2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2006 Atheros Communications, Inc.
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 #ifdef AH_SUPPORT_AR5211
23 * Chips specific device attachment and device info collection
24 * Connects Init Reg Vectors, EEPROM Data, and device Functions.
27 #include "ah_internal.h"
30 #include "ar5211/ar5211.h"
31 #include "ar5211/ar5211reg.h"
32 #include "ar5211/ar5211phy.h"
34 #include "ah_eeprom_v3.h"
36 /* Add static register initialization vectors */
37 #include "ar5211/boss.ini"
40 * Structure to hold 11b tuning information for Beanie/Sombrero
41 * 16 MHz mode, divider ratio = 198 = NP+S. N=16, S=4 or 6, P=12
44 uint32_t refClkSel
; /* reference clock, 1 for 16 MHz */
45 uint32_t channelSelect
; /* P[7:4]S[3:0] bits */
46 uint16_t channel5111
; /* 11a channel for 5111 */
49 #define CI_2GHZ_INDEX_CORRECTION 19
50 const static CHAN_INFO_2GHZ chan2GHzData
[] = {
51 { 1, 0x46, 96 }, /* 2312 -19 */
52 { 1, 0x46, 97 }, /* 2317 -18 */
53 { 1, 0x46, 98 }, /* 2322 -17 */
54 { 1, 0x46, 99 }, /* 2327 -16 */
55 { 1, 0x46, 100 }, /* 2332 -15 */
56 { 1, 0x46, 101 }, /* 2337 -14 */
57 { 1, 0x46, 102 }, /* 2342 -13 */
58 { 1, 0x46, 103 }, /* 2347 -12 */
59 { 1, 0x46, 104 }, /* 2352 -11 */
60 { 1, 0x46, 105 }, /* 2357 -10 */
61 { 1, 0x46, 106 }, /* 2362 -9 */
62 { 1, 0x46, 107 }, /* 2367 -8 */
63 { 1, 0x46, 108 }, /* 2372 -7 */
64 /* index -6 to 0 are pad to make this a nolookup table */
65 { 1, 0x46, 116 }, /* -6 */
66 { 1, 0x46, 116 }, /* -5 */
67 { 1, 0x46, 116 }, /* -4 */
68 { 1, 0x46, 116 }, /* -3 */
69 { 1, 0x46, 116 }, /* -2 */
70 { 1, 0x46, 116 }, /* -1 */
71 { 1, 0x46, 116 }, /* 0 */
72 { 1, 0x46, 116 }, /* 2412 1 */
73 { 1, 0x46, 117 }, /* 2417 2 */
74 { 1, 0x46, 118 }, /* 2422 3 */
75 { 1, 0x46, 119 }, /* 2427 4 */
76 { 1, 0x46, 120 }, /* 2432 5 */
77 { 1, 0x46, 121 }, /* 2437 6 */
78 { 1, 0x46, 122 }, /* 2442 7 */
79 { 1, 0x46, 123 }, /* 2447 8 */
80 { 1, 0x46, 124 }, /* 2452 9 */
81 { 1, 0x46, 125 }, /* 2457 10 */
82 { 1, 0x46, 126 }, /* 2462 11 */
83 { 1, 0x46, 127 }, /* 2467 12 */
84 { 1, 0x46, 128 }, /* 2472 13 */
85 { 1, 0x44, 124 }, /* 2484 14 */
86 { 1, 0x46, 136 }, /* 2512 15 */
87 { 1, 0x46, 140 }, /* 2532 16 */
88 { 1, 0x46, 144 }, /* 2552 17 */
89 { 1, 0x46, 148 }, /* 2572 18 */
90 { 1, 0x46, 152 }, /* 2592 19 */
91 { 1, 0x46, 156 }, /* 2612 20 */
92 { 1, 0x46, 160 }, /* 2632 21 */
93 { 1, 0x46, 164 }, /* 2652 22 */
94 { 1, 0x46, 168 }, /* 2672 23 */
95 { 1, 0x46, 172 }, /* 2692 24 */
96 { 1, 0x46, 176 }, /* 2712 25 */
97 { 1, 0x46, 180 } /* 2732 26 */
100 /* Power timeouts in usec to wait for chip to wake-up. */
101 #define POWER_UP_TIME 2000
103 #define DELAY_PLL_SETTLE 300 /* 300 us */
104 #define DELAY_BASE_ACTIVATE 100 /* 100 us */
108 static HAL_BOOL
ar5211SetResetReg(struct ath_hal
*ah
, uint32_t resetMask
);
109 static HAL_BOOL
ar5211SetChannel(struct ath_hal
*, HAL_CHANNEL_INTERNAL
*);
110 static int16_t ar5211RunNoiseFloor(struct ath_hal
*,
111 uint8_t runTime
, int16_t startingNF
);
112 static HAL_BOOL
ar5211IsNfGood(struct ath_hal
*, HAL_CHANNEL_INTERNAL
*chan
);
113 static HAL_BOOL
ar5211SetRf6and7(struct ath_hal
*, HAL_CHANNEL
*chan
);
114 static HAL_BOOL
ar5211SetBoardValues(struct ath_hal
*, HAL_CHANNEL
*chan
);
115 static void ar5211SetPowerTable(struct ath_hal
*,
116 PCDACS_EEPROM
*pSrcStruct
, uint16_t channel
);
117 static void ar5211SetRateTable(struct ath_hal
*,
118 RD_EDGES_POWER
*pRdEdgesPower
, TRGT_POWER_INFO
*pPowerInfo
,
119 uint16_t numChannels
, HAL_CHANNEL
*chan
);
120 static uint16_t ar5211GetScaledPower(uint16_t channel
, uint16_t pcdacValue
,
121 const PCDACS_EEPROM
*pSrcStruct
);
122 static HAL_BOOL
ar5211FindValueInList(uint16_t channel
, uint16_t pcdacValue
,
123 const PCDACS_EEPROM
*pSrcStruct
, uint16_t *powerValue
);
124 static uint16_t ar5211GetInterpolatedValue(uint16_t target
,
125 uint16_t srcLeft
, uint16_t srcRight
,
126 uint16_t targetLeft
, uint16_t targetRight
, HAL_BOOL scaleUp
);
127 static void ar5211GetLowerUpperValues(uint16_t value
,
128 const uint16_t *pList
, uint16_t listSize
,
129 uint16_t *pLowerValue
, uint16_t *pUpperValue
);
130 static void ar5211GetLowerUpperPcdacs(uint16_t pcdac
,
131 uint16_t channel
, const PCDACS_EEPROM
*pSrcStruct
,
132 uint16_t *pLowerPcdac
, uint16_t *pUpperPcdac
);
134 static void ar5211SetRfgain(struct ath_hal
*, const GAIN_VALUES
*);;
135 static void ar5211RequestRfgain(struct ath_hal
*);
136 static HAL_BOOL
ar5211InvalidGainReadback(struct ath_hal
*, GAIN_VALUES
*);
137 static HAL_BOOL
ar5211IsGainAdjustNeeded(struct ath_hal
*, const GAIN_VALUES
*);
138 static int32_t ar5211AdjustGain(struct ath_hal
*, GAIN_VALUES
*);
139 static void ar5211SetOperatingMode(struct ath_hal
*, int opmode
);
142 * Places the device in and out of reset and then places sane
143 * values in the registers based on EEPROM config, initialization
144 * vectors (as determined by the mode), and station configuration
146 * bChannelChange is used to preserve DMA/PCU registers across
147 * a HW Reset during channel change.
150 ar5211Reset(struct ath_hal
*ah
, HAL_OPMODE opmode
,
151 HAL_CHANNEL
*chan
, HAL_BOOL bChannelChange
, HAL_STATUS
*status
)
153 uint32_t softLedCfg
, softLedState
;
154 #define N(a) (sizeof (a) /sizeof (a[0]))
155 #define FAIL(_code) do { ecode = _code; goto bad; } while (0)
156 struct ath_hal_5211
*ahp
= AH5211(ah
);
157 HAL_CHANNEL_INTERNAL
*ichan
;
158 uint32_t i
, ledstate
;
162 uint32_t data
, synthDelay
;
164 uint16_t modesIndex
= 0, freqIndex
= 0;
165 uint32_t saveFrameSeqCount
[AR_NUM_DCU
];
166 uint32_t saveTsfLow
= 0, saveTsfHigh
= 0;
167 uint32_t saveDefAntenna
;
169 HALDEBUG(ah
, HAL_DEBUG_RESET
,
170 "%s: opmode %u channel %u/0x%x %s channel\n",
171 __func__
, opmode
, chan
->channel
, chan
->channelFlags
,
172 bChannelChange
? "change" : "same");
174 OS_MARK(ah
, AH_MARK_RESET
, bChannelChange
);
175 #define IS(_c,_f) (((_c)->channelFlags & _f) || 0)
176 if ((IS(chan
, CHANNEL_2GHZ
) ^ IS(chan
,CHANNEL_5GHZ
)) == 0) {
177 HALDEBUG(ah
, HAL_DEBUG_ANY
,
178 "%s: invalid channel %u/0x%x; not marked as 2GHz or 5GHz\n",
179 __func__
, chan
->channel
, chan
->channelFlags
);
182 if ((IS(chan
, CHANNEL_OFDM
) ^ IS(chan
, CHANNEL_CCK
)) == 0) {
183 HALDEBUG(ah
, HAL_DEBUG_ANY
,
184 "%s: invalid channel %u/0x%x; not marked as OFDM or CCK\n",
185 __func__
, chan
->channel
, chan
->channelFlags
);
190 * Map public channel to private.
192 ichan
= ath_hal_checkchannel(ah
, chan
);
193 if (ichan
== AH_NULL
) {
194 HALDEBUG(ah
, HAL_DEBUG_ANY
,
195 "%s: invalid channel %u/0x%x; no mapping\n",
196 __func__
, chan
->channel
, chan
->channelFlags
);
206 HALDEBUG(ah
, HAL_DEBUG_ANY
,
207 "%s: invalid operating mode %u\n", __func__
, opmode
);
211 HALASSERT(AH_PRIVATE(ah
)->ah_eeversion
>= AR_EEPROM_VER3
);
213 /* Preserve certain DMA hardware registers on a channel change */
214 if (bChannelChange
) {
216 * Need to save/restore the TSF because of an issue
217 * that accelerates the TSF during a chip reset.
219 * We could use system timer routines to more
220 * accurately restore the TSF, but
221 * 1. Timer routines on certain platforms are
222 * not accurate enough (e.g. 1 ms resolution).
223 * 2. It would still not be accurate.
225 * The most important aspect of this solution,
226 * is that, after reset, the TSF is behind
227 * other STAs TSFs. This will allow the STA to
228 * properly resynchronize its TSF in adhoc mode.
