Listtree.mcc: make creation of tree node symmetrical to other proxied operations
[AROS.git] / workbench / network / WirelessManager / src / crypto / sha256-internal.c
blobb0613739fbc65ebd16416345bec8925a29fb7b78
1 /*
2 * SHA-256 hash implementation and interface functions
3 * Copyright (c) 2003-2007, Jouni Malinen <j@w1.fi>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * Alternatively, this software may be distributed under the terms of BSD
10 * license.
12 * See README and COPYING for more details.
15 #include "includes.h"
17 #include "common.h"
18 #include "sha256.h"
19 #include "crypto.h"
21 struct sha256_state {
22 u64 length;
23 u32 state[8], curlen;
24 u8 buf[64];
27 static void sha256_init(struct sha256_state *md);
28 static int sha256_process(struct sha256_state *md, const unsigned char *in,
29 unsigned long inlen);
30 static int sha256_done(struct sha256_state *md, unsigned char *out);
33 /**
34 * sha256_vector - SHA256 hash for data vector
35 * @num_elem: Number of elements in the data vector
36 * @addr: Pointers to the data areas
37 * @len: Lengths of the data blocks
38 * @mac: Buffer for the hash
39 * Returns: 0 on success, -1 of failure
41 int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
42 u8 *mac)
44 struct sha256_state ctx;
45 size_t i;
47 sha256_init(&ctx);
48 for (i = 0; i < num_elem; i++)
49 if (sha256_process(&ctx, addr[i], len[i]))
50 return -1;
51 if (sha256_done(&ctx, mac))
52 return -1;
53 return 0;
57 /* ===== start - public domain SHA256 implementation ===== */
59 /* This is based on SHA256 implementation in LibTomCrypt that was released into
60 * public domain by Tom St Denis. */
62 /* the K array */
63 static const unsigned long K[64] = {
64 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL,
65 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL,
66 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL,
67 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
68 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL,
69 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL,
70 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL,
71 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
72 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL,
73 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL,
74 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL,
75 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
76 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
80 /* Various logical functions */
81 #define RORc(x, y) \
82 ( ((((unsigned long) (x) & 0xFFFFFFFFUL) >> (unsigned long) ((y) & 31)) | \
83 ((unsigned long) (x) << (unsigned long) (32 - ((y) & 31)))) & 0xFFFFFFFFUL)
84 #define Ch(x,y,z) (z ^ (x & (y ^ z)))
85 #define Maj(x,y,z) (((x | y) & z) | (x & y))
86 #define S(x, n) RORc((x), (n))
87 #define R(x, n) (((x)&0xFFFFFFFFUL)>>(n))
88 #define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22))
89 #define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25))
90 #define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3))
91 #define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10))
92 #ifndef MIN
93 #define MIN(x, y) (((x) < (y)) ? (x) : (y))
94 #endif
96 /* compress 512-bits */
97 static int sha256_compress(struct sha256_state *md, unsigned char *buf)
99 u32 S[8], W[64], t0, t1;
100 u32 t;
101 int i;
103 /* copy state into S */
104 for (i = 0; i < 8; i++) {
105 S[i] = md->state[i];
108 /* copy the state into 512-bits into W[0..15] */
109 for (i = 0; i < 16; i++)
110 W[i] = WPA_GET_BE32(buf + (4 * i));
112 /* fill W[16..63] */
113 for (i = 16; i < 64; i++) {
114 W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) +
115 W[i - 16];
118 /* Compress */
119 #define RND(a,b,c,d,e,f,g,h,i) \
120 t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; \
121 t1 = Sigma0(a) + Maj(a, b, c); \
122 d += t0; \
123 h = t0 + t1;
125 for (i = 0; i < 64; ++i) {
126 RND(S[0], S[1], S[2], S[3], S[4], S[5], S[6], S[7], i);
127 t = S[7]; S[7] = S[6]; S[6] = S[5]; S[5] = S[4];
128 S[4] = S[3]; S[3] = S[2]; S[2] = S[1]; S[1] = S[0]; S[0] = t;
131 /* feedback */
132 for (i = 0; i < 8; i++) {
133 md->state[i] = md->state[i] + S[i];
135 return 0;
139 /* Initialize the hash state */
140 static void sha256_init(struct sha256_state *md)
142 md->curlen = 0;
143 md->length = 0;
144 md->state[0] = 0x6A09E667UL;
145 md->state[1] = 0xBB67AE85UL;
146 md->state[2] = 0x3C6EF372UL;
147 md->state[3] = 0xA54FF53AUL;
148 md->state[4] = 0x510E527FUL;
149 md->state[5] = 0x9B05688CUL;
150 md->state[6] = 0x1F83D9ABUL;
151 md->state[7] = 0x5BE0CD19UL;
155 Process a block of memory though the hash
156 @param md The hash state
157 @param in The data to hash
158 @param inlen The length of the data (octets)
159 @return CRYPT_OK if successful
161 static int sha256_process(struct sha256_state *md, const unsigned char *in,
162 unsigned long inlen)
164 unsigned long n;
165 #define block_size 64
167 if (md->curlen > sizeof(md->buf))
168 return -1;
170 while (inlen > 0) {
171 if (md->curlen == 0 && inlen >= block_size) {
172 if (sha256_compress(md, (unsigned char *) in) < 0)
173 return -1;
174 md->length += block_size * 8;
175 in += block_size;
176 inlen -= block_size;
177 } else {
178 n = MIN(inlen, (block_size - md->curlen));
179 os_memcpy(md->buf + md->curlen, in, n);
180 md->curlen += n;
181 in += n;
182 inlen -= n;
183 if (md->curlen == block_size) {
184 if (sha256_compress(md, md->buf) < 0)
185 return -1;
186 md->length += 8 * block_size;
187 md->curlen = 0;
192 return 0;
197 Terminate the hash to get the digest
198 @param md The hash state
199 @param out [out] The destination of the hash (32 bytes)
200 @return CRYPT_OK if successful
202 static int sha256_done(struct sha256_state *md, unsigned char *out)
204 int i;
206 if (md->curlen >= sizeof(md->buf))
207 return -1;
209 /* increase the length of the message */
210 md->length += md->curlen * 8;
212 /* append the '1' bit */
213 md->buf[md->curlen++] = (unsigned char) 0x80;
215 /* if the length is currently above 56 bytes we append zeros
216 * then compress. Then we can fall back to padding zeros and length
217 * encoding like normal.
219 if (md->curlen > 56) {
220 while (md->curlen < 64) {
221 md->buf[md->curlen++] = (unsigned char) 0;
223 sha256_compress(md, md->buf);
224 md->curlen = 0;
227 /* pad upto 56 bytes of zeroes */
228 while (md->curlen < 56) {
229 md->buf[md->curlen++] = (unsigned char) 0;
232 /* store length */
233 WPA_PUT_BE64(md->buf + 56, md->length);
234 sha256_compress(md, md->buf);
236 /* copy output */
237 for (i = 0; i < 8; i++)
238 WPA_PUT_BE32(out + (4 * i), md->state[i]);
240 return 0;
243 /* ===== end - public domain SHA256 implementation ===== */