4 * Copyright (C) 1991-1997, Thomas G. Lane.
5 * Modified 2006-2009 by Guido Vollbeding.
6 * This file is part of the Independent JPEG Group's software.
7 * For conditions of distribution and use, see the accompanying README file.
9 * This file contains Huffman entropy encoding routines.
10 * Both sequential and progressive modes are supported in this single module.
12 * Much of the complexity here has to do with supporting output suspension.
13 * If the data destination module demands suspension, we want to be able to
14 * back up to the start of the current MCU. To do this, we copy state
15 * variables into local working storage, and update them back to the
16 * permanent JPEG objects only upon successful completion of an MCU.
18 * We do not support output suspension for the progressive JPEG mode, since
19 * the library currently does not allow multiple-scan files to be written
20 * with output suspension.
23 #define JPEG_INTERNALS
28 /* The legal range of a DCT coefficient is
29 * -1024 .. +1023 for 8-bit data;
30 * -16384 .. +16383 for 12-bit data.
31 * Hence the magnitude should always fit in 10 or 14 bits respectively.
34 #if BITS_IN_JSAMPLE == 8
35 #define MAX_COEF_BITS 10
37 #define MAX_COEF_BITS 14
40 /* Derived data constructed for each Huffman table */
43 unsigned int ehufco
[256]; /* code for each symbol */
44 char ehufsi
[256]; /* length of code for each symbol */
45 /* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */
49 /* Expanded entropy encoder object for Huffman encoding.
51 * The savable_state subrecord contains fields that change within an MCU,
52 * but must not be updated permanently until we complete the MCU.
56 INT32 put_buffer
; /* current bit-accumulation buffer */
57 int put_bits
; /* # of bits now in it */
58 int last_dc_val
[MAX_COMPS_IN_SCAN
]; /* last DC coef for each component */
61 /* This macro is to work around compilers with missing or broken
62 * structure assignment. You'll need to fix this code if you have
63 * such a compiler and you change MAX_COMPS_IN_SCAN.
66 #ifndef NO_STRUCT_ASSIGN
67 #define ASSIGN_STATE(dest,src) ((dest) = (src))
69 #if MAX_COMPS_IN_SCAN == 4
70 #define ASSIGN_STATE(dest,src) \
71 ((dest).put_buffer = (src).put_buffer, \
72 (dest).put_bits = (src).put_bits, \
73 (dest).last_dc_val[0] = (src).last_dc_val[0], \
74 (dest).last_dc_val[1] = (src).last_dc_val[1], \
75 (dest).last_dc_val[2] = (src).last_dc_val[2], \
76 (dest).last_dc_val[3] = (src).last_dc_val[3])
82 struct jpeg_entropy_encoder pub
; /* public fields */
84 savable_state saved
; /* Bit buffer & DC state at start of MCU */
86 /* These fields are NOT loaded into local working state. */
87 unsigned int restarts_to_go
; /* MCUs left in this restart interval */
88 int next_restart_num
; /* next restart number to write (0-7) */
90 /* Pointers to derived tables (these workspaces have image lifespan) */
91 c_derived_tbl
* dc_derived_tbls
[NUM_HUFF_TBLS
];
92 c_derived_tbl
* ac_derived_tbls
[NUM_HUFF_TBLS
];
94 /* Statistics tables for optimization */
95 long * dc_count_ptrs
[NUM_HUFF_TBLS
];
96 long * ac_count_ptrs
[NUM_HUFF_TBLS
];
98 /* Following fields used only in progressive mode */
100 /* Mode flag: TRUE for optimization, FALSE for actual data output */
101 boolean gather_statistics
;
103 /* next_output_byte/free_in_buffer are local copies of cinfo->dest fields.
105 JOCTET
* next_output_byte
; /* => next byte to write in buffer */
106 size_t free_in_buffer
; /* # of byte spaces remaining in buffer */
107 j_compress_ptr cinfo
; /* link to cinfo (needed for dump_buffer) */
109 /* Coding status for AC components */
110 int ac_tbl_no
; /* the table number of the single component */
111 unsigned int EOBRUN
; /* run length of EOBs */
112 unsigned int BE
; /* # of buffered correction bits before MCU */
113 char * bit_buffer
; /* buffer for correction bits (1 per char) */
114 /* packing correction bits tightly would save some space but cost time... */
115 } huff_entropy_encoder
;
117 typedef huff_entropy_encoder
* huff_entropy_ptr
;
119 /* Working state while writing an MCU (sequential mode).