230 saveTsfLow
= OS_REG_READ(ah
, AR_TSF_L32
);
231 saveTsfHigh
= OS_REG_READ(ah
, AR_TSF_U32
);
233 /* Read frame sequence count */
234 if (AH_PRIVATE(ah
)->ah_macVersion
>= AR_SREV_VERSION_OAHU
) {
235 saveFrameSeqCount
[0] = OS_REG_READ(ah
, AR_D0_SEQNUM
);
237 for (i
= 0; i
< AR_NUM_DCU
; i
++)
238 saveFrameSeqCount
[i
] = OS_REG_READ(ah
, AR_DSEQNUM(i
));
240 if (!(ichan
->privFlags
& CHANNEL_DFS
))
241 ichan
->privFlags
&= ~CHANNEL_INTERFERENCE
;
242 chan
->channelFlags
= ichan
->channelFlags
;
243 chan
->privFlags
= ichan
->privFlags
;
247 * Preserve the antenna on a channel change
249 saveDefAntenna
= OS_REG_READ(ah
, AR_DEF_ANTENNA
);
250 if (saveDefAntenna
== 0)
253 /* Save hardware flag before chip reset clears the register */
254 macStaId1
= OS_REG_READ(ah
, AR_STA_ID1
) & AR_STA_ID1_BASE_RATE_11B
;
256 /* Save led state from pci config register */
257 ledstate
= OS_REG_READ(ah
, AR_PCICFG
) &
258 (AR_PCICFG_LEDCTL
| AR_PCICFG_LEDMODE
| AR_PCICFG_LEDBLINK
|
260 softLedCfg
= OS_REG_READ(ah
, AR_GPIOCR
);
261 softLedState
= OS_REG_READ(ah
, AR_GPIODO
);
263 if (!ar5211ChipReset(ah
, chan
->channelFlags
)) {
264 HALDEBUG(ah
, HAL_DEBUG_ANY
, "%s: chip reset failed\n", __func__
);
268 /* Setup the indices for the next set of register array writes */
269 switch (chan
->channelFlags
& CHANNEL_ALL
) {
287 /* Ah, a new wireless mode */
292 /* Set correct Baseband to analog shift setting to access analog chips. */
293 if (AH_PRIVATE(ah
)->ah_macVersion
>= AR_SREV_VERSION_OAHU
) {
294 OS_REG_WRITE(ah
, AR_PHY_BASE
, 0x00000007);
296 OS_REG_WRITE(ah
, AR_PHY_BASE
, 0x00000047);
299 /* Write parameters specific to AR5211 */
300 if (AH_PRIVATE(ah
)->ah_macVersion
>= AR_SREV_VERSION_OAHU
) {
301 if (IS_CHAN_2GHZ(chan
) &&
302 AH_PRIVATE(ah
)->ah_eeversion
>= AR_EEPROM_VER3_1
) {
303 HAL_EEPROM
*ee
= AH_PRIVATE(ah
)->ah_eeprom
;
304 uint32_t ob2GHz
, db2GHz
;
306 if (IS_CHAN_CCK(chan
)) {
307 ob2GHz
= ee
->ee_ob2GHz
[0];
308 db2GHz
= ee
->ee_db2GHz
[0];
310 ob2GHz
= ee
->ee_ob2GHz
[1];
311 db2GHz
= ee
->ee_db2GHz
[1];
313 ob2GHz
= ath_hal_reverseBits(ob2GHz
, 3);
314 db2GHz
= ath_hal_reverseBits(db2GHz
, 3);
315 ar5211Mode2_4
[25][freqIndex
] =
316 (ar5211Mode2_4
[25][freqIndex
] & ~0xC0) |
317 ((ob2GHz
<< 6) & 0xC0);
318 ar5211Mode2_4
[26][freqIndex
] =
319 (ar5211Mode2_4
[26][freqIndex
] & ~0x0F) |
320 (((ob2GHz
>> 2) & 0x1) |
321 ((db2GHz
<< 1) & 0x0E));
323 for (i
= 0; i
< N(ar5211Mode2_4
); i
++)
324 OS_REG_WRITE(ah
, ar5211Mode2_4
[i
][0],
325 ar5211Mode2_4
[i
][freqIndex
]);
328 /* Write the analog registers 6 and 7 before other config */
329 ar5211SetRf6and7(ah
, chan
);
331 /* Write registers that vary across all modes */
332 for (i
= 0; i
< N(ar5211Modes
); i
++)
333 OS_REG_WRITE(ah
, ar5211Modes
[i
][0], ar5211Modes
[i
][modesIndex
]);
335 /* Write RFGain Parameters that differ between 2.4 and 5 GHz */
336 for (i
= 0; i
< N(ar5211BB_RfGain
); i
++)
337 OS_REG_WRITE(ah
, ar5211BB_RfGain
[i
][0], ar5211BB_RfGain
[i
][freqIndex
]);
339 /* Write Common Array Parameters */
340 for (i
= 0; i
< N(ar5211Common
); i
++) {
341 uint32_t reg
= ar5211Common
[i
][0];
342 /* On channel change, don't reset the PCU registers */
343 if (!(bChannelChange
&& (0x8000 <= reg
&& reg
< 0x9000)))
344 OS_REG_WRITE(ah
, reg
, ar5211Common
[i
][1]);
347 /* Fix pre-AR5211 register values, this includes AR5311s. */
348 if (AH_PRIVATE(ah
)->ah_macVersion
< AR_SREV_VERSION_OAHU
) {
350 * The TX and RX latency values have changed locations
351 * within the USEC register in AR5211. Since they're
352 * set via the .ini, for both AR5211 and AR5311, they
353 * are written properly here for AR5311.
355 data
= OS_REG_READ(ah
, AR_USEC
);
356 /* Must be 0 for proper write in AR5311 */
357 HALASSERT((data
& 0x00700000) == 0);
358 OS_REG_WRITE(ah
, AR_USEC
,
359 (data
& (AR_USEC_M
| AR_USEC_32_M
| AR5311_USEC_TX_LAT_M
)) |
360 ((29 << AR5311_USEC_RX_LAT_S
) & AR5311_USEC_RX_LAT_M
));
361 /* The following registers exist only on AR5311. */
362 OS_REG_WRITE(ah
, AR5311_QDCLKGATE
, 0);
364 /* Set proper ADC & DAC delays for AR5311. */
365 OS_REG_WRITE(ah
, 0x00009878, 0x00000008);
367 /* Enable the PCU FIFO corruption ECO on AR5311. */
368 OS_REG_WRITE(ah
, AR_DIAG_SW
,
369 OS_REG_READ(ah
, AR_DIAG_SW
) | AR5311_DIAG_SW_USE_ECO
);
372 /* Restore certain DMA hardware registers on a channel change */
373 if (bChannelChange
) {
375 OS_REG_WRITE(ah
, AR_TSF_L32
, saveTsfLow
);
376 OS_REG_WRITE(ah
, AR_TSF_U32
, saveTsfHigh
);
378 if (AH_PRIVATE(ah
)->ah_macVersion
>= AR_SREV_VERSION_OAHU
) {
379 OS_REG_WRITE(ah
, AR_D0_SEQNUM
, saveFrameSeqCount
[0]);
381 for (i
= 0; i
< AR_NUM_DCU
; i
++)
382 OS_REG_WRITE(ah
, AR_DSEQNUM(i
), saveFrameSeqCount
[i
]);
386 OS_REG_WRITE(ah
, AR_STA_ID0
, LE_READ_4(ahp
->ah_macaddr
));
387 OS_REG_WRITE(ah
, AR_STA_ID1
, LE_READ_2(ahp
->ah_macaddr
+ 4)
390 ar5211SetOperatingMode(ah
, opmode
);
392 /* Restore previous led state */
393 OS_REG_WRITE(ah
, AR_PCICFG
, OS_REG_READ(ah
, AR_PCICFG
) | ledstate
);
394 OS_REG_WRITE(ah
, AR_GPIOCR
, softLedCfg
);
395 OS_REG_WRITE(ah
, AR_GPIODO
, softLedState
);
397 /* Restore previous antenna */
398 OS_REG_WRITE(ah
, AR_DEF_ANTENNA
, saveDefAntenna
);
400 OS_REG_WRITE(ah
, AR_BSS_ID0
, LE_READ_4(ahp
->ah_bssid
));
401 OS_REG_WRITE(ah
, AR_BSS_ID1
, LE_READ_2(ahp
->ah_bssid
+ 4));
403 /* Restore bmiss rssi & count thresholds */
404 OS_REG_WRITE(ah
, AR_RSSI_THR
, ahp
->ah_rssiThr
);
406 OS_REG_WRITE(ah
, AR_ISR
, ~0); /* cleared on write */
409 * for pre-Production Oahu only.
410 * Disable clock gating in all DMA blocks. Helps when using
411 * 11B and AES. This will result in higher power consumption.
413 if (AH_PRIVATE(ah
)->ah_macVersion
== AR_SREV_VERSION_OAHU
&&
414 AH_PRIVATE(ah
)->ah_macRev
< AR_SREV_OAHU_PROD
) {
415 OS_REG_WRITE(ah
, AR_CFG
,
416 OS_REG_READ(ah
, AR_CFG
) | AR_CFG_CLK_GATE_DIS
);
419 /* Setup the transmit power values. */
420 if (!ar5211SetTransmitPower(ah
, chan
)) {
421 HALDEBUG(ah
, HAL_DEBUG_ANY
,
422 "%s: error init'ing transmit power\n", __func__
);
427 * Configurable OFDM spoofing for 11n compatibility; used
428 * only when operating in station mode.
430 if (opmode
!= HAL_M_HOSTAP
&&
431 (AH_PRIVATE(ah
)->ah_11nCompat
& HAL_DIAG_11N_SERVICES
) != 0) {
432 /* NB: override the .ini setting */
433 OS_REG_RMW_FIELD(ah
, AR_PHY_FRAME_CTL
,
434 AR_PHY_FRAME_CTL_ERR_SERV
,
435 MS(AH_PRIVATE(ah
)->ah_11nCompat
, HAL_DIAG_11N_SERVICES
)&1);
438 /* Setup board specific options for EEPROM version 3 */
439 ar5211SetBoardValues(ah
, chan
);
441 if (!ar5211SetChannel(ah
, ichan
)) {
442 HALDEBUG(ah
, HAL_DEBUG_ANY
, "%s: unable to set channel\n",
447 /* Activate the PHY */
448 if (AH_PRIVATE(ah
)->ah_devid
== AR5211_FPGA11B
&& IS_CHAN_2GHZ(chan
))
449 OS_REG_WRITE(ah
, 0xd808, 0x502); /* required for FPGA */
450 OS_REG_WRITE(ah
, AR_PHY_ACTIVE
, AR_PHY_ACTIVE_EN
);
453 * Wait for the frequency synth to settle (synth goes on
454 * via AR_PHY_ACTIVE_EN). Read the phy active delay register.
455 * Value is in 100ns increments.
457 data
= OS_REG_READ(ah
, AR_PHY_RX_DELAY
) & AR_PHY_RX_DELAY_M
;
458 if (IS_CHAN_CCK(chan
)) {
459 synthDelay
= (4 * data
) / 22;
461 synthDelay
= data
/ 10;
464 * There is an issue if the AP starts the calibration before
465 * the baseband timeout completes. This could result in the
466 * rxclear false triggering. Add an extra delay to ensure this
467 * this does not happen.
469 OS_DELAY(synthDelay
+ DELAY_BASE_ACTIVATE
);
471 /* Calibrate the AGC and wait for completion. */
472 OS_REG_WRITE(ah
, AR_PHY_AGC_CONTROL
,
473 OS_REG_READ(ah
, AR_PHY_AGC_CONTROL
) | AR_PHY_AGC_CONTROL_CAL
);
474 (void) ath_hal_wait(ah
, AR_PHY_AGC_CONTROL
, AR_PHY_AGC_CONTROL_CAL
, 0);
476 /* Perform noise floor and set status */
477 if (!ar5211CalNoiseFloor(ah
, ichan
)) {
478 if (!IS_CHAN_CCK(chan
))
479 chan
->channelFlags
|= CHANNEL_CW_INT
;
480 HALDEBUG(ah
, HAL_DEBUG_ANY
,
481 "%s: noise floor calibration failed\n", __func__
);
485 /* Start IQ calibration w/ 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples */
486 if (ahp
->ah_calibrationTime
!= 0) {
487 OS_REG_WRITE(ah
, AR_PHY_TIMING_CTRL4
,
488 AR_PHY_TIMING_CTRL4_DO_IQCAL
| (INIT_IQCAL_LOG_COUNT_MAX
<< AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX_S
));
489 ahp
->ah_bIQCalibration
= AH_TRUE
;
492 /* set 1:1 QCU to DCU mapping for all queues */
493 for (q
= 0; q
< AR_NUM_DCU
; q
++)
494 OS_REG_WRITE(ah
, AR_DQCUMASK(q
), 1<<q
);
496 for (q
= 0; q
< HAL_NUM_TX_QUEUES
; q
++)
497 ar5211ResetTxQueue(ah
, q
);
499 /* Setup QCU0 transmit interrupt masks (TX_ERR, TX_OK, TX_DESC, TX_URN) */
500 OS_REG_WRITE(ah
, AR_IMR_S0
,
501 (AR_IMR_S0_QCU_TXOK
& AR_QCU_0
) |
502 (AR_IMR_S0_QCU_TXDESC
& (AR_QCU_0
<<AR_IMR_S0_QCU_TXDESC_S
)));
503 OS_REG_WRITE(ah
, AR_IMR_S1
, (AR_IMR_S1_QCU_TXERR
& AR_QCU_0
));
504 OS_REG_WRITE(ah
, AR_IMR_S2
, (AR_IMR_S2_QCU_TXURN
& AR_QCU_0
));
507 * GBL_EIFS must always be written after writing
508 * to any QCUMASK register.
