2 * 3GPP AKA - Milenage algorithm (3GPP TS 35.205, .206, .207, .208)
3 * Copyright (c) 2006-2007 <j@w1.fi>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * Alternatively, this software may be distributed under the terms of BSD
12 * See README and COPYING for more details.
14 * This file implements an example authentication algorithm defined for 3GPP
15 * AKA. This can be used to implement a simple HLR/AuC into hlr_auc_gw to allow
16 * EAP-AKA to be tested properly with real USIM cards.
18 * This implementations assumes that the r1..r5 and c1..c5 constants defined in
19 * TS 35.206 are used, i.e., r1=64, r2=0, r3=32, r4=64, r5=96, c1=00..00,
20 * c2=00..01, c3=00..02, c4=00..04, c5=00..08. The block cipher is assumed to
27 #include "crypto/aes_wrap.h"
32 * milenage_f1 - Milenage f1 and f1* algorithms
33 * @opc: OPc = 128-bit value derived from OP and K
34 * @k: K = 128-bit subscriber key
35 * @_rand: RAND = 128-bit random challenge
36 * @sqn: SQN = 48-bit sequence number
37 * @amf: AMF = 16-bit authentication management field
38 * @mac_a: Buffer for MAC-A = 64-bit network authentication code, or %NULL
39 * @mac_s: Buffer for MAC-S = 64-bit resync authentication code, or %NULL
40 * Returns: 0 on success, -1 on failure
42 int milenage_f1(const u8
*opc
, const u8
*k
, const u8
*_rand
,
43 const u8
*sqn
, const u8
*amf
, u8
*mac_a
, u8
*mac_s
)
45 u8 tmp1
[16], tmp2
[16], tmp3
[16];
48 /* tmp1 = TEMP = E_K(RAND XOR OP_C) */
49 for (i
= 0; i
< 16; i
++)
50 tmp1
[i
] = _rand
[i
] ^ opc
[i
];
51 if (aes_128_encrypt_block(k
, tmp1
, tmp1
))
54 /* tmp2 = IN1 = SQN || AMF || SQN || AMF */
55 os_memcpy(tmp2
, sqn
, 6);
56 os_memcpy(tmp2
+ 6, amf
, 2);
57 os_memcpy(tmp2
+ 8, tmp2
, 8);
59 /* OUT1 = E_K(TEMP XOR rot(IN1 XOR OP_C, r1) XOR c1) XOR OP_C */
61 /* rotate (tmp2 XOR OP_C) by r1 (= 0x40 = 8 bytes) */
62 for (i
= 0; i
< 16; i
++)
63 tmp3
[(i
+ 8) % 16] = tmp2
[i
] ^ opc
[i
];
64 /* XOR with TEMP = E_K(RAND XOR OP_C) */
65 for (i
= 0; i
< 16; i
++)
67 /* XOR with c1 (= ..00, i.e., NOP) */
69 /* f1 || f1* = E_K(tmp3) XOR OP_c */
70 if (aes_128_encrypt_block(k
, tmp3
, tmp1
))
72 for (i
= 0; i
< 16; i
++)
75 os_memcpy(mac_a
, tmp1
, 8); /* f1 */
77 os_memcpy(mac_s
, tmp1
+ 8, 8); /* f1* */
83 * milenage_f2345 - Milenage f2, f3, f4, f5, f5* algorithms
84 * @opc: OPc = 128-bit value derived from OP and K
85 * @k: K = 128-bit subscriber key
86 * @_rand: RAND = 128-bit random challenge
87 * @res: Buffer for RES = 64-bit signed response (f2), or %NULL
88 * @ck: Buffer for CK = 128-bit confidentiality key (f3), or %NULL
89 * @ik: Buffer for IK = 128-bit integrity key (f4), or %NULL
90 * @ak: Buffer for AK = 48-bit anonymity key (f5), or %NULL
91 * @akstar: Buffer for AK = 48-bit anonymity key (f5*), or %NULL
92 * Returns: 0 on success, -1 on failure
94 int milenage_f2345(const u8
*opc
, const u8
*k
, const u8
*_rand
,
95 u8
*res
, u8
*ck
, u8
*ik
, u8
*ak
, u8
*akstar
)
97 u8 tmp1
[16], tmp2
[16], tmp3
[16];
100 /* tmp2 = TEMP = E_K(RAND XOR OP_C) */
101 for (i
= 0; i
< 16; i
++)
102 tmp1
[i
] = _rand
[i
] ^ opc
[i
];
103 if (aes_128_encrypt_block(k
, tmp1
, tmp2
))
106 /* OUT2 = E_K(rot(TEMP XOR OP_C, r2) XOR c2) XOR OP_C */
107 /* OUT3 = E_K(rot(TEMP XOR OP_C, r3) XOR c3) XOR OP_C */
108 /* OUT4 = E_K(rot(TEMP XOR OP_C, r4) XOR c4) XOR OP_C */
