4L
;
105 static const long double MINLOGL
= -1.143276959615573793352782661133116431383730e4L
;
106 static const long double huge
= 0x1p
10000L;
107 #if 0 /* XXX Prevent gcc from erroneously constant folding this. */
108 static const long double twom10000
= 0x1p
-10000L;
110 static const volatile long double twom10000
__attribute__ ((__section__(".rodata,\"a\" " SECTIONCOMMENT
))) = 0x1p
-10000L;
120 return (huge
*huge
); /* overflow */
123 return (twom10000
*twom10000
); /* underflow */
125 /* Express e**x = e**g 2**n
126 * = e**g e**( n loge(2) )
127 * = e**( g + n loge(2) )
129 px
= floorl( LOG2EL
* x
+ 0.5L ); /* floor() truncates toward -infinity. */
133 /* rational approximation for exponential
134 * of the fractional part:
135 * e**x = 1 + 2x P(x**2)/( Q(x**2) - P(x**2) )
138 px
= x
* __polevll( xx
, P
, 4 );
139 xx
= __polevll( xx
, Q
, 5 );