List.mui: Update entries count prior to range change
[AROS.git] / workbench / network / WirelessManager / src / utils / radiotap.c
blob804473fa4bfb98ae3810791e7883b13e75dfdf89
1 /*
2 * Radiotap parser
4 * Copyright 2007 Andy Green <andy@warmcat.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * Alternatively, this software may be distributed under the terms of BSD
11 * license.
13 * See README and COPYING for more details.
16 * Modified for userspace by Johannes Berg <johannes@sipsolutions.net>
17 * I only modified some things on top to ease syncing should bugs be found.
20 #include "includes.h"
22 #include "common.h"
23 #include "radiotap_iter.h"
25 #define le16_to_cpu le_to_host16
26 #define le32_to_cpu le_to_host32
27 #define __le32 uint32_t
28 #define ulong unsigned long
29 #define unlikely(cond) (cond)
30 #define get_unaligned(p) \
31 ({ \
32 struct packed_dummy_struct { \
33 typeof(*(p)) __val; \
34 } __attribute__((packed)) *__ptr = (void *) (p); \
36 __ptr->__val; \
39 /* function prototypes and related defs are in radiotap_iter.h */
41 /**
42 * ieee80211_radiotap_iterator_init - radiotap parser iterator initialization
43 * @iterator: radiotap_iterator to initialize
44 * @radiotap_header: radiotap header to parse
45 * @max_length: total length we can parse into (eg, whole packet length)
47 * Returns: 0 or a negative error code if there is a problem.
49 * This function initializes an opaque iterator struct which can then
50 * be passed to ieee80211_radiotap_iterator_next() to visit every radiotap
51 * argument which is present in the header. It knows about extended
52 * present headers and handles them.
54 * How to use:
55 * call __ieee80211_radiotap_iterator_init() to init a semi-opaque iterator
56 * struct ieee80211_radiotap_iterator (no need to init the struct beforehand)
57 * checking for a good 0 return code. Then loop calling
58 * __ieee80211_radiotap_iterator_next()... it returns either 0,
59 * -ENOENT if there are no more args to parse, or -EINVAL if there is a problem.
60 * The iterator's @this_arg member points to the start of the argument
61 * associated with the current argument index that is present, which can be
62 * found in the iterator's @this_arg_index member. This arg index corresponds
63 * to the IEEE80211_RADIOTAP_... defines.
65 * Radiotap header length:
66 * You can find the CPU-endian total radiotap header length in
67 * iterator->max_length after executing ieee80211_radiotap_iterator_init()
68 * successfully.
70 * Alignment Gotcha:
71 * You must take care when dereferencing iterator.this_arg
72 * for multibyte types... the pointer is not aligned. Use
73 * get_unaligned((type *)iterator.this_arg) to dereference
74 * iterator.this_arg for type "type" safely on all arches.
76 * Example code:
77 * See Documentation/networking/radiotap-headers.txt
80 int ieee80211_radiotap_iterator_init(
81 struct ieee80211_radiotap_iterator *iterator,
82 struct ieee80211_radiotap_header *radiotap_header,
83 int max_length)
85 /* Linux only supports version 0 radiotap format */
86 if (radiotap_header->it_version)
87 return -EINVAL;
89 /* sanity check for allowed length and radiotap length field */
90 if (max_length < le16_to_cpu(get_unaligned(&radiotap_header->it_len)))
91 return -EINVAL;
93 iterator->rtheader = radiotap_header;
94 iterator->max_length = le16_to_cpu(get_unaligned(
95 &radiotap_header->it_len));
96 iterator->arg_index = 0;
97 iterator->bitmap_shifter = le32_to_cpu(get_unaligned(
98 &radiotap_header->it_present));
99 iterator->arg = (u8 *)radiotap_header + sizeof(*radiotap_header);
100 iterator->this_arg = NULL;
102 /* find payload start allowing for extended bitmap(s) */
104 if (unlikely(iterator->bitmap_shifter & (1<<IEEE80211_RADIOTAP_EXT))) {
105 while (le32_to_cpu(get_unaligned((__le32 *)iterator->arg)) &
106 (1<<IEEE80211_RADIOTAP_EXT)) {
107 iterator->arg += sizeof(u32);
110 * check for insanity where the present bitmaps
111 * keep claiming to extend up to or even beyond the
112 * stated radiotap header length
115 if (((ulong)iterator->arg - (ulong)iterator->rtheader)
116 > (ulong)iterator->max_length)
117 return -EINVAL;
120 iterator->arg += sizeof(u32);
123 * no need to check again for blowing past stated radiotap
124 * header length, because ieee80211_radiotap_iterator_next
125 * checks it before it is dereferenced
129 /* we are all initialized happily */
131 return 0;
136 * ieee80211_radiotap_iterator_next - return next radiotap parser iterator arg
137 * @iterator: radiotap_iterator to move to next arg (if any)
139 * Returns: 0 if there is an argument to handle,
140 * -ENOENT if there are no more args or -EINVAL
141 * if there is something else wrong.
143 * This function provides the next radiotap arg index (IEEE80211_RADIOTAP_*)
144 * in @this_arg_index and sets @this_arg to point to the
145 * payload for the field. It takes care of alignment handling and extended
146 * present fields. @this_arg can be changed by the caller (eg,
147 * incremented to move inside a compound argument like
148 * IEEE80211_RADIOTAP_CHANNEL). The args pointed to are in
149 * little-endian format whatever the endianess of your CPU.