109 /* OUT5 = E_K(rot(TEMP XOR OP_C, r5) XOR c5) XOR OP_C */
112 /* rotate by r2 (= 0, i.e., NOP) */
113 for (i
= 0; i
< 16; i
++)
114 tmp1
[i
] = tmp2
[i
] ^ opc
[i
];
115 tmp1
[15] ^= 1; /* XOR c2 (= ..01) */
116 /* f5 || f2 = E_K(tmp1) XOR OP_c */
117 if (aes_128_encrypt_block(k
, tmp1
, tmp3
))
119 for (i
= 0; i
< 16; i
++)
122 os_memcpy(res
, tmp3
+ 8, 8); /* f2 */
124 os_memcpy(ak
, tmp3
, 6); /* f5 */
128 /* rotate by r3 = 0x20 = 4 bytes */
129 for (i
= 0; i
< 16; i
++)
130 tmp1
[(i
+ 12) % 16] = tmp2
[i
] ^ opc
[i
];
131 tmp1
[15] ^= 2; /* XOR c3 (= ..02) */
132 if (aes_128_encrypt_block(k
, tmp1
, ck
))
134 for (i
= 0; i
< 16; i
++)
140 /* rotate by r4 = 0x40 = 8 bytes */
141 for (i
= 0; i
< 16; i
++)
142 tmp1
[(i
+ 8) % 16] = tmp2
[i
] ^ opc
[i
];
143 tmp1
[15] ^= 4; /* XOR c4 (= ..04) */
144 if (aes_128_encrypt_block(k
, tmp1
, ik
))
146 for (i
= 0; i
< 16; i
++)
152 /* rotate by r5 = 0x60 = 12 bytes */
153 for (i
= 0; i
< 16; i
++)
154 tmp1
[(i
+ 4) % 16] = tmp2
[i
] ^ opc
[i
];
155 tmp1
[15] ^= 8; /* XOR c5 (= ..08) */
156 if (aes_128_encrypt_block(k
, tmp1
, tmp1
))
158 for (i
= 0; i
< 6; i
++)
159 akstar
[i
] = tmp1
[i
] ^ opc
[i
];
167 * milenage_generate - Generate AKA AUTN,IK,CK,RES
168 * @opc: OPc = 128-bit operator variant algorithm configuration field (encr.)
169 * @amf: AMF = 16-bit authentication management field
170 * @k: K = 128-bit subscriber key
171 * @sqn: SQN = 48-bit sequence number
172 * @_rand: RAND = 128-bit random challenge
173 * @autn: Buffer for AUTN = 128-bit authentication token
174 * @ik: Buffer for IK = 128-bit integrity key (f4), or %NULL
175 * @ck: Buffer for CK = 128-bit confidentiality key (f3), or %NULL
176 * @res: Buffer for RES = 64-bit signed response (f2), or %NULL
177 * @res_len: Max length for res; set to used length or 0 on failure
179 void milenage_generate(const u8
*opc
, const u8
*amf
, const u8
*k
,
180 const u8
*sqn
, const u8
*_rand
, u8
*autn
, u8
*ik
,
181 u8
*ck
, u8
*res
, size_t *res_len
)
190 if (milenage_f1(opc
, k
, _rand
, sqn
, amf
, mac_a
, NULL
) ||
191 milenage_f2345(opc
, k
, _rand
, res
, ck
, ik
, ak
, NULL
)) {
197 /* AUTN = (SQN ^ AK) || AMF || MAC */
198 for (i
= 0; i
< 6; i
++)
199 autn
[i
] = sqn
[i
] ^ ak
[i
];
200 os_memcpy(autn
+ 6, amf
, 2);
201 os_memcpy(autn
+ 8, mac_a
, 8);
206 * milenage_auts - Milenage AUTS validation
207 * @opc: OPc = 128-bit operator variant algorithm configuration field (encr.)
208 * @k: K = 128-bit subscriber key
209 * @_rand: RAND = 128-bit random challenge
210 * @auts: AUTS = 112-bit authentication token from client
211 * @sqn: Buffer for SQN = 48-bit sequence number
212 * Returns: 0 = success (sqn filled), -1 on failure
214 int milenage_auts(const u8
*opc
, const u8
*k
, const u8
*_rand
, const u8
*auts
,
217 u8 amf
[2] = { 0x00, 0x00 }; /* TS 33.102 v7.0.0, 6.3.3 */
221 if (milenage_f2345(opc
, k
, _rand
, NULL
, NULL
, NULL
, NULL
, ak
))
223 for (i
= 0; i
< 6; i
++)
224 sqn
[i
] = auts
[i
] ^ ak
[i
];
225 if (milenage_f1(opc
, k
, _rand
, sqn
, amf
, NULL
, mac_s
) ||
226 memcmp(mac_s
, auts
+ 6, 8) != 0)
233 * gsm_milenage - Generate GSM-Milenage (3GPP TS 55.205) authentication triplet
234 * @opc: OPc = 128-bit operator variant algorithm configuration field (encr.)