120 * This struct contains all the fields that are needed by subroutines.
124 JOCTET
* next_output_byte
; /* => next byte to write in buffer */
125 size_t free_in_buffer
; /* # of byte spaces remaining in buffer */
126 savable_state cur
; /* Current bit buffer & DC state */
127 j_compress_ptr cinfo
; /* dump_buffer needs access to this */
130 /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit
131 * buffer can hold. Larger sizes may slightly improve compression, but
132 * 1000 is already well into the realm of overkill.
133 * The minimum safe size is 64 bits.
136 #define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */
138 /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
139 * We assume that int right shift is unsigned if INT32 right shift is,
140 * which should be safe.
143 #ifdef RIGHT_SHIFT_IS_UNSIGNED
144 #define ISHIFT_TEMPS int ishift_temp;
145 #define IRIGHT_SHIFT(x,shft) \
146 ((ishift_temp = (x)) < 0 ? \
147 (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
148 (ishift_temp >> (shft)))
151 #define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
156 * Compute the derived values for a Huffman table.
157 * This routine also performs some validation checks on the table.
161 jpeg_make_c_derived_tbl (j_compress_ptr cinfo
, boolean isDC
, int tblno
,
162 c_derived_tbl
** pdtbl
)
166 int p
, i
, l
, lastp
, si
, maxsymbol
;
168 unsigned int huffcode
[257];
171 /* Note that huffsize[] and huffcode[] are filled in code-length order,
172 * paralleling the order of the symbols themselves in htbl->huffval[].
175 /* Find the input Huffman table */
176 if (tblno
< 0 || tblno
>= NUM_HUFF_TBLS
)
177 ERREXIT1(cinfo
, JERR_NO_HUFF_TABLE
, tblno
);
179 isDC
? cinfo
->dc_huff_tbl_ptrs
[tblno
] : cinfo
->ac_huff_tbl_ptrs
[tblno
];
181 ERREXIT1(cinfo
, JERR_NO_HUFF_TABLE
, tblno
);
183 /* Allocate a workspace if we haven't already done so. */
185 *pdtbl
= (c_derived_tbl
*)
186 (*cinfo
->mem
->alloc_small
) ((j_common_ptr
) cinfo
, JPOOL_IMAGE
,
187 SIZEOF(c_derived_tbl
));
190 /* Figure C.1: make table of Huffman code length for each symbol */
193 for (l
= 1; l
<= 16; l
++) {
194 i
= (int) htbl
->bits
[l
];
195 if (i
< 0 || p
+ i
> 256) /* protect against table overrun */
196 ERREXIT(cinfo
, JERR_BAD_HUFF_TABLE
);
198 huffsize
[p
++] = (char) l
;
203 /* Figure C.2: generate the codes themselves */
204 /* We also validate that the counts represent a legal Huffman code tree. */
209 while (huffsize
[p
]) {
210 while (((int) huffsize
[p
]) == si
) {
211 huffcode
[p
++] = code
;
214 /* code is now 1 more than the last code used for codelength si; but
215 * it must still fit in si bits, since no code is allowed to be all ones.
217 if (((INT32
) code
) >= (((INT32
) 1) << si
))
218 ERREXIT(cinfo
, JERR_BAD_HUFF_TABLE
);
223 /* Figure C.3: generate encoding tables */
224 /* These are code and size indexed by symbol value */
226 /* Set all codeless symbols to have code length 0;
227 * this lets us detect duplicate VAL entries here, and later
228 * allows emit_bits to detect any attempt to emit such symbols.
230 MEMZERO(dtbl
->ehufsi
, SIZEOF(dtbl
->ehufsi
));
232 /* This is also a convenient place to check for out-of-range
233 * and duplicated VAL entries. We allow 0..255 for AC symbols
234 * but only 0..15 for DC. (We could constrain them further
235 * based on data depth and mode, but this seems enough.)
237 maxsymbol
= isDC
? 15 : 255;
239 for (p
= 0; p
< lastp
; p
++) {
240 i
= htbl
->huffval
[p
];
241 if (i
< 0 || i
> maxsymbol
|| dtbl
->ehufsi
[i
])
242 ERREXIT(cinfo
, JERR_BAD_HUFF_TABLE
);
243 dtbl
->ehufco
[i
] = huffcode
[p
];
244 dtbl
->ehufsi
[i
] = huffsize
[p
];
249 /* Outputting bytes to the file.