151 * Alignment Gotcha:
152 * You must take care when dereferencing iterator.this_arg
153 * for multibyte types... the pointer is not aligned. Use
154 * get_unaligned((type *)iterator.this_arg) to dereference
155 * iterator.this_arg for type "type" safely on all arches.
158 int ieee80211_radiotap_iterator_next(
159 struct ieee80211_radiotap_iterator *iterator)
163 * small length lookup table for all radiotap types we heard of
164 * starting from b0 in the bitmap, so we can walk the payload
165 * area of the radiotap header
167 * There is a requirement to pad args, so that args
168 * of a given length must begin at a boundary of that length
169 * -- but note that compound args are allowed (eg, 2 x u16
170 * for IEEE80211_RADIOTAP_CHANNEL) so total arg length is not
171 * a reliable indicator of alignment requirement.
173 * upper nybble: content alignment for arg
174 * lower nybble: content length for arg
177 static const u8 rt_sizes[] = {
178 [IEEE80211_RADIOTAP_TSFT] = 0x88,
179 [IEEE80211_RADIOTAP_FLAGS] = 0x11,
180 [IEEE80211_RADIOTAP_RATE] = 0x11,
181 [IEEE80211_RADIOTAP_CHANNEL] = 0x24,
182 [IEEE80211_RADIOTAP_FHSS] = 0x22,
183 [IEEE80211_RADIOTAP_DBM_ANTSIGNAL] = 0x11,
184 [IEEE80211_RADIOTAP_DBM_ANTNOISE] = 0x11,
185 [IEEE80211_RADIOTAP_LOCK_QUALITY] = 0x22,
186 [IEEE80211_RADIOTAP_TX_ATTENUATION] = 0x22,
187 [IEEE80211_RADIOTAP_DB_TX_ATTENUATION] = 0x22,
188 [IEEE80211_RADIOTAP_DBM_TX_POWER] = 0x11,
189 [IEEE80211_RADIOTAP_ANTENNA] = 0x11,
190 [IEEE80211_RADIOTAP_DB_ANTSIGNAL] = 0x11,
191 [IEEE80211_RADIOTAP_DB_ANTNOISE] = 0x11,
192 [IEEE80211_RADIOTAP_RX_FLAGS] = 0x22,
193 [IEEE80211_RADIOTAP_TX_FLAGS] = 0x22,
194 [IEEE80211_RADIOTAP_RTS_RETRIES] = 0x11,
195 [IEEE80211_RADIOTAP_DATA_RETRIES] = 0x11,
197 * add more here as they are defined in
198 * include/net/ieee80211_radiotap.h
203 * for every radiotap entry we can at
204 * least skip (by knowing the length)...
207 while (iterator->arg_index < (int) sizeof(rt_sizes)) {
208 int hit = 0;
209 int pad;
211 if (!(iterator->bitmap_shifter & 1))
212 goto next_entry; /* arg not present */
215 * arg is present, account for alignment padding
216 * 8-bit args can be at any alignment
217 * 16-bit args must start on 16-bit boundary
218 * 32-bit args must start on 32-bit boundary
219 * 64-bit args must start on 64-bit boundary
221 * note that total arg size can differ from alignment of
222 * elements inside arg, so we use upper nybble of length
223 * table to base alignment on
225 * also note: these alignments are ** relative to the
226 * start of the radiotap header **. There is no guarantee
227 * that the radiotap header itself is aligned on any
228 * kind of boundary.
230 * the above is why get_unaligned() is used to dereference
231 * multibyte elements from the radiotap area
234 pad = (((ulong)iterator->arg) -
235 ((ulong)iterator->rtheader)) &
236 ((rt_sizes[iterator->arg_index] >> 4) - 1);
238 if (pad)
239 iterator->arg +=
240 (rt_sizes[iterator->arg_index] >> 4) - pad;
243 * this is what we will return to user, but we need to
244 * move on first so next call has something fresh to test
246 iterator->this_arg_index = iterator->arg_index;
247 iterator->this_arg = iterator->arg;
248 hit = 1;
250 /* internally move on the size of this arg */
251 iterator->arg += rt_sizes[iterator->arg_index] & 0x0f;
254 * check for insanity where we are given a bitmap that
255 * claims to have more arg content than the length of the
256 * radiotap section. We will normally end up equalling this
257 * max_length on the last arg, never exceeding it.
260 if (((ulong)iterator->arg - (ulong)iterator->rtheader) >
261 (ulong) iterator->max_length)
262 return -EINVAL;
264 next_entry:
265 iterator->arg_index++;
266 if (unlikely((iterator->arg_index & 31) == 0)) {
267 /* completed current u32 bitmap */
268 if (iterator->bitmap_shifter & 1) {
269 /* b31 was set, there is more */
270 /* move to next u32 bitmap */
271 iterator->bitmap_shifter = le32_to_cpu(
272 get_unaligned(iterator->next_bitmap));
273 iterator->next_bitmap++;
274 } else
275 /* no more bitmaps: end */
276 iterator->arg_index = sizeof(rt_sizes);
277 } else /* just try the next bit */
278 iterator->bitmap_shifter >>= 1;
280 /* if we found a valid arg earlier, return it now */
281 if (hit)
282 return 0;
285 /* we don't know how to handle any more args, we're done */
286 return -ENOENT;