510 OS_REG_WRITE(ah
, AR_D_GBL_IFS_EIFS
, OS_REG_READ(ah
, AR_D_GBL_IFS_EIFS
));
512 /* Now set up the Interrupt Mask Register and save it for future use */
513 OS_REG_WRITE(ah
, AR_IMR
, INIT_INTERRUPT_MASK
);
514 ahp
->ah_maskReg
= INIT_INTERRUPT_MASK
;
516 /* Enable bus error interrupts */
517 OS_REG_WRITE(ah
, AR_IMR_S2
, OS_REG_READ(ah
, AR_IMR_S2
) |
518 AR_IMR_S2_MCABT
| AR_IMR_S2_SSERR
| AR_IMR_S2_DPERR
);
520 /* Enable interrupts specific to AP */
521 if (opmode
== HAL_M_HOSTAP
) {
522 OS_REG_WRITE(ah
, AR_IMR
, OS_REG_READ(ah
, AR_IMR
) | AR_IMR_MIB
);
523 ahp
->ah_maskReg
|= AR_IMR_MIB
;
526 if (AH_PRIVATE(ah
)->ah_rfkillEnabled
)
527 ar5211EnableRfKill(ah
);
530 * Writing to AR_BEACON will start timers. Hence it should
531 * be the last register to be written. Do not reset tsf, do
532 * not enable beacons at this point, but preserve other values
533 * like beaconInterval.
535 OS_REG_WRITE(ah
, AR_BEACON
,
536 (OS_REG_READ(ah
, AR_BEACON
) &~ (AR_BEACON_EN
| AR_BEACON_RESET_TSF
)));
538 /* Restore user-specified slot time and timeouts */
539 if (ahp
->ah_sifstime
!= (u_int
) -1)
540 ar5211SetSifsTime(ah
, ahp
->ah_sifstime
);
541 if (ahp
->ah_slottime
!= (u_int
) -1)
542 ar5211SetSlotTime(ah
, ahp
->ah_slottime
);
543 if (ahp
->ah_acktimeout
!= (u_int
) -1)
544 ar5211SetAckTimeout(ah
, ahp
->ah_acktimeout
);
545 if (ahp
->ah_ctstimeout
!= (u_int
) -1)
546 ar5211SetCTSTimeout(ah
, ahp
->ah_ctstimeout
);
547 if (AH_PRIVATE(ah
)->ah_diagreg
!= 0)
548 OS_REG_WRITE(ah
, AR_DIAG_SW
, AH_PRIVATE(ah
)->ah_diagreg
);
550 AH_PRIVATE(ah
)->ah_opmode
= opmode
; /* record operating mode */
552 HALDEBUG(ah
, HAL_DEBUG_RESET
, "%s: done\n", __func__
);
564 * Places the PHY and Radio chips into reset. A full reset
565 * must be called to leave this state. The PCI/MAC/PCU are
566 * not placed into reset as we must receive interrupt to
567 * re-enable the hardware.
570 ar5211PhyDisable(struct ath_hal
*ah
)
572 return ar5211SetResetReg(ah
, AR_RC_BB
);
576 * Places all of hardware into reset
579 ar5211Disable(struct ath_hal
*ah
)
581 if (!ar5211SetPowerMode(ah
, HAL_PM_AWAKE
, AH_TRUE
))
584 * Reset the HW - PCI must be reset after the rest of the
585 * device has been reset.
587 if (!ar5211SetResetReg(ah
, AR_RC_MAC
| AR_RC_BB
| AR_RC_PCI
))
589 OS_DELAY(2100); /* 8245 @ 96Mhz hangs with 2000us. */
595 * Places the hardware into reset and then pulls it out of reset
597 * Only write the PLL if we're changing to or from CCK mode
599 * Attach calls with channelFlags = 0, as the coldreset should have
600 * us in the correct mode and we cannot check the hwchannel flags.
603 ar5211ChipReset(struct ath_hal
*ah
, uint16_t channelFlags
)
605 if (!ar5211SetPowerMode(ah
, HAL_PM_AWAKE
, AH_TRUE
))
608 /* Set CCK and Turbo modes correctly */
609 switch (channelFlags
& CHANNEL_ALL
) {
610 case CHANNEL_2GHZ
|CHANNEL_CCK
:
611 case CHANNEL_2GHZ
|CHANNEL_CCK
|CHANNEL_TURBO
:
612 OS_REG_WRITE(ah
, AR_PHY_TURBO
, 0);
613 OS_REG_WRITE(ah
, AR5211_PHY_MODE
,
614 AR5211_PHY_MODE_CCK
| AR5211_PHY_MODE_RF2GHZ
);
615 OS_REG_WRITE(ah
, AR_PHY_PLL_CTL
, AR_PHY_PLL_CTL_44
);
616 /* Wait for the PLL to settle */
617 OS_DELAY(DELAY_PLL_SETTLE
);
619 case CHANNEL_2GHZ
|CHANNEL_OFDM
:
620 case CHANNEL_2GHZ
|CHANNEL_OFDM
|CHANNEL_TURBO
:
621 OS_REG_WRITE(ah
, AR_PHY_TURBO
, 0);
622 if (AH_PRIVATE(ah
)->ah_devid
== AR5211_DEVID
) {
623 OS_REG_WRITE(ah
, AR_PHY_PLL_CTL
, AR_PHY_PLL_CTL_40
);
624 OS_DELAY(DELAY_PLL_SETTLE
);
625 OS_REG_WRITE(ah
, AR5211_PHY_MODE
,
626 AR5211_PHY_MODE_OFDM
| AR5211_PHY_MODE_RF2GHZ
);
631 if (channelFlags
& CHANNEL_TURBO
) {
632 OS_REG_WRITE(ah
, AR_PHY_TURBO
,
633 AR_PHY_FC_TURBO_MODE
| AR_PHY_FC_TURBO_SHORT
);
634 } else { /* 5 GHZ OFDM Mode */
635 OS_REG_WRITE(ah
, AR_PHY_TURBO
, 0);
637 if (AH_PRIVATE(ah
)->ah_devid
== AR5211_DEVID
) {
638 OS_REG_WRITE(ah
, AR_PHY_PLL_CTL
, AR_PHY_PLL_CTL_40
);
639 OS_DELAY(DELAY_PLL_SETTLE
);
640 OS_REG_WRITE(ah
, AR5211_PHY_MODE
,
641 AR5211_PHY_MODE_OFDM
| AR5211_PHY_MODE_RF5GHZ
);
645 /* NB: else no flags set - must be attach calling - do nothing */
648 * Reset the HW - PCI must be reset after the rest of the
649 * device has been reset
651 if (!ar5211SetResetReg(ah
, AR_RC_MAC
| AR_RC_BB
| AR_RC_PCI
))
653 OS_DELAY(2100); /* 8245 @ 96Mhz hangs with 2000us. */
655 /* Bring out of sleep mode (AGAIN) */
656 if (!ar5211SetPowerMode(ah
, HAL_PM_AWAKE
, AH_TRUE
))
659 /* Clear warm reset register */
660 return ar5211SetResetReg(ah
, 0);
664 * Recalibrate the lower PHY chips to account for temperature/environment
668 ar5211PerCalibration(struct ath_hal
*ah
, HAL_CHANNEL
*chan
, HAL_BOOL
*isIQdone
)
670 struct ath_hal_5211
*ahp
= AH5211(ah
);
671 HAL_CHANNEL_INTERNAL
*ichan
;
672 int32_t qCoff
, qCoffDenom
;
675 int32_t iCoff
, iCoffDenom
;
676 uint32_t powerMeasQ
, powerMeasI
;
678 ichan
= ath_hal_checkchannel(ah
, chan
);
679 if (ichan
== AH_NULL
) {
680 HALDEBUG(ah
, HAL_DEBUG_ANY
,
681 "%s: invalid channel %u/0x%x; no mapping\n",
682 __func__
, chan
->channel
, chan
->channelFlags
);
685 /* IQ calibration in progress. Check to see if it has finished. */
686 if (ahp
->ah_bIQCalibration
&&
687 !(OS_REG_READ(ah
, AR_PHY_TIMING_CTRL4
) & AR_PHY_TIMING_CTRL4_DO_IQCAL
)) {
688 /* IQ Calibration has finished. */
689 ahp
->ah_bIQCalibration
= AH_FALSE
;
691 /* Read calibration results. */
692 powerMeasI
= OS_REG_READ(ah
, AR_PHY_IQCAL_RES_PWR_MEAS_I
);
693 powerMeasQ
= OS_REG_READ(ah
, AR_PHY_IQCAL_RES_PWR_MEAS_Q
);
694 iqCorrMeas
= OS_REG_READ(ah
, AR_PHY_IQCAL_RES_IQ_CORR_MEAS
);
697 * Prescale these values to remove 64-bit operation requirement at the loss
698 * of a little precision.
700 iCoffDenom
= (powerMeasI
/ 2 + powerMeasQ
/ 2) / 128;
701 qCoffDenom
= powerMeasQ
/ 64;
703 /* Protect against divide-by-0. */
704 if (iCoffDenom
!= 0 && qCoffDenom
!= 0) {
705 iCoff
= (-iqCorrMeas
) / iCoffDenom
;
706 /* IQCORR_Q_I_COFF is a signed 6 bit number */
707 iCoff
= iCoff
& 0x3f;
709 qCoff
= ((int32_t)powerMeasI
/ qCoffDenom
) - 64;
710 /* IQCORR_Q_Q_COFF is a signed 5 bit number */
711 qCoff
= qCoff
& 0x1f;
713 HALDEBUG(ah
, HAL_DEBUG_PERCAL
, "powerMeasI = 0x%08x\n",
715 HALDEBUG(ah
, HAL_DEBUG_PERCAL
, "powerMeasQ = 0x%08x\n",
717 HALDEBUG(ah
, HAL_DEBUG_PERCAL
, "iqCorrMeas = 0x%08x\n",
719 HALDEBUG(ah
, HAL_DEBUG_PERCAL
, "iCoff = %d\n",
721 HALDEBUG(ah
, HAL_DEBUG_PERCAL
, "qCoff = %d\n",
725 data
= OS_REG_READ(ah
, AR_PHY_TIMING_CTRL4
) |
726 AR_PHY_TIMING_CTRL4_IQCORR_ENABLE
|
727 (((uint32_t)iCoff
) << AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF_S
) |
729 OS_REG_WRITE(ah
, AR_PHY_TIMING_CTRL4
, data
);
733 /* Perform noise floor and set status */
734 if (!ar5211IsNfGood(ah
, ichan
)) {
735 /* report up and clear internal state */
736 chan
->channelFlags
|= CHANNEL_CW_INT
;
737 ichan
->channelFlags
&= ~CHANNEL_CW_INT
;
740 if (!ar5211CalNoiseFloor(ah
, ichan
)) {
742 * Delay 5ms before retrying the noise floor
743 * just to make sure, as we are in an error
747 if (!ar5211CalNoiseFloor(ah
, ichan
)) {
748 if (!IS_CHAN_CCK(chan
))
749 chan
->channelFlags
|= CHANNEL_CW_INT
;
754 ar5211RequestRfgain(ah
);
755 *isIQdone
= !ahp
->ah_bIQCalibration
;
761 * Writes the given reset bit mask into the reset register
764 ar5211SetResetReg(struct ath_hal
*ah
, uint32_t resetMask
)
766 uint32_t mask
= resetMask
? resetMask
: ~0;
769 (void) OS_REG_READ(ah
, AR_RXDP
);/* flush any pending MMR writes */
770 OS_REG_WRITE(ah
, AR_RC
, resetMask
);
772 /* need to wait at least 128 clocks when reseting PCI before read */
775 resetMask
&= AR_RC_MAC
| AR_RC_BB
;
776 mask
&= AR_RC_MAC
| AR_RC_BB
;
777 rt
= ath_hal_wait(ah
, AR_RC
, mask
, resetMask
);
778 if ((resetMask
& AR_RC_MAC
) == 0) {
781 * Set CFG, little-endian for register
782 * and descriptor accesses.