250 * NB: these must be called only when actually outputting,
251 * that is, entropy->gather_statistics == FALSE.
254 /* Emit a byte, taking 'action' if must suspend. */
255 #define emit_byte_s(state,val,action) \
256 { *(state)->next_output_byte++ = (JOCTET) (val); \
257 if (--(state)->free_in_buffer == 0) \
258 if (! dump_buffer_s(state)) \
262 #define emit_byte_e(entropy,val) \
263 { *(entropy)->next_output_byte++ = (JOCTET) (val); \
264 if (--(entropy)->free_in_buffer == 0) \
265 dump_buffer_e(entropy); }
269 dump_buffer_s (working_state
* state
)
270 /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
272 struct jpeg_destination_mgr
* dest
= state
->cinfo
->dest
;
274 if (! (*dest
->empty_output_buffer
) (state
->cinfo
))
276 /* After a successful buffer dump, must reset buffer pointers */
277 state
->next_output_byte
= dest
->next_output_byte
;
278 state
->free_in_buffer
= dest
->free_in_buffer
;
284 dump_buffer_e (huff_entropy_ptr entropy
)
285 /* Empty the output buffer; we do not support suspension in this case. */
287 struct jpeg_destination_mgr
* dest
= entropy
->cinfo
->dest
;
289 if (! (*dest
->empty_output_buffer
) (entropy
->cinfo
))
290 ERREXIT(entropy
->cinfo
, JERR_CANT_SUSPEND
);
291 /* After a successful buffer dump, must reset buffer pointers */
292 entropy
->next_output_byte
= dest
->next_output_byte
;
293 entropy
->free_in_buffer
= dest
->free_in_buffer
;
297 /* Outputting bits to the file */
299 /* Only the right 24 bits of put_buffer are used; the valid bits are
300 * left-justified in this part. At most 16 bits can be passed to emit_bits
301 * in one call, and we never retain more than 7 bits in put_buffer
302 * between calls, so 24 bits are sufficient.
307 emit_bits_s (working_state
* state
, unsigned int code
, int size
)
308 /* Emit some bits; return TRUE if successful, FALSE if must suspend */
310 /* This routine is heavily used, so it's worth coding tightly. */
311 register INT32 put_buffer
= (INT32
) code
;
312 register int put_bits
= state
->cur
.put_bits
;
314 /* if size is 0, caller used an invalid Huffman table entry */
316 ERREXIT(state
->cinfo
, JERR_HUFF_MISSING_CODE
);
318 put_buffer
&= (((INT32
) 1)<<size
) - 1; /* mask off any extra bits in code */
320 put_bits
+= size
; /* new number of bits in buffer */
322 put_buffer
<<= 24 - put_bits
; /* align incoming bits */
324 put_buffer
|= state
->cur
.put_buffer
; /* and merge with old buffer contents */
326 while (put_bits
>= 8) {
327 int c
= (int) ((put_buffer
>> 16) & 0xFF);
329 emit_byte_s(state
, c
, return FALSE
);
330 if (c
== 0xFF) { /* need to stuff a zero byte? */
331 emit_byte_s(state
, 0, return FALSE
);
337 state
->cur
.put_buffer
= put_buffer
; /* update state variables */
338 state
->cur
.put_bits
= put_bits
;
346 emit_bits_e (huff_entropy_ptr entropy
, unsigned int code
, int size
)
347 /* Emit some bits, unless we are in gather mode */
349 /* This routine is heavily used, so it's worth coding tightly. */
350 register INT32 put_buffer
= (INT32
) code
;
351 register int put_bits
= entropy
->saved
.put_bits
;
353 /* if size is 0, caller used an invalid Huffman table entry */
355 ERREXIT(entropy
->cinfo
, JERR_HUFF_MISSING_CODE
);
357 if (entropy
->gather_statistics
)
358 return; /* do nothing if we're only getting stats */
360 put_buffer
&= (((INT32
) 1)<<size
) - 1; /* mask off any extra bits in code */
362 put_bits
+= size
; /* new number of bits in buffer */
364 put_buffer
<<= 24 - put_bits
; /* align incoming bits */
366 /* and merge with old buffer contents */
367 put_buffer
|= entropy
->saved
.put_buffer
;
369 while (put_bits
>= 8) {
370 int c
= (int) ((put_buffer
>> 16) & 0xFF);
372 emit_byte_e(entropy
, c
);
373 if (c
== 0xFF) { /* need to stuff a zero byte? */
374 emit_byte_e(entropy
, 0);
380 entropy
->saved
.put_buffer
= put_buffer
; /* update variables */
381 entropy
->saved
.put_bits
= put_bits
;
386 flush_bits_s (working_state
* state
)
388 if (! emit_bits_s(state
, 0x7F, 7)) /* fill any partial byte with ones */
390 state
->cur
.put_buffer
= 0; /* and reset bit-buffer to empty */
391 state
->cur
.put_bits
= 0;
397 flush_bits_e (huff_entropy_ptr entropy
)
399 emit_bits_e(entropy
, 0x7F, 7); /* fill any partial byte with ones */
400 entropy
->saved
.put_buffer
= 0; /* and reset bit-buffer to empty */
401 entropy
->saved
.put_bits
= 0;
406 * Emit (or just count) a Huffman symbol.
