Fixed compatibility of output.
[AROS.git] / workbench / libs / mathtrans / spexp.c
blob4ddd28df1b28326d7d481e76fd7966901330e563
1 /*
2 Copyright © 1995-2003, The AROS Development Team. All rights reserved.
3 $Id$
4 */
6 #include "mathtrans_intern.h"
8 /*****************************************************************************
10 NAME */
12 AROS_LH1(float, SPExp,
14 /* SYNOPSIS */
15 AROS_LHA(float, fnum1, D0),
17 /* LOCATION */
18 struct Library *, MathTransBase, 13, MathTrans)
20 /* FUNCTION
21 Calculate e^x
23 INPUTS
25 RESULT
26 Motorola fast floating point number
28 flags:
29 zero : result is zero
30 negative : 0
31 overflow : the result was out of range for the ffp-format
33 BUGS
35 INTERNALS
36 e^(>= 44): return FFP_Pinfty;
38 *****************************************************************************/
40 AROS_LIBFUNC_INIT
42 const LONG ExpTable[] =
44 0x8fa1fe6f, /* e^32 */
45 0x87975e58, /* e^16 */
46 0xba4f534c, /* e^8 */
47 0xda648146, /* e^4 */
48 0xec732543, /* e^2 */
49 0xadf85442, /* e^1 */
50 0xD3094C41, /* e^(1/2) */
51 0xA45aF241, /* e^(1/4) */
52 0x910b0241, /* e^(1/8) */
53 0x88415b41, /* e^(1/16) */
54 0x84102b41, /* e^(1/32) */
55 0x82040541, /* e^(1/64) */
56 0x81010141, /* e^(1/128) */
57 0x80804041, /* e^(1/256) */
58 0x80401041, /* e^(1/512) */
59 0x80200441, /* e^(1/1024) */
60 0x80100141, /* e^(1/2048) */
61 0x80080041, /* e^(1/4096) */
62 0x80040041, /* e^(1/8192) */
63 0x80020041, /* e^(1/16384) */
64 0x80010041, /* e^(1/32768) */
65 0x80008041, /* e^(1/65536) */
66 0x80004041, /* e^(1/131072) */
67 0x80002041, /* e^(1/262144) */
68 0x80001041, /* e^(1/524288) */
69 0x80000841, /* e^(1/1048576) */
70 0x80000441, /* e^(1/2097152) */
71 0x80000241, /* e^(1/4194304) */
72 0x80000141 /* e^(1/8388608) */
75 ULONG Res, i;
76 LONG Mantisse;
77 char Exponent;
79 Exponent = (fnum1 & FFPExponent_Mask) - 0x41;
81 /* e^0 = 1, e^(2^(<=-24)) = 1 */
82 if ( 0 == fnum1 || Exponent <= -24 ) return one;
84 /* e^(>= 44) = overflow = infinity) */
85 if (Exponent > 5)
87 SetSR(Overflow_Bit, Zero_Bit | Negative_Bit | Overflow_Bit);
88 return FFP_Pinfty;
91 i = 5 - Exponent;
93 Mantisse = (fnum1 & FFPMantisse_Mask);
94 Res = ExpTable[i++];
95 Mantisse <<= 1;
97 while ( 0 != Mantisse && i <= 28 )
99 /* is the highest bit set? */
100 if ( Mantisse < 0 )
102 Res = SPMul(Res, ExpTable[i]);
103 if (0 == Res)
105 SetSR(Zero_Bit, Zero_Bit | Negative_Bit | Overflow_Bit);
106 return Res;
108 if (FFP_Pinfty == Res)
110 SetSR(Overflow_Bit, Zero_Bit | Negative_Bit | Overflow_Bit);
111 return Res;
114 i++;
115 Mantisse <<= 1;
118 if ( (char) fnum1 < 0) return SPDiv(one, Res);
120 return Res;
122 AROS_LIBFUNC_EXIT