WIP: add an initial skeleton for a real scsi.device based upon the ata device impleme...
[AROS.git] / compiler / stdc / math / ld128 / s_tanhl.c
blob78037a095351c6ae4b0e24f9ec8414a3638507a1
1 /* @(#)s_tanh.c 5.1 93/09/24 */
2 /*
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
9 * is preserved.
10 * ====================================================
14 * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
16 * Permission to use, copy, modify, and distribute this software for any
17 * purpose with or without fee is hereby granted, provided that the above
18 * copyright notice and this permission notice appear in all copies.
20 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
21 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
23 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
24 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
25 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
26 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
29 /* tanhl(x)
30 * Return the Hyperbolic Tangent of x
32 * Method :
33 * x -x
34 * e - e
35 * 0. tanhl(x) is defined to be -----------
36 * x -x
37 * e + e
38 * 1. reduce x to non-negative by tanhl(-x) = -tanhl(x).
39 * 2. 0 <= x <= 2**-57 : tanhl(x) := x*(one+x)
40 * -t
41 * 2**-57 < x <= 1 : tanhl(x) := -----; t = expm1l(-2x)
42 * t + 2
43 * 2
44 * 1 <= x <= 40.0 : tanhl(x) := 1- ----- ; t=expm1l(2x)
45 * t + 2
46 * 40.0 < x <= INF : tanhl(x) := 1.
48 * Special cases:
49 * tanhl(NaN) is NaN;
50 * only tanhl(0)=0 is exact for finite argument.
53 #include <openlibm_math.h>
55 #include "math_private.h"
57 static const long double one = 1.0, two = 2.0, tiny = 1.0e-4900L;
59 long double
60 tanhl(long double x)
62 long double t, z;
63 uint32_t jx, ix;
64 ieee_quad_shape_type u;
66 /* Words of |x|. */
67 u.value = x;
68 jx = u.parts32.mswhi;
69 ix = jx & 0x7fffffff;
70 /* x is INF or NaN */
71 if (ix >= 0x7fff0000)
73 /* for NaN it's not important which branch: tanhl(NaN) = NaN */
74 if (jx & 0x80000000)
75 return one / x - one; /* tanhl(-inf)= -1; */
76 else
77 return one / x + one; /* tanhl(+inf)=+1 */
80 /* |x| < 40 */
81 if (ix < 0x40044000)
83 if (u.value == 0)
84 return x; /* x == +- 0 */
85 if (ix < 0x3fc60000) /* |x| < 2^-57 */
86 return x * (one + tiny); /* tanh(small) = small */
87 u.parts32.mswhi = ix; /* Absolute value of x. */
88 if (ix >= 0x3fff0000)
89 { /* |x| >= 1 */
90 t = expm1l (two * u.value);
91 z = one - two / (t + two);
93 else
95 t = expm1l (-two * u.value);
96 z = -t / (t + two);
98 /* |x| > 40, return +-1 */
100 else
102 z = one - tiny; /* raised inexact flag */
104 return (jx & 0x80000000) ? -z : z;