784 mask
= INIT_CONFIG_STATUS
|
785 AR_CFG_SWTD
| AR_CFG_SWRD
| AR_CFG_SWRG
;
786 OS_REG_WRITE(ah
, AR_CFG
, LE_READ_4(&mask
));
788 OS_REG_WRITE(ah
, AR_CFG
, INIT_CONFIG_STATUS
);
794 * Takes the MHz channel value and sets the Channel value
796 * ASSUMES: Writes enabled to analog bus before AGC is active
797 * or by disabling the AGC.
800 ar5211SetChannel(struct ath_hal
*ah
, HAL_CHANNEL_INTERNAL
*chan
)
802 uint32_t refClk
, reg32
, data2111
;
803 int16_t chan5111
, chanIEEE
;
805 chanIEEE
= ath_hal_mhz2ieee(ah
, chan
->channel
, chan
->channelFlags
);
806 if (IS_CHAN_2GHZ(chan
)) {
807 const CHAN_INFO_2GHZ
* ci
=
808 &chan2GHzData
[chanIEEE
+ CI_2GHZ_INDEX_CORRECTION
];
810 data2111
= ((ath_hal_reverseBits(ci
->channelSelect
, 8) & 0xff)
812 | (ci
->refClkSel
<< 4);
813 chan5111
= ci
->channel5111
;
819 /* Rest of the code is common for 5 GHz and 2.4 GHz. */
820 if (chan5111
>= 145 || (chan5111
& 0x1)) {
821 reg32
= ath_hal_reverseBits(chan5111
- 24, 8) & 0xFF;
824 reg32
= ath_hal_reverseBits(((chan5111
- 24) / 2), 8) & 0xFF;
828 reg32
= (reg32
<< 2) | (refClk
<< 1) | (1 << 10) | 0x1;
829 OS_REG_WRITE(ah
, AR_PHY(0x27), ((data2111
& 0xff) << 8) | (reg32
& 0xff));
831 OS_REG_WRITE(ah
, AR_PHY(0x34), (data2111
& 0xff00) | (reg32
& 0xff));
833 AH_PRIVATE(ah
)->ah_curchan
= chan
;
838 ar5211GetNoiseFloor(struct ath_hal
*ah
)
842 nf
= (OS_REG_READ(ah
, AR_PHY(25)) >> 19) & 0x1ff;
844 nf
= 0 - ((nf
^ 0x1ff) + 1);
849 * Peform the noisefloor calibration for the length of time set
850 * in runTime (valid values 1 to 7)
852 * Returns: The NF value at the end of the given time (or 0 for failure)
855 ar5211RunNoiseFloor(struct ath_hal
*ah
, uint8_t runTime
, int16_t startingNF
)
859 HALASSERT(runTime
<= 7);
861 /* Setup noise floor run time and starting value */
862 OS_REG_WRITE(ah
, AR_PHY(25),
863 (OS_REG_READ(ah
, AR_PHY(25)) & ~0xFFF) |
864 ((runTime
<< 9) & 0xE00) | (startingNF
& 0x1FF));
865 /* Calibrate the noise floor */
866 OS_REG_WRITE(ah
, AR_PHY_AGC_CONTROL
,
867 OS_REG_READ(ah
, AR_PHY_AGC_CONTROL
) | AR_PHY_AGC_CONTROL_NF
);
869 /* Compute the required amount of searchTime needed to finish NF */
871 /* 8 search windows * 6.4us each */
874 /* 512 * runtime search windows * 6.4us each */
875 searchTime
= (runTime
* 512) * 7;
879 * Do not read noise floor until it has been updated
881 * As a guesstimate - we may only get 1/60th the time on
882 * the air to see search windows in a heavily congested
883 * network (40 us every 2400 us of time)
885 for (i
= 0; i
< 60; i
++) {
886 if ((OS_REG_READ(ah
, AR_PHY_AGC_CONTROL
) & AR_PHY_AGC_CONTROL_NF
) == 0)
888 OS_DELAY(searchTime
);
891 HALDEBUG(ah
, HAL_DEBUG_NFCAL
,
892 "NF with runTime %d failed to end on channel %d\n",
893 runTime
, AH_PRIVATE(ah
)->ah_curchan
->channel
);
894 HALDEBUG(ah
, HAL_DEBUG_NFCAL
,
895 " PHY NF Reg state: 0x%x\n",
896 OS_REG_READ(ah
, AR_PHY_AGC_CONTROL
));
897 HALDEBUG(ah
, HAL_DEBUG_NFCAL
,
898 " PHY Active Reg state: 0x%x\n",
899 OS_REG_READ(ah
, AR_PHY_ACTIVE
));
903 return ar5211GetNoiseFloor(ah
);
907 getNoiseFloorThresh(struct ath_hal
*ah
, HAL_CHANNEL_INTERNAL
*chan
, int16_t *nft
)
909 HAL_EEPROM
*ee
= AH_PRIVATE(ah
)->ah_eeprom
;
911 switch (chan
->channelFlags
& CHANNEL_ALL_NOTURBO
) {
913 *nft
= ee
->ee_noiseFloorThresh
[0];
915 case CHANNEL_CCK
|CHANNEL_2GHZ
:
916 *nft
= ee
->ee_noiseFloorThresh
[1];
918 case CHANNEL_OFDM
|CHANNEL_2GHZ
:
919 *nft
= ee
->ee_noiseFloorThresh
[2];
922 HALDEBUG(ah
, HAL_DEBUG_ANY
, "%s: invalid channel flags 0x%x\n",
923 __func__
, chan
->channelFlags
);
930 * Read the NF and check it against the noise floor threshhold
932 * Returns: TRUE if the NF is good
935 ar5211IsNfGood(struct ath_hal
*ah
, HAL_CHANNEL_INTERNAL
*chan
)
937 int16_t nf
, nfThresh
;
939 if (!getNoiseFloorThresh(ah
, chan
, &nfThresh
))
941 if (OS_REG_READ(ah
, AR_PHY_AGC_CONTROL
) & AR_PHY_AGC_CONTROL_NF
)
942 HALDEBUG(ah
, HAL_DEBUG_ANY
,
943 "%s: NF did not complete in calibration window\n", __func__
);
944 nf
= ar5211GetNoiseFloor(ah
);
946 HALDEBUG(ah
, HAL_DEBUG_ANY
,
947 "%s: noise floor failed; detected %u, threshold %u\n",
948 __func__
, nf
, nfThresh
);
950 * NB: Don't discriminate 2.4 vs 5Ghz, if this
951 * happens it indicates a problem regardless
954 chan
->channelFlags
|= CHANNEL_CW_INT
;
956 chan
->rawNoiseFloor
= nf
;
957 return (nf
<= nfThresh
);
961 * Peform the noisefloor calibration and check for any constant channel
964 * NOTE: preAR5211 have a lengthy carrier wave detection process - hence
965 * it is if'ed for MKK regulatory domain only.
967 * Returns: TRUE for a successful noise floor calibration; else FALSE
970 ar5211CalNoiseFloor(struct ath_hal
*ah
, HAL_CHANNEL_INTERNAL
*chan
)
972 #define N(a) (sizeof (a) / sizeof (a[0]))
973 /* Check for Carrier Wave interference in MKK regulatory zone */
974 if (AH_PRIVATE(ah
)->ah_macVersion
< AR_SREV_VERSION_OAHU
&&
975 ath_hal_getnfcheckrequired(ah
, (HAL_CHANNEL
*) chan
)) {
976 static const uint8_t runtime
[3] = { 0, 2, 7 };
977 int16_t nf
, nfThresh
;
980 if (!getNoiseFloorThresh(ah
, chan
, &nfThresh
))
983 * Run a quick noise floor that will hopefully
984 * complete (decrease delay time).
986 for (i
= 0; i
< N(runtime
); i
++) {
987 nf
= ar5211RunNoiseFloor(ah
, runtime
[i
], 0);
989 HALDEBUG(ah
, HAL_DEBUG_ANY
,
990 "%s: run failed with %u > threshold %u "
991 "(runtime %u)\n", __func__
,
992 nf
, nfThresh
, runtime
[i
]);
993 chan
->rawNoiseFloor
= 0;
995 chan
->rawNoiseFloor
= nf
;
997 return (i
<= N(runtime
));
999 /* Calibrate the noise floor */
1000 OS_REG_WRITE(ah
, AR_PHY_AGC_CONTROL
,
1001 OS_REG_READ(ah
, AR_PHY_AGC_CONTROL
) |
1002 AR_PHY_AGC_CONTROL_NF
);
1009 * Adjust NF based on statistical values for 5GHz frequencies.
