WIP: add an initial skeleton for a real scsi.device based upon the ata device impleme...
[AROS.git] / compiler / stdc / math / ld128 / e_expl.c
blob7fc44d7c293edc29b080bbbf63fdd9e58786a892
1 /* $OpenBSD: e_expl.c,v 1.3 2013/11/12 20:35:18 martynas Exp $ */
3 /*
4 * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 /* expl.c
21 * Exponential function, 128-bit long double precision
25 * SYNOPSIS:
27 * long double x, y, expl();
29 * y = expl( x );
33 * DESCRIPTION:
35 * Returns e (2.71828...) raised to the x power.
37 * Range reduction is accomplished by separating the argument
38 * into an integer k and fraction f such that
40 * x k f
41 * e = 2 e.
43 * A Pade' form of degree 2/3 is used to approximate exp(f) - 1
44 * in the basic range [-0.5 ln 2, 0.5 ln 2].
47 * ACCURACY:
49 * Relative error:
50 * arithmetic domain # trials peak rms
51 * IEEE +-MAXLOG 100,000 2.6e-34 8.6e-35
54 * Error amplification in the exponential function can be
55 * a serious matter. The error propagation involves
56 * exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ),
57 * which shows that a 1 lsb error in representing X produces
58 * a relative error of X times 1 lsb in the function.
59 * While the routine gives an accurate result for arguments
60 * that are exactly represented by a long double precision
61 * computer number, the result contains amplified roundoff
62 * error for large arguments not exactly represented.
65 * ERROR MESSAGES:
67 * message condition value returned
68 * exp underflow x < MINLOG 0.0
69 * exp overflow x > MAXLOG MAXNUM
73 /* Exponential function */
75 #include <float.h>
76 #include "math.h"
78 #include "math_private.h"
80 /* Pade' coefficients for exp(x) - 1
81 Theoretical peak relative error = 2.2e-37,
82 relative peak error spread = 9.2e-38
84 static long double P[5] = {
85 3.279723985560247033712687707263393506266E-10L,
86 6.141506007208645008909088812338454698548E-7L,
87 2.708775201978218837374512615596512792224E-4L,
88 3.508710990737834361215404761139478627390E-2L,
89 9.999999999999999999999999999999999998502E-1L
91 static long double Q[6] = {
92 2.980756652081995192255342779918052538681E-12L,
93 1.771372078166251484503904874657985291164E-8L,
94 1.504792651814944826817779302637284053660E-5L,
95 3.611828913847589925056132680618007270344E-3L,
96 2.368408864814233538909747618894558968880E-1L,
97 2.000000000000000000000000000000000000150E0L
99 /* C1 + C2 = ln 2 */
100 static const long double C1 = -6.93145751953125E-1L;
101 static const long double C2 = -1.428606820309417232121458176568075500134E-6L;
103 static const long double LOG2EL = 1.442695040888963407359924681001892137426646L;
104 static const long double MAXLOGL = 1.1356523406294143949491931077970764891253E4L;
105 static const long double MINLOGL = -1.143276959615573793352782661133116431383730e4L;
106 static const long double huge = 0x1p10000L;
107 #if 0 /* XXX Prevent gcc from erroneously constant folding this. */
108 static const long double twom10000 = 0x1p-10000L;
109 #else
110 static const volatile long double twom10000 __attribute__ ((__section__(".rodata,\"a\" " SECTIONCOMMENT))) = 0x1p-10000L;
111 #endif
113 long double
114 expl(long double x)
116 long double px, xx;
117 int n;
119 if( x > MAXLOGL)
120 return (huge*huge); /* overflow */
122 if( x < MINLOGL )
123 return (twom10000*twom10000); /* underflow */
125 /* Express e**x = e**g 2**n
126 * = e**g e**( n loge(2) )
127 * = e**( g + n loge(2) )
129 px = floorl( LOG2EL * x + 0.5L ); /* floor() truncates toward -infinity. */
130 n = px;
131 x += px * C1;
132 x += px * C2;
133 /* rational approximation for exponential
134 * of the fractional part:
135 * e**x = 1 + 2x P(x**2)/( Q(x**2) - P(x**2) )
137 xx = x * x;
138 px = x * __polevll( xx, P, 4 );
139 xx = __polevll( xx, Q, 5 );
140 x = px/( xx - px );
141 x = 1.0L + x + x;
143 x = ldexpl( x, n );
144 return(x);