WIP: add an initial skeleton for a real scsi.device based upon the ata device impleme...
[AROS.git] / compiler / stdc / math / ld128 / s_expm1l.c
blobcfc0441cfbef1f541929a788fba041d21032714d
1 /* $OpenBSD: s_expm1l.c,v 1.1 2011/07/06 00:02:42 martynas Exp $ */
3 /*
4 * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 /* expm1l.c
21 * Exponential function, minus 1
22 * 128-bit long double precision
26 * SYNOPSIS:
28 * long double x, y, expm1l();
30 * y = expm1l( x );
34 * DESCRIPTION:
36 * Returns e (2.71828...) raised to the x power, minus one.
38 * Range reduction is accomplished by separating the argument
39 * into an integer k and fraction f such that
41 * x k f
42 * e = 2 e.
44 * An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1
45 * in the basic range [-0.5 ln 2, 0.5 ln 2].
48 * ACCURACY:
50 * Relative error:
51 * arithmetic domain # trials peak rms
52 * IEEE -79,+MAXLOG 100,000 1.7e-34 4.5e-35
56 #include <errno.h>
57 #include "math.h"
59 #include "math_private.h"
61 /* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x)
62 -.5 ln 2 < x < .5 ln 2
63 Theoretical peak relative error = 8.1e-36 */
65 static const long double
66 P0 = 2.943520915569954073888921213330863757240E8L,
67 P1 = -5.722847283900608941516165725053359168840E7L,
68 P2 = 8.944630806357575461578107295909719817253E6L,
69 P3 = -7.212432713558031519943281748462837065308E5L,
70 P4 = 4.578962475841642634225390068461943438441E4L,
71 P5 = -1.716772506388927649032068540558788106762E3L,
72 P6 = 4.401308817383362136048032038528753151144E1L,
73 P7 = -4.888737542888633647784737721812546636240E-1L,
74 Q0 = 1.766112549341972444333352727998584753865E9L,
75 Q1 = -7.848989743695296475743081255027098295771E8L,
76 Q2 = 1.615869009634292424463780387327037251069E8L,
77 Q3 = -2.019684072836541751428967854947019415698E7L,
78 Q4 = 1.682912729190313538934190635536631941751E6L,
79 Q5 = -9.615511549171441430850103489315371768998E4L,
80 Q6 = 3.697714952261803935521187272204485251835E3L,
81 Q7 = -8.802340681794263968892934703309274564037E1L,
82 /* Q8 = 1.000000000000000000000000000000000000000E0 */
83 /* C1 + C2 = ln 2 */
85 C1 = 6.93145751953125E-1L,
86 C2 = 1.428606820309417232121458176568075500134E-6L,
87 /* ln (2^16384 * (1 - 2^-113)) */
88 maxlog = 1.1356523406294143949491931077970764891253E4L,
89 /* ln 2^-114 */
90 minarg = -7.9018778583833765273564461846232128760607E1L, big = 1e4932L;
93 long double
94 expm1l(long double x)
96 long double px, qx, xx;
97 int32_t ix, sign;
98 ieee_quad_shape_type u;
99 int k;
101 /* Detect infinity and NaN. */
102 u.value = x;
103 ix = u.parts32.mswhi;
104 sign = ix & 0x80000000;
105 ix &= 0x7fffffff;
106 if (ix >= 0x7fff0000)
108 /* Infinity. */
109 if (((ix & 0xffff) | u.parts32.mswlo | u.parts32.lswhi |
110 u.parts32.lswlo) == 0)
112 if (sign)
113 return -1.0L;
114 else
115 return x;
117 /* NaN. No invalid exception. */
118 return x;
121 /* expm1(+- 0) = +- 0. */
122 if ((ix == 0) && (u.parts32.mswlo | u.parts32.lswhi | u.parts32.lswlo) == 0)
123 return x;
125 /* Overflow. */
126 if (x > maxlog)
127 return (big * big);
129 /* Minimum value. */
130 if (x < minarg)
131 return (4.0/big - 1.0L);
133 /* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */
134 xx = C1 + C2; /* ln 2. */
135 px = floorl (0.5 + x / xx);
136 k = px;
137 /* remainder times ln 2 */
138 x -= px * C1;
139 x -= px * C2;
141 /* Approximate exp(remainder ln 2). */
142 px = (((((((P7 * x
143 + P6) * x
144 + P5) * x + P4) * x + P3) * x + P2) * x + P1) * x + P0) * x;
146 qx = (((((((x
147 + Q7) * x
148 + Q6) * x + Q5) * x + Q4) * x + Q3) * x + Q2) * x + Q1) * x + Q0;
150 xx = x * x;
151 qx = x + (0.5 * xx + xx * px / qx);
153 /* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2).
155 We have qx = exp(remainder ln 2) - 1, so
156 exp(x) - 1 = 2^k (qx + 1) - 1
157 = 2^k qx + 2^k - 1. */
159 px = ldexpl (1.0L, k);
160 x = px * qx + (px - 1.0);
161 return x;