1012 ar5211GetNfAdjust(struct ath_hal
*ah
, const HAL_CHANNEL_INTERNAL
*c
)
1014 static const struct {
1018 { 5790, 11 }, /* NB: ordered high -> low */
1026 { 5209, 0 }, /* XXX? bogus but doesn't matter */
1031 for (i
= 0; c
->channel
<= adjust5111
[i
].freqLow
; i
++)
1033 /* NB: placeholder for 5111's less severe requirement */
1034 return adjust5111
[i
].adjust
/ 3;
1038 * Reads EEPROM header info from device structure and programs
1039 * analog registers 6 and 7
1041 * REQUIRES: Access to the analog device
1044 ar5211SetRf6and7(struct ath_hal
*ah
, HAL_CHANNEL
*chan
)
1046 #define N(a) (sizeof (a) / sizeof (a[0]))
1047 HAL_EEPROM
*ee
= AH_PRIVATE(ah
)->ah_eeprom
;
1048 struct ath_hal_5211
*ahp
= AH5211(ah
);
1049 uint16_t rfXpdGain
, rfPloSel
, rfPwdXpd
;
1050 uint16_t tempOB
, tempDB
;
1054 freqIndex
= (chan
->channelFlags
& CHANNEL_2GHZ
) ? 2 : 1;
1057 * TODO: This array mode correspondes with the index used
1059 * For readability, this should be changed to an enum or #define
1061 switch (chan
->channelFlags
& CHANNEL_ALL_NOTURBO
) {
1063 if (chan
->channel
> 4000 && chan
->channel
< 5260) {
1064 tempOB
= ee
->ee_ob1
;
1065 tempDB
= ee
->ee_db1
;
1066 } else if (chan
->channel
>= 5260 && chan
->channel
< 5500) {
1067 tempOB
= ee
->ee_ob2
;
1068 tempDB
= ee
->ee_db2
;
1069 } else if (chan
->channel
>= 5500 && chan
->channel
< 5725) {
1070 tempOB
= ee
->ee_ob3
;
1071 tempDB
= ee
->ee_db3
;
1072 } else if (chan
->channel
>= 5725) {
1073 tempOB
= ee
->ee_ob4
;
1074 tempDB
= ee
->ee_db4
;
1077 tempOB
= tempDB
= 0;
1080 rfXpdGain
= ee
->ee_xgain
[0];
1081 rfPloSel
= ee
->ee_xpd
[0];
1082 rfPwdXpd
= !ee
->ee_xpd
[0];
1084 ar5211Rf6n7
[5][freqIndex
] =
1085 (ar5211Rf6n7
[5][freqIndex
] & ~0x10000000) |
1086 (ee
->ee_cornerCal
.pd84
<< 28);
1087 ar5211Rf6n7
[6][freqIndex
] =
1088 (ar5211Rf6n7
[6][freqIndex
] & ~0x04000000) |
1089 (ee
->ee_cornerCal
.pd90
<< 26);
1090 ar5211Rf6n7
[21][freqIndex
] =
1091 (ar5211Rf6n7
[21][freqIndex
] & ~0x08) |
1092 (ee
->ee_cornerCal
.gSel
<< 3);
1094 case CHANNEL_CCK
|CHANNEL_2GHZ
:
1095 tempOB
= ee
->ee_obFor24
;
1096 tempDB
= ee
->ee_dbFor24
;
1097 rfXpdGain
= ee
->ee_xgain
[1];
1098 rfPloSel
= ee
->ee_xpd
[1];
1099 rfPwdXpd
= !ee
->ee_xpd
[1];
1101 case CHANNEL_OFDM
|CHANNEL_2GHZ
:
1102 tempOB
= ee
->ee_obFor24g
;
1103 tempDB
= ee
->ee_dbFor24g
;
1104 rfXpdGain
= ee
->ee_xgain
[2];
1105 rfPloSel
= ee
->ee_xpd
[2];
1106 rfPwdXpd
= !ee
->ee_xpd
[2];
1109 HALDEBUG(ah
, HAL_DEBUG_ANY
, "%s: invalid channel flags 0x%x\n",
1110 __func__
, chan
->channelFlags
);
1114 HALASSERT(1 <= tempOB
&& tempOB
<= 5);
1115 HALASSERT(1 <= tempDB
&& tempDB
<= 5);
1117 /* Set rfXpdGain and rfPwdXpd */
1118 ar5211Rf6n7
[11][freqIndex
] = (ar5211Rf6n7
[11][freqIndex
] & ~0xC0) |
1119 (((ath_hal_reverseBits(rfXpdGain
, 4) << 7) | (rfPwdXpd
<< 6)) & 0xC0);
1120 ar5211Rf6n7
[12][freqIndex
] = (ar5211Rf6n7
[12][freqIndex
] & ~0x07) |
1121 ((ath_hal_reverseBits(rfXpdGain
, 4) >> 1) & 0x07);
1124 ar5211Rf6n7
[12][freqIndex
] = (ar5211Rf6n7
[12][freqIndex
] & ~0x80) |
1125 ((ath_hal_reverseBits(tempOB
, 3) << 7) & 0x80);
1126 ar5211Rf6n7
[13][freqIndex
] = (ar5211Rf6n7
[13][freqIndex
] & ~0x03) |
1127 ((ath_hal_reverseBits(tempOB
, 3) >> 1) & 0x03);
1130 ar5211Rf6n7
[13][freqIndex
] = (ar5211Rf6n7
[13][freqIndex
] & ~0x1C) |
1131 ((ath_hal_reverseBits(tempDB
, 3) << 2) & 0x1C);
1134 ar5211Rf6n7
[17][freqIndex
] = (ar5211Rf6n7
[17][freqIndex
] & ~0x08) |
1135 ((rfPloSel
<< 3) & 0x08);
1137 /* Write the Rf registers 6 & 7 */
1138 for (i
= 0; i
< N(ar5211Rf6n7
); i
++)
1139 OS_REG_WRITE(ah
, ar5211Rf6n7
[i
][0], ar5211Rf6n7
[i
][freqIndex
]);
1141 /* Now that we have reprogrammed rfgain value, clear the flag. */
1142 ahp
->ah_rfgainState
= RFGAIN_INACTIVE
;
1149 ar5211SetAntennaSwitchInternal(struct ath_hal
*ah
, HAL_ANT_SETTING settings
,
1150 const HAL_CHANNEL
*chan
)
1152 #define ANT_SWITCH_TABLE1 0x9960
1153 #define ANT_SWITCH_TABLE2 0x9964
1154 HAL_EEPROM
*ee
= AH_PRIVATE(ah
)->ah_eeprom
;
1155 struct ath_hal_5211
*ahp
= AH5211(ah
);
1156 uint32_t antSwitchA
, antSwitchB
;
1159 switch (chan
->channelFlags
& CHANNEL_ALL_NOTURBO
) {
1160 case CHANNEL_A
: ix
= 0; break;
1161 case CHANNEL_B
: ix
= 1; break;
1162 case CHANNEL_PUREG
: ix
= 2; break;
1164 HALDEBUG(ah
, HAL_DEBUG_ANY
, "%s: invalid channel flags 0x%x\n",
1165 __func__
, chan
->channelFlags
);
1169 antSwitchA
= ee
->ee_antennaControl
[1][ix
]
1170 | (ee
->ee_antennaControl
[2][ix
] << 6)
1171 | (ee
->ee_antennaControl
[3][ix
] << 12)
1172 | (ee
->ee_antennaControl
[4][ix
] << 18)
1173 | (ee
->ee_antennaControl
[5][ix
] << 24)
1175 antSwitchB
= ee
->ee_antennaControl
[6][ix
]
1176 | (ee
->ee_antennaControl
[7][ix
] << 6)
1177 | (ee
->ee_antennaControl
[8][ix
] << 12)
1178 | (ee
->ee_antennaControl
[9][ix
] << 18)
1179 | (ee
->ee_antennaControl
[10][ix
] << 24)
1182 * For fixed antenna, give the same setting for both switch banks
1185 case HAL_ANT_FIXED_A
:
1186 antSwitchB
= antSwitchA
;
1188 case HAL_ANT_FIXED_B
:
1189 antSwitchA
= antSwitchB
;
1191 case HAL_ANT_VARIABLE
:
1194 HALDEBUG(ah
, HAL_DEBUG_ANY
, "%s: bad antenna setting %u\n",
1195 __func__
, settings
);
1198 ahp
->ah_diversityControl
= settings
;
1200 OS_REG_WRITE(ah
, ANT_SWITCH_TABLE1
, antSwitchA
);
1201 OS_REG_WRITE(ah
, ANT_SWITCH_TABLE2
, antSwitchB
);
1204 #undef ANT_SWITCH_TABLE1
1205 #undef ANT_SWITCH_TABLE2
1209 * Reads EEPROM header info and programs the device for correct operation
1210 * given the channel value
1213 ar5211SetBoardValues(struct ath_hal
*ah
, HAL_CHANNEL
*chan
)
1215 HAL_EEPROM
*ee
= AH_PRIVATE(ah
)->ah_eeprom
;
1216 struct ath_hal_5211
*ahp
= AH5211(ah
);
1217 int arrayMode
, falseDectectBackoff
;
1219 switch (chan
->channelFlags
& CHANNEL_ALL_NOTURBO
) {
1222 OS_REG_RMW_FIELD(ah
, AR_PHY_FRAME_CTL
,
1223 AR_PHY_FRAME_CTL_TX_CLIP
, ee
->ee_cornerCal
.clip
);
1225 case CHANNEL_CCK
|CHANNEL_2GHZ
:
1228 case CHANNEL_OFDM
|CHANNEL_2GHZ
:
1232 HALDEBUG(ah
, HAL_DEBUG_ANY
, "%s: invalid channel flags 0x%x\n",
1233 __func__
, chan
->channelFlags
);
1237 /* Set the antenna register(s) correctly for the chip revision */
1238 if (AH_PRIVATE(ah
)->ah_macVersion
< AR_SREV_VERSION_OAHU
) {
1239 OS_REG_WRITE(ah
, AR_PHY(68),
1240 (OS_REG_READ(ah
, AR_PHY(68)) & 0xFFFFFFFC) | 0x3);
1242 OS_REG_WRITE(ah
, AR_PHY(68),
1243 (OS_REG_READ(ah
, AR_PHY(68)) & 0xFFFFFC06) |
1244 (ee
->ee_antennaControl
[0][arrayMode
] << 4) | 0x1);
1246 ar5211SetAntennaSwitchInternal(ah
,
1247 ahp
->ah_diversityControl
, chan
);
1249 /* Set the Noise Floor Thresh on ar5211 devices */
1250 OS_REG_WRITE(ah
, AR_PHY_BASE
+ (90 << 2),
1251 (ee
->ee_noiseFloorThresh
[arrayMode
] & 0x1FF) | (1<<9));
1253 OS_REG_WRITE(ah
, AR_PHY_BASE
+ (17 << 2),
1254 (OS_REG_READ(ah
, AR_PHY_BASE
+ (17 << 2)) & 0xFFFFC07F) |
1255 ((ee
->ee_switchSettling
[arrayMode
] << 7) & 0x3F80));
1256 OS_REG_WRITE(ah
, AR_PHY_BASE
+ (18 << 2),
1257 (OS_REG_READ(ah
, AR_PHY_BASE
+ (18 << 2)) & 0xFFFC0FFF) |
1258 ((ee
->ee_txrxAtten
[arrayMode
] << 12) & 0x3F000));
1259 OS_REG_WRITE(ah
, AR_PHY_BASE
+ (20 << 2),
1260 (OS_REG_READ(ah
, AR_PHY_BASE
+ (20 << 2)) & 0xFFFF0000) |
1261 ((ee
->ee_pgaDesiredSize
[arrayMode
] << 8) & 0xFF00) |
1262 (ee
->ee_adcDesiredSize
[arrayMode
] & 0x00FF));
1263 OS_REG_WRITE(ah
, AR_PHY_BASE
+ (13 << 2),
1264 (ee
->ee_txEndToXPAOff
[arrayMode
] << 24) |
1265 (ee
->ee_txEndToXPAOff
[arrayMode
] << 16) |
1266 (ee
->ee_txFrameToXPAOn
[arrayMode
] << 8) |
1267 ee
->ee_txFrameToXPAOn
[arrayMode
]);
1268 OS_REG_WRITE(ah
, AR_PHY_BASE
+ (10 << 2),
1269 (OS_REG_READ(ah
, AR_PHY_BASE
+ (10 << 2)) & 0xFFFF00FF) |
1270 (ee
->ee_txEndToXLNAOn
[arrayMode
] << 8));
1271 OS_REG_WRITE(ah
, AR_PHY_BASE
+ (25 << 2),
1272 (OS_REG_READ(ah
, AR_PHY_BASE
+ (25 << 2)) & 0xFFF80FFF) |
1273 ((ee
->ee_thresh62
[arrayMode
] << 12) & 0x7F000));
1275 #define NO_FALSE_DETECT_BACKOFF 2
1276 #define CB22_FALSE_DETECT_BACKOFF 6
1278 * False detect backoff - suspected 32 MHz spur causes
1279 * false detects in OFDM, causing Tx Hangs. Decrease
1280 * weak signal sensitivity for this card.
1282 falseDectectBackoff
= NO_FALSE_DETECT_BACKOFF
;
1283 if (AH_PRIVATE(ah
)->ah_eeversion
< AR_EEPROM_VER3_3
) {
1284 if (AH_PRIVATE(ah
)->ah_subvendorid
== 0x1022 &&
1286 falseDectectBackoff
+= CB22_FALSE_DETECT_BACKOFF
;
1288 uint32_t remainder
= chan
->channel
% 32;
1290 if (remainder
&& (remainder
< 10 || remainder
> 22))
1291 falseDectectBackoff
+= ee
->ee_falseDetectBackoff
[arrayMode
];
1293 OS_REG_WRITE(ah
, 0x9924,
1294 (OS_REG_READ(ah
, 0x9924) & 0xFFFFFF01)
1295 | ((falseDectectBackoff
<< 1) & 0xF7));
1298 #undef NO_FALSE_DETECT_BACKOFF
1299 #undef CB22_FALSE_DETECT_BACKOFF
1303 * Set the limit on the overall output power. Used for dynamic
1304 * transmit power control and the like.
