1 /* $OpenBSD: e_log10l.c,v 1.1 2011/07/06 00:02:42 martynas Exp $ */
4 * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 * Common logarithm, 128-bit long double precision
27 * long double x, y, log10l();
35 * Returns the base 10 logarithm of x.
37 * The argument is separated into its exponent and fractional
38 * parts. If the exponent is between -1 and +1, the logarithm
39 * of the fraction is approximated by
41 * log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
43 * Otherwise, setting z = 2(x-1)/x+1),
45 * log(x) = z + z^3 P(z)/Q(z).
52 * arithmetic domain # trials peak rms
53 * IEEE 0.5, 2.0 30000 2.3e-34 4.9e-35
54 * IEEE exp(+-10000) 30000 1.0e-34 4.1e-35
56 * In the tests over the interval exp(+-10000), the logarithms
57 * of the random arguments were uniformly distributed over
64 #include "math_private.h"
66 /* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
67 * 1/sqrt(2) <= x < sqrt(2)
68 * Theoretical peak relative error = 5.3e-37,
69 * relative peak error spread = 2.3e-14
71 static const long double P
[13] =
73 1.313572404063446165910279910527789794488E4L
,
74 7.771154681358524243729929227226708890930E4L
,
75 2.014652742082537582487669938141683759923E5L
,
76 3.007007295140399532324943111654767187848E5L
,
77 2.854829159639697837788887080758954924001E5L
,
78 1.797628303815655343403735250238293741397E5L
,
79 7.594356839258970405033155585486712125861E4L
,
80 2.128857716871515081352991964243375186031E4L
,
81 3.824952356185897735160588078446136783779E3L
,
82 4.114517881637811823002128927449878962058E2L
,
83 2.321125933898420063925789532045674660756E1L
,
84 4.998469661968096229986658302195402690910E-1L,
85 1.538612243596254322971797716843006400388E-6L
87 static const long double Q
[12] =
89 3.940717212190338497730839731583397586124E4L
,
90 2.626900195321832660448791748036714883242E5L
,
91 7.777690340007566932935753241556479363645E5L
,
92 1.347518538384329112529391120390701166528E6L
,
93 1.514882452993549494932585972882995548426E6L
,
94 1.158019977462989115839826904108208787040E6L
,
95 6.132189329546557743179177159925690841200E5L
,
96 2.248234257620569139969141618556349415120E5L
,
97 5.605842085972455027590989944010492125825E4L
,
98 9.147150349299596453976674231612674085381E3L
,
99 9.104928120962988414618126155557301584078E2L
,
100 4.839208193348159620282142911143429644326E1L
101 /* 1.000000000000000000000000000000000000000E0L, */
104 /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
105 * where z = 2(x-1)/(x+1)
106 * 1/sqrt(2) <= x < sqrt(2)
107 * Theoretical peak relative error = 1.1e-35,
108 * relative peak error spread 1.1e-9
110 static const long double R
[6] =
112 1.418134209872192732479751274970992665513E5L
,
113 -8.977257995689735303686582344659576526998E4L
,
114 2.048819892795278657810231591630928516206E4L
,
115 -2.024301798136027039250415126250455056397E3L
,
116 8.057002716646055371965756206836056074715E1L
,
117 -8.828896441624934385266096344596648080902E-1L
119 static const long double S
[6] =
121 1.701761051846631278975701529965589676574E6L
,
122 -1.332535117259762928288745111081235577029E6L
,
123 4.001557694070773974936904547424676279307E5L
,
124 -5.748542087379434595104154610899551484314E4L
,
125 3.998526750980007367835804959888064681098E3L
,
126 -1.186359407982897997337150403816839480438E2L
127 /* 1.000000000000000000000000000000000000000E0L, */
130 static const long double
133 L102B
= -1.14700043360188047862611052755069732318101185E-2L,
136 L10EB
= -6.570551809674817234887108108339491770560299E-2L,
138 SQRTH
= 7.071067811865475244008443621048490392848359E-1L;
142 /* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */
145 neval (long double x
, const long double *p
, int n
)
160 /* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */
163 deval (long double x
, const long double *p
, int n
)
180 log10l(long double x
)
187 /* Test for domain */
188 GET_LDOUBLE_WORDS64 (hx
, lx
, x
);
189 if (((hx
& 0x7fffffffffffffffLL
) | lx
) == 0)
190 return (-1.0L / (x
- x
));
192 return (x
- x
) / (x
- x
);
193 if (hx
>= 0x7fff000000000000LL
)
196 /* separate mantissa from exponent */
198 /* Note, frexp is used so that denormal numbers
199 * will be handled properly.
204 /* logarithm using log(x) = z + z**3 P(z)/Q(z),
205 * where z = 2(x-1)/x+1)
207 if ((e
> 2) || (e
< -2))
210 { /* 2( 2x-1 )/( 2x+1 ) */
216 { /* 2 (x-1)/(x+1) */
223 y
= x
* (z
* neval (z
, R
, 5) / deval (z
, S
, 5));
228 /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
233 x
= 2.0 * x
- 1.0L; /* 2x - 1 */
240 y
= x
* (z
* neval (x
, P
, 12) / deval (x
, Q
, 11));
245 /* Multiply log of fraction by log10(e)
246 * and base 2 exponent by log10(2).