WIP: add an initial skeleton for a real scsi.device based upon the ata device impleme...
[AROS.git] / compiler / stdc / math / ld128 / e_log10l.c
blob15bb5927c31a8c77136d254e9ab5d46511ba47f1
1 /* $OpenBSD: e_log10l.c,v 1.1 2011/07/06 00:02:42 martynas Exp $ */
3 /*
4 * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 /* log10l.c
21 * Common logarithm, 128-bit long double precision
25 * SYNOPSIS:
27 * long double x, y, log10l();
29 * y = log10l( x );
33 * DESCRIPTION:
35 * Returns the base 10 logarithm of x.
37 * The argument is separated into its exponent and fractional
38 * parts. If the exponent is between -1 and +1, the logarithm
39 * of the fraction is approximated by
41 * log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
43 * Otherwise, setting z = 2(x-1)/x+1),
45 * log(x) = z + z^3 P(z)/Q(z).
49 * ACCURACY:
51 * Relative error:
52 * arithmetic domain # trials peak rms
53 * IEEE 0.5, 2.0 30000 2.3e-34 4.9e-35
54 * IEEE exp(+-10000) 30000 1.0e-34 4.1e-35
56 * In the tests over the interval exp(+-10000), the logarithms
57 * of the random arguments were uniformly distributed over
58 * [-10000, +10000].
62 #include "math.h"
64 #include "math_private.h"
66 /* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
67 * 1/sqrt(2) <= x < sqrt(2)
68 * Theoretical peak relative error = 5.3e-37,
69 * relative peak error spread = 2.3e-14
71 static const long double P[13] =
73 1.313572404063446165910279910527789794488E4L,
74 7.771154681358524243729929227226708890930E4L,
75 2.014652742082537582487669938141683759923E5L,
76 3.007007295140399532324943111654767187848E5L,
77 2.854829159639697837788887080758954924001E5L,
78 1.797628303815655343403735250238293741397E5L,
79 7.594356839258970405033155585486712125861E4L,
80 2.128857716871515081352991964243375186031E4L,
81 3.824952356185897735160588078446136783779E3L,
82 4.114517881637811823002128927449878962058E2L,
83 2.321125933898420063925789532045674660756E1L,
84 4.998469661968096229986658302195402690910E-1L,
85 1.538612243596254322971797716843006400388E-6L
87 static const long double Q[12] =
89 3.940717212190338497730839731583397586124E4L,
90 2.626900195321832660448791748036714883242E5L,
91 7.777690340007566932935753241556479363645E5L,
92 1.347518538384329112529391120390701166528E6L,
93 1.514882452993549494932585972882995548426E6L,
94 1.158019977462989115839826904108208787040E6L,
95 6.132189329546557743179177159925690841200E5L,
96 2.248234257620569139969141618556349415120E5L,
97 5.605842085972455027590989944010492125825E4L,
98 9.147150349299596453976674231612674085381E3L,
99 9.104928120962988414618126155557301584078E2L,
100 4.839208193348159620282142911143429644326E1L
101 /* 1.000000000000000000000000000000000000000E0L, */
104 /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
105 * where z = 2(x-1)/(x+1)
106 * 1/sqrt(2) <= x < sqrt(2)
107 * Theoretical peak relative error = 1.1e-35,
108 * relative peak error spread 1.1e-9
110 static const long double R[6] =
112 1.418134209872192732479751274970992665513E5L,
113 -8.977257995689735303686582344659576526998E4L,
114 2.048819892795278657810231591630928516206E4L,
115 -2.024301798136027039250415126250455056397E3L,
116 8.057002716646055371965756206836056074715E1L,
117 -8.828896441624934385266096344596648080902E-1L
119 static const long double S[6] =
121 1.701761051846631278975701529965589676574E6L,
122 -1.332535117259762928288745111081235577029E6L,
123 4.001557694070773974936904547424676279307E5L,
124 -5.748542087379434595104154610899551484314E4L,
125 3.998526750980007367835804959888064681098E3L,
126 -1.186359407982897997337150403816839480438E2L
127 /* 1.000000000000000000000000000000000000000E0L, */
130 static const long double
131 /* log10(2) */
132 L102A = 0.3125L,
133 L102B = -1.14700043360188047862611052755069732318101185E-2L,
134 /* log10(e) */
135 L10EA = 0.5L,
136 L10EB = -6.570551809674817234887108108339491770560299E-2L,
137 /* sqrt(2)/2 */
138 SQRTH = 7.071067811865475244008443621048490392848359E-1L;
142 /* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */
144 static long double
145 neval (long double x, const long double *p, int n)
147 long double y;
149 p += n;
150 y = *p--;
153 y = y * x + *p--;
155 while (--n > 0);
156 return y;
160 /* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */
162 static long double
163 deval (long double x, const long double *p, int n)
165 long double y;
167 p += n;
168 y = x + *p--;
171 y = y * x + *p--;
173 while (--n > 0);
174 return y;
179 long double
180 log10l(long double x)
182 long double z;
183 long double y;
184 int e;
185 int64_t hx, lx;
187 /* Test for domain */
188 GET_LDOUBLE_WORDS64 (hx, lx, x);
189 if (((hx & 0x7fffffffffffffffLL) | lx) == 0)
190 return (-1.0L / (x - x));
191 if (hx < 0)
192 return (x - x) / (x - x);
193 if (hx >= 0x7fff000000000000LL)
194 return (x + x);
196 /* separate mantissa from exponent */
198 /* Note, frexp is used so that denormal numbers
199 * will be handled properly.
201 x = frexpl (x, &e);
204 /* logarithm using log(x) = z + z**3 P(z)/Q(z),
205 * where z = 2(x-1)/x+1)
207 if ((e > 2) || (e < -2))
209 if (x < SQRTH)
210 { /* 2( 2x-1 )/( 2x+1 ) */
211 e -= 1;
212 z = x - 0.5L;
213 y = 0.5L * z + 0.5L;
215 else
216 { /* 2 (x-1)/(x+1) */
217 z = x - 0.5L;
218 z -= 0.5L;
219 y = 0.5L * x + 0.5L;
221 x = z / y;
222 z = x * x;
223 y = x * (z * neval (z, R, 5) / deval (z, S, 5));
224 goto done;
228 /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
230 if (x < SQRTH)
232 e -= 1;
233 x = 2.0 * x - 1.0L; /* 2x - 1 */
235 else
237 x = x - 1.0L;
239 z = x * x;
240 y = x * (z * neval (x, P, 12) / deval (x, Q, 11));
241 y = y - 0.5 * z;
243 done:
245 /* Multiply log of fraction by log10(e)
246 * and base 2 exponent by log10(2).
248 z = y * L10EB;
249 z += x * L10EB;
250 z += e * L102B;
251 z += y * L10EA;
252 z += x * L10EA;
253 z += e * L102A;
254 return (z);