1306 * NOTE: The power is passed in is in units of 0.5 dBm.
1309 ar5211SetTxPowerLimit(struct ath_hal
*ah
, uint32_t limit
)
1312 AH_PRIVATE(ah
)->ah_powerLimit
= AH_MIN(limit
, MAX_RATE_POWER
);
1313 OS_REG_WRITE(ah
, AR_PHY_POWER_TX_RATE_MAX
, limit
);
1318 * Sets the transmit power in the baseband for the given
1319 * operating channel and mode.
1322 ar5211SetTransmitPower(struct ath_hal
*ah
, HAL_CHANNEL
*chan
)
1324 HAL_EEPROM
*ee
= AH_PRIVATE(ah
)->ah_eeprom
;
1325 TRGT_POWER_INFO
*pi
;
1326 RD_EDGES_POWER
*rep
;
1327 PCDACS_EEPROM eepromPcdacs
;
1328 u_int nchan
, cfgCtl
;
1331 /* setup the pcdac struct to point to the correct info, based on mode */
1332 switch (chan
->channelFlags
& CHANNEL_ALL_NOTURBO
) {
1334 eepromPcdacs
.numChannels
= ee
->ee_numChannels11a
;
1335 eepromPcdacs
.pChannelList
= ee
->ee_channels11a
;
1336 eepromPcdacs
.pDataPerChannel
= ee
->ee_dataPerChannel11a
;
1337 nchan
= ee
->ee_numTargetPwr_11a
;
1338 pi
= ee
->ee_trgtPwr_11a
;
1340 case CHANNEL_OFDM
|CHANNEL_2GHZ
:
1341 eepromPcdacs
.numChannels
= ee
->ee_numChannels2_4
;
1342 eepromPcdacs
.pChannelList
= ee
->ee_channels11g
;
1343 eepromPcdacs
.pDataPerChannel
= ee
->ee_dataPerChannel11g
;
1344 nchan
= ee
->ee_numTargetPwr_11g
;
1345 pi
= ee
->ee_trgtPwr_11g
;
1347 case CHANNEL_CCK
|CHANNEL_2GHZ
:
1348 eepromPcdacs
.numChannels
= ee
->ee_numChannels2_4
;
1349 eepromPcdacs
.pChannelList
= ee
->ee_channels11b
;
1350 eepromPcdacs
.pDataPerChannel
= ee
->ee_dataPerChannel11b
;
1351 nchan
= ee
->ee_numTargetPwr_11b
;
1352 pi
= ee
->ee_trgtPwr_11b
;
1355 HALDEBUG(ah
, HAL_DEBUG_ANY
, "%s: invalid channel flags 0x%x\n",
1356 __func__
, chan
->channelFlags
);
1360 ar5211SetPowerTable(ah
, &eepromPcdacs
, chan
->channel
);
1363 /* Match CTL to EEPROM value */
1364 cfgCtl
= ath_hal_getctl(ah
, chan
);
1365 for (i
= 0; i
< ee
->ee_numCtls
; i
++)
1366 if (ee
->ee_ctl
[i
] != 0 && ee
->ee_ctl
[i
] == cfgCtl
) {
1367 rep
= &ee
->ee_rdEdgesPower
[i
* NUM_EDGES
];
1370 ar5211SetRateTable(ah
, rep
, pi
, nchan
, chan
);
1376 * Read the transmit power levels from the structures taken
1377 * from EEPROM. Interpolate read transmit power values for
1378 * this channel. Organize the transmit power values into a
1379 * table for writing into the hardware.
1382 ar5211SetPowerTable(struct ath_hal
*ah
, PCDACS_EEPROM
*pSrcStruct
, uint16_t channel
)
1384 static FULL_PCDAC_STRUCT pcdacStruct
;
1385 static uint16_t pcdacTable
[PWR_TABLE_SIZE
];
1388 uint16_t *pPcdacValues
;
1389 int16_t *pScaledUpDbm
;
1390 int16_t minScaledPwr
;
1391 int16_t maxScaledPwr
;
1393 uint16_t pcdacMin
= 0;
1394 uint16_t pcdacMax
= 63;
1395 uint16_t pcdacTableIndex
;
1396 uint16_t scaledPcdac
;
1400 OS_MEMZERO(&pcdacStruct
, sizeof(FULL_PCDAC_STRUCT
));
1401 OS_MEMZERO(pcdacTable
, sizeof(uint16_t) * PWR_TABLE_SIZE
);
1402 pPcdacValues
= pcdacStruct
.PcdacValues
;
1403 pScaledUpDbm
= pcdacStruct
.PwrValues
;
1405 /* Initialize the pcdacs to dBM structs pcdacs to be 1 to 63 */
1406 for (i
= PCDAC_START
, j
= 0; i
<= PCDAC_STOP
; i
+= PCDAC_STEP
, j
++)
1407 pPcdacValues
[j
] = i
;
1409 pcdacStruct
.numPcdacValues
= j
;
1410 pcdacStruct
.pcdacMin
= PCDAC_START
;
1411 pcdacStruct
.pcdacMax
= PCDAC_STOP
;
1413 /* Fill out the power values for this channel */
1414 for (j
= 0; j
< pcdacStruct
.numPcdacValues
; j
++ )
1415 pScaledUpDbm
[j
] = ar5211GetScaledPower(channel
, pPcdacValues
[j
], pSrcStruct
);
1417 /* Now scale the pcdac values to fit in the 64 entry power table */
1418 minScaledPwr
= pScaledUpDbm
[0];
1419 maxScaledPwr
= pScaledUpDbm
[pcdacStruct
.numPcdacValues
- 1];
1421 /* find minimum and make monotonic */
1422 for (j
= 0; j
< pcdacStruct
.numPcdacValues
; j
++) {
1423 if (minScaledPwr
>= pScaledUpDbm
[j
]) {
1424 minScaledPwr
= pScaledUpDbm
[j
];
1428 * Make the full_hsh monotonically increasing otherwise
1429 * interpolation algorithm will get fooled gotta start
1430 * working from the top, hence i = 63 - j.
1432 i
= (uint16_t)(pcdacStruct
.numPcdacValues
- 1 - j
);
1435 if (pScaledUpDbm
[i
-1] > pScaledUpDbm
[i
]) {
1437 * It could be a glitch, so make the power for
1438 * this pcdac the same as the power from the
1439 * next highest pcdac.
1441 pScaledUpDbm
[i
- 1] = pScaledUpDbm
[i
];
1445 for (j
= 0; j
< pcdacStruct
.numPcdacValues
; j
++)
1446 if (maxScaledPwr
< pScaledUpDbm
[j
]) {
1447 maxScaledPwr
= pScaledUpDbm
[j
];
1451 /* Find the first power level with a pcdac */
1452 pwr
= (uint16_t)(PWR_STEP
* ((minScaledPwr
- PWR_MIN
+ PWR_STEP
/ 2) / PWR_STEP
) + PWR_MIN
);
1454 /* Write all the first pcdac entries based off the pcdacMin */
1455 pcdacTableIndex
= 0;
1456 for (i
= 0; i
< (2 * (pwr
- PWR_MIN
) / EEP_SCALE
+ 1); i
++)
1457 pcdacTable
[pcdacTableIndex
++] = pcdacMin
;
1460 while (pwr
< pScaledUpDbm
[pcdacStruct
.numPcdacValues
- 1]) {
1462 /* stop if dbM > max_power_possible */
1463 while (pwr
< pScaledUpDbm
[pcdacStruct
.numPcdacValues
- 1] &&
1464 (pwr
- pScaledUpDbm
[i
])*(pwr
- pScaledUpDbm
[i
+1]) > 0)
1466 /* scale by 2 and add 1 to enable round up or down as needed */
1467 scaledPcdac
= (uint16_t)(ar5211GetInterpolatedValue(pwr
,
1468 pScaledUpDbm
[i
], pScaledUpDbm
[i
+1],
1469 (uint16_t)(pPcdacValues
[i
] * 2),
1470 (uint16_t)(pPcdacValues
[i
+1] * 2), 0) + 1);
1472 pcdacTable
[pcdacTableIndex
] = scaledPcdac
/ 2;
1473 if (pcdacTable
[pcdacTableIndex
] > pcdacMax
)
1474 pcdacTable
[pcdacTableIndex
] = pcdacMax
;
1478 /* Write all the last pcdac entries based off the last valid pcdac */
1479 while (pcdacTableIndex
< PWR_TABLE_SIZE
) {
1480 pcdacTable
[pcdacTableIndex
] = pcdacTable
[pcdacTableIndex
- 1];
1484 /* Finally, write the power values into the baseband power table */
1485 addr
= AR_PHY_BASE
+ (608 << 2);
1486 for (i
= 0; i
< 32; i
++) {
1487 temp32
= 0xffff & ((pcdacTable
[2 * i
+ 1] << 8) | 0xff);
1488 temp32
= (temp32
<< 16) | (0xffff & ((pcdacTable
[2 * i
] << 8) | 0xff));
1489 OS_REG_WRITE(ah
, addr
, temp32
);
1496 * Set the transmit power in the baseband for the given
1497 * operating channel and mode.