235 * @k: K = 128-bit subscriber key
236 * @_rand: RAND = 128-bit random challenge
237 * @sres: Buffer for SRES = 32-bit SRES
238 * @kc: Buffer for Kc = 64-bit Kc
239 * Returns: 0 on success, -1 on failure
241 int gsm_milenage(const u8
*opc
, const u8
*k
, const u8
*_rand
, u8
*sres
, u8
*kc
)
243 u8 res
[8], ck
[16], ik
[16];
246 if (milenage_f2345(opc
, k
, _rand
, res
, ck
, ik
, NULL
, NULL
))
249 for (i
= 0; i
< 8; i
++)
250 kc
[i
] = ck
[i
] ^ ck
[i
+ 8] ^ ik
[i
] ^ ik
[i
+ 8];
252 #ifdef GSM_MILENAGE_ALT_SRES
253 os_memcpy(sres
, res
, 4);
254 #else /* GSM_MILENAGE_ALT_SRES */
255 for (i
= 0; i
< 4; i
++)
256 sres
[i
] = res
[i
] ^ res
[i
+ 4];
257 #endif /* GSM_MILENAGE_ALT_SRES */
263 * milenage_generate - Generate AKA AUTN,IK,CK,RES
264 * @opc: OPc = 128-bit operator variant algorithm configuration field (encr.)
265 * @k: K = 128-bit subscriber key
266 * @sqn: SQN = 48-bit sequence number
267 * @_rand: RAND = 128-bit random challenge
268 * @autn: AUTN = 128-bit authentication token
269 * @ik: Buffer for IK = 128-bit integrity key (f4), or %NULL
270 * @ck: Buffer for CK = 128-bit confidentiality key (f3), or %NULL
271 * @res: Buffer for RES = 64-bit signed response (f2), or %NULL
272 * @res_len: Variable that will be set to RES length
273 * @auts: 112-bit buffer for AUTS
274 * Returns: 0 on success, -1 on failure, or -2 on synchronization failure
276 int milenage_check(const u8
*opc
, const u8
*k
, const u8
*sqn
, const u8
*_rand
,
277 const u8
*autn
, u8
*ik
, u8
*ck
, u8
*res
, size_t *res_len
,
281 u8 mac_a
[8], ak
[6], rx_sqn
[6];
284 wpa_hexdump(MSG_DEBUG
, "Milenage: AUTN", autn
, 16);
285 wpa_hexdump(MSG_DEBUG
, "Milenage: RAND", _rand
, 16);
287 if (milenage_f2345(opc
, k
, _rand
, res
, ck
, ik
, ak
, NULL
))
291 wpa_hexdump_key(MSG_DEBUG
, "Milenage: RES", res
, *res_len
);
292 wpa_hexdump_key(MSG_DEBUG
, "Milenage: CK", ck
, 16);
293 wpa_hexdump_key(MSG_DEBUG
, "Milenage: IK", ik
, 16);
294 wpa_hexdump_key(MSG_DEBUG
, "Milenage: AK", ak
, 6);
296 /* AUTN = (SQN ^ AK) || AMF || MAC */
297 for (i
= 0; i
< 6; i
++)
298 rx_sqn
[i
] = autn
[i
] ^ ak
[i
];
299 wpa_hexdump(MSG_DEBUG
, "Milenage: SQN", rx_sqn
, 6);
301 if (os_memcmp(rx_sqn
, sqn
, 6) <= 0) {
302 u8 auts_amf
[2] = { 0x00, 0x00 }; /* TS 33.102 v7.0.0, 6.3.3 */
303 if (milenage_f2345(opc
, k
, _rand
, NULL
, NULL
, NULL
, NULL
, ak
))
305 wpa_hexdump_key(MSG_DEBUG
, "Milenage: AK*", ak
, 6);
306 for (i
= 0; i
< 6; i
++)
307 auts
[i
] = sqn
[i
] ^ ak
[i
];
308 if (milenage_f1(opc
, k
, _rand
, sqn
, auts_amf
, NULL
, auts
+ 6))
310 wpa_hexdump(MSG_DEBUG
, "Milenage: AUTS", auts
, 14);
315 wpa_hexdump(MSG_DEBUG
, "Milenage: AMF", amf
, 2);
316 if (milenage_f1(opc
, k
, _rand
, rx_sqn
, amf
, mac_a
, NULL
))
319 wpa_hexdump(MSG_DEBUG
, "Milenage: MAC_A", mac_a
, 8);
321 if (os_memcmp(mac_a
, autn
+ 8, 8) != 0) {
322 wpa_printf(MSG_DEBUG
, "Milenage: MAC mismatch");
323 wpa_hexdump(MSG_DEBUG
, "Milenage: Received MAC_A",