1500 ar5211SetRateTable(struct ath_hal
*ah
, RD_EDGES_POWER
*pRdEdgesPower
,
1501 TRGT_POWER_INFO
*pPowerInfo
, uint16_t numChannels
,
1504 HAL_EEPROM
*ee
= AH_PRIVATE(ah
)->ah_eeprom
;
1505 struct ath_hal_5211
*ahp
= AH5211(ah
);
1506 static uint16_t ratesArray
[NUM_RATES
];
1507 static const uint16_t tpcScaleReductionTable
[5] =
1508 { 0, 3, 6, 9, MAX_RATE_POWER
};
1510 uint16_t *pRatesPower
;
1511 uint16_t lowerChannel
, lowerIndex
=0, lowerPower
=0;
1512 uint16_t upperChannel
, upperIndex
=0, upperPower
=0;
1513 uint16_t twiceMaxEdgePower
=63;
1514 uint16_t twicePower
= 0;
1515 uint16_t i
, numEdges
;
1516 uint16_t tempChannelList
[NUM_EDGES
]; /* temp array for holding edge channels */
1517 uint16_t twiceMaxRDPower
;
1518 int16_t scaledPower
= 0; /* for gcc -O2 */
1519 uint16_t mask
= 0x3f;
1520 HAL_BOOL paPreDEnable
= 0;
1521 int8_t twiceAntennaGain
, twiceAntennaReduction
= 0;
1523 pRatesPower
= ratesArray
;
1524 twiceMaxRDPower
= chan
->maxRegTxPower
* 2;
1526 if (IS_CHAN_5GHZ(chan
)) {
1527 twiceAntennaGain
= ee
->ee_antennaGainMax
[0];
1529 twiceAntennaGain
= ee
->ee_antennaGainMax
[1];
1532 twiceAntennaReduction
= ath_hal_getantennareduction(ah
, chan
, twiceAntennaGain
);
1534 if (pRdEdgesPower
) {
1535 /* Get the edge power */
1536 for (i
= 0; i
< NUM_EDGES
; i
++) {
1537 if (pRdEdgesPower
[i
].rdEdge
== 0)
1539 tempChannelList
[i
] = pRdEdgesPower
[i
].rdEdge
;
1543 ar5211GetLowerUpperValues(chan
->channel
, tempChannelList
,
1544 numEdges
, &lowerChannel
, &upperChannel
);
1545 /* Get the index for this channel */
1546 for (i
= 0; i
< numEdges
; i
++)
1547 if (lowerChannel
== tempChannelList
[i
])
1549 HALASSERT(i
!= numEdges
);
1551 if ((lowerChannel
== upperChannel
&&
1552 lowerChannel
== chan
->channel
) ||
1553 pRdEdgesPower
[i
].flag
) {
1554 twiceMaxEdgePower
= pRdEdgesPower
[i
].twice_rdEdgePower
;
1555 HALASSERT(twiceMaxEdgePower
> 0);
1559 /* extrapolate the power values for the test Groups */
1560 for (i
= 0; i
< numChannels
; i
++)
1561 tempChannelList
[i
] = pPowerInfo
[i
].testChannel
;
1563 ar5211GetLowerUpperValues(chan
->channel
, tempChannelList
,
1564 numChannels
, &lowerChannel
, &upperChannel
);
1566 /* get the index for the channel */
1567 for (i
= 0; i
< numChannels
; i
++) {
1568 if (lowerChannel
== tempChannelList
[i
])
1570 if (upperChannel
== tempChannelList
[i
]) {
1576 for (i
= 0; i
< NUM_RATES
; i
++) {
1577 if (IS_CHAN_OFDM(chan
)) {
1578 /* power for rates 6,9,12,18,24 is all the same */
1580 lowerPower
= pPowerInfo
[lowerIndex
].twicePwr6_24
;
1581 upperPower
= pPowerInfo
[upperIndex
].twicePwr6_24
;
1582 } else if (i
== 5) {
1583 lowerPower
= pPowerInfo
[lowerIndex
].twicePwr36
;
1584 upperPower
= pPowerInfo
[upperIndex
].twicePwr36
;
1585 } else if (i
== 6) {
1586 lowerPower
= pPowerInfo
[lowerIndex
].twicePwr48
;
1587 upperPower
= pPowerInfo
[upperIndex
].twicePwr48
;
1588 } else if (i
== 7) {
1589 lowerPower
= pPowerInfo
[lowerIndex
].twicePwr54
;
1590 upperPower
= pPowerInfo
[upperIndex
].twicePwr54
;
1596 lowerPower
= pPowerInfo
[lowerIndex
].twicePwr6_24
;
1597 upperPower
= pPowerInfo
[upperIndex
].twicePwr6_24
;
1601 lowerPower
= pPowerInfo
[lowerIndex
].twicePwr36
;
1602 upperPower
= pPowerInfo
[upperIndex
].twicePwr36
;
1606 lowerPower
= pPowerInfo
[lowerIndex
].twicePwr48
;
1607 upperPower
= pPowerInfo
[upperIndex
].twicePwr48
;
1611 lowerPower
= pPowerInfo
[lowerIndex
].twicePwr54
;
1612 upperPower
= pPowerInfo
[upperIndex
].twicePwr54
;
1617 twicePower
= ar5211GetInterpolatedValue(chan
->channel
,
1618 lowerChannel
, upperChannel
, lowerPower
, upperPower
, 0);
1620 /* Reduce power by band edge restrictions */
1621 twicePower
= AH_MIN(twicePower
, twiceMaxEdgePower
);
1624 * If turbo is set, reduce power to keep power
1625 * consumption under 2 Watts. Note that we always do
1626 * this unless specially configured. Then we limit
1627 * power only for non-AP operation.
1629 if (IS_CHAN_TURBO(chan
) &&
1630 AH_PRIVATE(ah
)->ah_eeversion
>= AR_EEPROM_VER3_1
1631 #ifdef AH_ENABLE_AP_SUPPORT
1632 && AH_PRIVATE(ah
)->ah_opmode
!= HAL_M_HOSTAP
1635 twicePower
= AH_MIN(twicePower
, ee
->ee_turbo2WMaxPower5
);
1638 /* Reduce power by max regulatory domain allowed restrictions */
1639 pRatesPower
[i
] = AH_MIN(twicePower
, twiceMaxRDPower
- twiceAntennaReduction
);
1641 /* Use 6 Mb power level for transmit power scaling reduction */
1642 /* We don't want to reduce higher rates if its not needed */
1644 scaledPower
= pRatesPower
[0] -
1645 (tpcScaleReductionTable
[AH_PRIVATE(ah
)->ah_tpScale
] * 2);
1646 if (scaledPower
< 1)
1650 pRatesPower
[i
] = AH_MIN(pRatesPower
[i
], scaledPower
);
1653 /* Record txPower at Rate 6 for info gathering */
1654 ahp
->ah_tx6PowerInHalfDbm
= pRatesPower
[0];
1657 HALDEBUG(ah
, HAL_DEBUG_RESET
,
1658 "%s: final output power setting %d MHz:\n",
1659 __func__
, chan
->channel
);
1660 HALDEBUG(ah
, HAL_DEBUG_RESET
,
1661 "6 Mb %d dBm, MaxRD: %d dBm, MaxEdge %d dBm\n",
1662 scaledPower
/ 2, twiceMaxRDPower
/ 2, twiceMaxEdgePower
/ 2);
1663 HALDEBUG(ah
, HAL_DEBUG_RESET
, "TPC Scale %d dBm - Ant Red %d dBm\n",
1664 tpcScaleReductionTable
[AH_PRIVATE(ah
)->ah_tpScale
] * 2,
1665 twiceAntennaReduction
/ 2);
1666 if (IS_CHAN_TURBO(chan
) &&
1667 AH_PRIVATE(ah
)->ah_eeversion
>= AR_EEPROM_VER3_1
)
1668 HALDEBUG(ah
, HAL_DEBUG_RESET
, "Max Turbo %d dBm\n",
1669 ee
->ee_turbo2WMaxPower5
);
1670 HALDEBUG(ah
, HAL_DEBUG_RESET
,
1671 " %2d | %2d | %2d | %2d | %2d | %2d | %2d | %2d dBm\n",
1672 pRatesPower
[0] / 2, pRatesPower
[1] / 2, pRatesPower
[2] / 2,
1673 pRatesPower
[3] / 2, pRatesPower
[4] / 2, pRatesPower
[5] / 2,
1674 pRatesPower
[6] / 2, pRatesPower
[7] / 2);
1675 #endif /* AH_DEBUG */
1677 /* Write the power table into the hardware */
1678 OS_REG_WRITE(ah
, AR_PHY_POWER_TX_RATE1
,
1679 ((paPreDEnable
& 1)<< 30) | ((pRatesPower
[3] & mask
) << 24) |
1680 ((paPreDEnable
& 1)<< 22) | ((pRatesPower
[2] & mask
) << 16) |
1681 ((paPreDEnable
& 1)<< 14) | ((pRatesPower
[1] & mask
) << 8) |
1682 ((paPreDEnable
& 1)<< 6 ) | (pRatesPower
[0] & mask
));
1683 OS_REG_WRITE(ah
, AR_PHY_POWER_TX_RATE2
,
1684 ((paPreDEnable
& 1)<< 30) | ((pRatesPower
[7] & mask
) << 24) |
1685 ((paPreDEnable
& 1)<< 22) | ((pRatesPower
[6] & mask
) << 16) |
1686 ((paPreDEnable
& 1)<< 14) | ((pRatesPower
[5] & mask
) << 8) |
1687 ((paPreDEnable
& 1)<< 6 ) | (pRatesPower
[4] & mask
));
1689 /* set max power to the power value at rate 6 */
1690 ar5211SetTxPowerLimit(ah
, pRatesPower
[0]);
1692 AH_PRIVATE(ah
)->ah_maxPowerLevel
= pRatesPower
[0];
1696 * Get or interpolate the pcdac value from the calibrated data
1699 ar5211GetScaledPower(uint16_t channel
, uint16_t pcdacValue
, const PCDACS_EEPROM
*pSrcStruct
)
1701 uint16_t powerValue
;
1702 uint16_t lFreq
, rFreq
; /* left and right frequency values */
1703 uint16_t llPcdac
, ulPcdac
; /* lower and upper left pcdac values */
1704 uint16_t lrPcdac
, urPcdac
; /* lower and upper right pcdac values */
1705 uint16_t lPwr
, uPwr
; /* lower and upper temp pwr values */
1706 uint16_t lScaledPwr
, rScaledPwr
; /* left and right scaled power */
1708 if (ar5211FindValueInList(channel
, pcdacValue
, pSrcStruct
, &powerValue
))
1709 /* value was copied from srcStruct */
1712 ar5211GetLowerUpperValues(channel
, pSrcStruct
->pChannelList
,
1713 pSrcStruct
->numChannels
, &lFreq
, &rFreq
);
1714 ar5211GetLowerUpperPcdacs(pcdacValue
, lFreq
, pSrcStruct
,
1715 &llPcdac
, &ulPcdac
);
1716 ar5211GetLowerUpperPcdacs(pcdacValue
, rFreq
, pSrcStruct
,
1717 &lrPcdac
, &urPcdac
);
1719 /* get the power index for the pcdac value */
1720 ar5211FindValueInList(lFreq
, llPcdac
, pSrcStruct
, &lPwr
);
1721 ar5211FindValueInList(lFreq
, ulPcdac
, pSrcStruct
, &uPwr
);
1722 lScaledPwr
= ar5211GetInterpolatedValue(pcdacValue
,
1723 llPcdac
, ulPcdac
, lPwr
, uPwr
, 0);
1725 ar5211FindValueInList(rFreq
, lrPcdac
, pSrcStruct
, &lPwr
);
1726 ar5211FindValueInList(rFreq
, urPcdac
, pSrcStruct
, &uPwr
);
1727 rScaledPwr
= ar5211GetInterpolatedValue(pcdacValue
,
1728 lrPcdac
, urPcdac
, lPwr
, uPwr
, 0);
1730 return ar5211GetInterpolatedValue(channel
, lFreq
, rFreq
,
1731 lScaledPwr
, rScaledPwr
, 0);
1735 * Find the value from the calibrated source data struct
1738 ar5211FindValueInList(uint16_t channel
, uint16_t pcdacValue
,
1739 const PCDACS_EEPROM
*pSrcStruct
, uint16_t *powerValue
)
1741 const DATA_PER_CHANNEL
*pChannelData
;
1742 const uint16_t *pPcdac
;
1745 pChannelData
= pSrcStruct
->pDataPerChannel
;
1746 for (i
= 0; i
< pSrcStruct
->numChannels
; i
++ ) {
1747 if (pChannelData
->channelValue
== channel
) {
1748 pPcdac
= pChannelData
->PcdacValues
;
1749 for (j
= 0; j
< pChannelData
->numPcdacValues
; j
++ ) {
1750 if (*pPcdac
== pcdacValue
) {
1751 *powerValue
= pChannelData
->PwrValues
[j
];
1763 * Returns interpolated or the scaled up interpolated value
1766 ar5211GetInterpolatedValue(uint16_t target
,
1767 uint16_t srcLeft
, uint16_t srcRight
,
1768 uint16_t targetLeft
, uint16_t targetRight
,
1773 uint16_t scaleValue
= EEP_SCALE
;
1775 /* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
1776 if ((targetLeft
* targetRight
) == 0)
1781 if (srcRight
!= srcLeft
) {
1783 * Note the ratio always need to be scaled,
1784 * since it will be a fraction.
1786 lRatio
= (target
- srcLeft
) * EEP_SCALE
/ (srcRight
- srcLeft
);
1788 /* Return as Left target if value would be negative */
1789 rv
= targetLeft
* (scaleUp
? EEP_SCALE
: 1);
1790 } else if (lRatio
> EEP_SCALE
) {
1791 /* Return as Right target if Ratio is greater than 100% (SCALE) */
1792 rv
= targetRight
* (scaleUp
? EEP_SCALE
: 1);
1794 rv
= (lRatio
* targetRight
+ (EEP_SCALE
- lRatio
) *
1795 targetLeft
) / scaleValue
;
1806 * Look for value being within 0.1 of the search values
1807 * however, NDIS can't do float calculations, so multiply everything
1808 * up by EEP_SCALE so can do integer arithmatic
1810 * INPUT value -value to search for
1811 * INPUT pList -ptr to the list to search
1812 * INPUT listSize -number of entries in list
1813 * OUTPUT pLowerValue -return the lower value
1814 * OUTPUT pUpperValue -return the upper value
1817 ar5211GetLowerUpperValues(uint16_t value
,
1818 const uint16_t *pList
, uint16_t listSize
,
1819 uint16_t *pLowerValue
, uint16_t *pUpperValue
)
1821 const uint16_t listEndValue
= *(pList
+ listSize
- 1);
1822 uint32_t target
= value
* EEP_SCALE
;
1826 * See if value is lower than the first value in the list
1827 * if so return first value
1829 if (target
< (uint32_t)(*pList
* EEP_SCALE
- EEP_DELTA
)) {
1830 *pLowerValue
= *pList
;
1831 *pUpperValue
= *pList
;
1836 * See if value is greater than last value in list
1837 * if so return last value
1839 if (target
> (uint32_t)(listEndValue
* EEP_SCALE
+ EEP_DELTA
)) {
1840 *pLowerValue
= listEndValue
;
1841 *pUpperValue
= listEndValue
;
1845 /* look for value being near or between 2 values in list */
1846 for (i
= 0; i
< listSize
; i
++) {
1848 * If value is close to the current value of the list
1849 * then target is not between values, it is one of the values
1851 if (abs(pList
[i
] * EEP_SCALE
- (int32_t) target
) < EEP_DELTA
) {
1852 *pLowerValue
= pList
[i
];
1853 *pUpperValue
= pList
[i
];
1858 * Look for value being between current value and next value
1859 * if so return these 2 values
1861 if (target
< (uint32_t)(pList
[i
+ 1] * EEP_SCALE
- EEP_DELTA
)) {
1862 *pLowerValue
= pList
[i
];
1863 *pUpperValue
= pList
[i
+ 1];
1870 * Get the upper and lower pcdac given the channel and the pcdac
1871 * used in the search
1874 ar5211GetLowerUpperPcdacs(uint16_t pcdac
, uint16_t channel
,
1875 const PCDACS_EEPROM
*pSrcStruct
,
1876 uint16_t *pLowerPcdac
, uint16_t *pUpperPcdac
)
1878 const DATA_PER_CHANNEL
*pChannelData
;
1881 /* Find the channel information */
1882 pChannelData
= pSrcStruct
->pDataPerChannel
;
1883 for (i
= 0; i
< pSrcStruct
->numChannels
; i
++) {
1884 if (pChannelData
->channelValue
== channel
)
1888 ar5211GetLowerUpperValues(pcdac
, pChannelData
->PcdacValues
,
1889 pChannelData
->numPcdacValues
, pLowerPcdac
, pUpperPcdac
);
1892 #define DYN_ADJ_UP_MARGIN 15
1893 #define DYN_ADJ_LO_MARGIN 20
1895 static const GAIN_OPTIMIZATION_LADDER gainLadder
= {
1896 9, /* numStepsInLadder */
1897 4, /* defaultStepNum */
1898 { { {4, 1, 1, 1}, 6, "FG8"},
1899 { {4, 0, 1, 1}, 4, "FG7"},
1900 { {3, 1, 1, 1}, 3, "FG6"},
1901 { {4, 0, 0, 1}, 1, "FG5"},
1902 { {4, 1, 1, 0}, 0, "FG4"}, /* noJack */
1903 { {4, 0, 1, 0}, -2, "FG3"}, /* halfJack */
1904 { {3, 1, 1, 0}, -3, "FG2"}, /* clip3 */
1905 { {4, 0, 0, 0}, -4, "FG1"}, /* noJack */
1906 { {2, 1, 1, 0}, -6, "FG0"} /* clip2 */
1911 * Initialize the gain structure to good values
1914 ar5211InitializeGainValues(struct ath_hal
*ah
)
1916 struct ath_hal_5211
*ahp
= AH5211(ah
);
1917 GAIN_VALUES
*gv
= &ahp
->ah_gainValues
;
1919 /* initialize gain optimization values */
1920 gv
->currStepNum
= gainLadder
.defaultStepNum
;
1921 gv
->currStep
= &gainLadder
.optStep
[gainLadder
.defaultStepNum
];
1922 gv
->active
= AH_TRUE
;
1928 ar5211InvalidGainReadback(struct ath_hal
*ah
, GAIN_VALUES
*gv
)
1930 HAL_CHANNEL_INTERNAL
*chan
= AH_PRIVATE(ah
)->ah_curchan
;
1932 uint32_t L1
, L2
, L3
, L4
;
1934 if (IS_CHAN_CCK(chan
)) {
1950 gv
->loTrig
= L1
+ DYN_ADJ_LO_MARGIN
;
1951 gv
->hiTrig
= L4
- DYN_ADJ_UP_MARGIN
;
1955 return !((g
>= L1
&& g
<= L2
) || (g
>= L3
&& g
<= L4
));
1959 * Enable the probe gain check on the next packet
1962 ar5211RequestRfgain(struct ath_hal
*ah
)
1964 struct ath_hal_5211
*ahp
= AH5211(ah
);
1966 /* Enable the gain readback probe */
1967 OS_REG_WRITE(ah
, AR_PHY_PAPD_PROBE
,
1968 SM(ahp
->ah_tx6PowerInHalfDbm
, AR_PHY_PAPD_PROBE_POWERTX
)
1969 | AR_PHY_PAPD_PROBE_NEXT_TX
);
1971 ahp
->ah_rfgainState
= HAL_RFGAIN_READ_REQUESTED
;
1975 * Exported call to check for a recent gain reading and return
1976 * the current state of the thermal calibration gain engine.
1979 ar5211GetRfgain(struct ath_hal
*ah
)
1981 struct ath_hal_5211
*ahp
= AH5211(ah
);
1982 GAIN_VALUES
*gv
= &ahp
->ah_gainValues
;
1986 return HAL_RFGAIN_INACTIVE
;
1988 if (ahp
->ah_rfgainState
== HAL_RFGAIN_READ_REQUESTED
) {
1989 /* Caller had asked to setup a new reading. Check it. */
1990 rddata
= OS_REG_READ(ah
, AR_PHY_PAPD_PROBE
);
1992 if ((rddata
& AR_PHY_PAPD_PROBE_NEXT_TX
) == 0) {
1993 /* bit got cleared, we have a new reading. */
1994 gv
->currGain
= rddata
>> AR_PHY_PAPD_PROBE_GAINF_S
;
1995 /* inactive by default */
1996 ahp
->ah_rfgainState
= HAL_RFGAIN_INACTIVE
;
1998 if (!ar5211InvalidGainReadback(ah
, gv
) &&
1999 ar5211IsGainAdjustNeeded(ah
, gv
) &&
2000 ar5211AdjustGain(ah
, gv
) > 0) {
2002 * Change needed. Copy ladder info
2005 ar5211SetRfgain(ah
, gv
);
2006 ahp
->ah_rfgainState
= HAL_RFGAIN_NEED_CHANGE
;
2010 return ahp
->ah_rfgainState
;
2014 * Check to see if our readback gain level sits within the linear
2015 * region of our current variable attenuation window
2018 ar5211IsGainAdjustNeeded(struct ath_hal
*ah
, const GAIN_VALUES
*gv
)
2020 return (gv
->currGain
<= gv
->loTrig
|| gv
->currGain
>= gv
->hiTrig
);
2024 * Move the rabbit ears in the correct direction.
2027 ar5211AdjustGain(struct ath_hal
*ah
, GAIN_VALUES
*gv
)
2029 /* return > 0 for valid adjustments. */
2033 gv
->currStep
= &gainLadder
.optStep
[gv
->currStepNum
];
2034 if (gv
->currGain
>= gv
->hiTrig
) {
2035 if (gv
->currStepNum
== 0) {
2036 HALDEBUG(ah
, HAL_DEBUG_RFPARAM
,
2037 "%s: Max gain limit.\n", __func__
);
2040 HALDEBUG(ah
, HAL_DEBUG_RFPARAM
,
2041 "%s: Adding gain: currG=%d [%s] --> ",
2042 __func__
, gv
->currGain
, gv
->currStep
->stepName
);
2043 gv
->targetGain
= gv
->currGain
;
2044 while (gv
->targetGain
>= gv
->hiTrig
&& gv
->currStepNum
> 0) {
2045 gv
->targetGain
-= 2 * (gainLadder
.optStep
[--(gv
->currStepNum
)].stepGain
-
2046 gv
->currStep
->stepGain
);
2047 gv
->currStep
= &gainLadder
.optStep
[gv
->currStepNum
];
2049 HALDEBUG(ah
, HAL_DEBUG_RFPARAM
, "targG=%d [%s]\n",
2050 gv
->targetGain
, gv
->currStep
->stepName
);
2053 if (gv
->currGain
<= gv
->loTrig
) {
2054 if (gv
->currStepNum
== gainLadder
.numStepsInLadder
-1) {
2055 HALDEBUG(ah
, HAL_DEBUG_RFPARAM
,
2056 "%s: Min gain limit.\n", __func__
);
2059 HALDEBUG(ah
, HAL_DEBUG_RFPARAM
,
2060 "%s: Deducting gain: currG=%d [%s] --> ",
2061 __func__
, gv
->currGain
, gv
->currStep
->stepName
);
2062 gv
->targetGain
= gv
->currGain
;
2063 while (gv
->targetGain
<= gv
->loTrig
&&
2064 gv
->currStepNum
< (gainLadder
.numStepsInLadder
- 1)) {
2065 gv
->targetGain
-= 2 *
2066 (gainLadder
.optStep
[++(gv
->currStepNum
)].stepGain
- gv
->currStep
->stepGain
);
2067 gv
->currStep
= &gainLadder
.optStep
[gv
->currStepNum
];
2069 HALDEBUG(ah
, HAL_DEBUG_RFPARAM
, "targG=%d [%s]\n",
2070 gv
->targetGain
, gv
->currStep
->stepName
);
2073 return 0; /* caller didn't call needAdjGain first */
2077 * Adjust the 5GHz EEPROM information with the desired calibration values.
2080 ar5211SetRfgain(struct ath_hal
*ah
, const GAIN_VALUES
*gv
)
2082 HAL_EEPROM
*ee
= AH_PRIVATE(ah
)->ah_eeprom
;
2086 ee
->ee_cornerCal
.clip
= gv
->currStep
->paramVal
[0]; /* bb_tx_clip */
2087 ee
->ee_cornerCal
.pd90
= gv
->currStep
->paramVal
[1]; /* rf_pwd_90 */
2088 ee
->ee_cornerCal
.pd84
= gv
->currStep
->paramVal
[2]; /* rf_pwd_84 */
2089 ee
->ee_cornerCal
.gSel
= gv
->currStep
->paramVal
[3]; /* rf_rfgainsel */
2093 ar5211SetOperatingMode(struct ath_hal
*ah
, int opmode
)
2095 struct ath_hal_5211
*ahp
= AH5211(ah
);
2098 val
= OS_REG_READ(ah
, AR_STA_ID1
) & 0xffff;
2101 OS_REG_WRITE(ah
, AR_STA_ID1
, val
2103 | AR_STA_ID1_RTS_USE_DEF
2104 | ahp
->ah_staId1Defaults
);
2107 OS_REG_WRITE(ah
, AR_STA_ID1
, val
2109 | AR_STA_ID1_DESC_ANTENNA
2110 | ahp
->ah_staId1Defaults
);
2114 OS_REG_WRITE(ah
, AR_STA_ID1
, val
2115 | AR_STA_ID1_DEFAULT_ANTENNA
2116 | ahp
->ah_staId1Defaults
);
2122 ar5211SetPCUConfig(struct ath_hal
*ah
)
2124 ar5211SetOperatingMode(ah
, AH_PRIVATE(ah
)->ah_opmode
);
2126 #endif /* AH_SUPPORT_AR5211 */