411 emit_dc_symbol (huff_entropy_ptr entropy
, int tbl_no
, int symbol
)
413 if (entropy
->gather_statistics
)
414 entropy
->dc_count_ptrs
[tbl_no
][symbol
]++;
416 c_derived_tbl
* tbl
= entropy
->dc_derived_tbls
[tbl_no
];
417 emit_bits_e(entropy
, tbl
->ehufco
[symbol
], tbl
->ehufsi
[symbol
]);
424 emit_ac_symbol (huff_entropy_ptr entropy
, int tbl_no
, int symbol
)
426 if (entropy
->gather_statistics
)
427 entropy
->ac_count_ptrs
[tbl_no
][symbol
]++;
429 c_derived_tbl
* tbl
= entropy
->ac_derived_tbls
[tbl_no
];
430 emit_bits_e(entropy
, tbl
->ehufco
[symbol
], tbl
->ehufsi
[symbol
]);
436 * Emit bits from a correction bit buffer.
440 emit_buffered_bits (huff_entropy_ptr entropy
, char * bufstart
,
443 if (entropy
->gather_statistics
)
444 return; /* no real work */
447 emit_bits_e(entropy
, (unsigned int) (*bufstart
), 1);
455 * Emit any pending EOBRUN symbol.
459 emit_eobrun (huff_entropy_ptr entropy
)
461 register int temp
, nbits
;
463 if (entropy
->EOBRUN
> 0) { /* if there is any pending EOBRUN */
464 temp
= entropy
->EOBRUN
;
468 /* safety check: shouldn't happen given limited correction-bit buffer */
470 ERREXIT(entropy
->cinfo
, JERR_HUFF_MISSING_CODE
);
472 emit_ac_symbol(entropy
, entropy
->ac_tbl_no
, nbits
<< 4);
474 emit_bits_e(entropy
, entropy
->EOBRUN
, nbits
);
478 /* Emit any buffered correction bits */
479 emit_buffered_bits(entropy
, entropy
->bit_buffer
, entropy
->BE
);
486 * Emit a restart marker & resynchronize predictions.
490 emit_restart_s (working_state
* state
, int restart_num
)
494 if (! flush_bits_s(state
))
497 emit_byte_s(state
, 0xFF, return FALSE
);
498 emit_byte_s(state
, JPEG_RST0
+ restart_num
, return FALSE
);
500 /* Re-initialize DC predictions to 0 */
501 for (ci
= 0; ci
< state
->cinfo
->comps_in_scan
; ci
++)
502 state
->cur
.last_dc_val
[ci
] = 0;
504 /* The restart counter is not updated until we successfully write the MCU. */
511 emit_restart_e (huff_entropy_ptr entropy
, int restart_num
)
515 emit_eobrun(entropy
);
517 if (! entropy
->gather_statistics
) {
518 flush_bits_e(entropy
);
519 emit_byte_e(entropy
, 0xFF);
520 emit_byte_e(entropy
, JPEG_RST0
+ restart_num
);
523 if (entropy
->cinfo
->Ss
== 0) {
524 /* Re-initialize DC predictions to 0 */
525 for (ci
= 0; ci
< entropy
->cinfo
->comps_in_scan
; ci
++)
526 entropy
->saved
.last_dc_val
[ci
] = 0;
528 /* Re-initialize all AC-related fields to 0 */
536 * MCU encoding for DC initial scan (either spectral selection,
537 * or first pass of successive approximation).
541 encode_mcu_DC_first (j_compress_ptr cinfo
, JBLOCKROW
*MCU_data
)
543 huff_entropy_ptr entropy
= (huff_entropy_ptr
) cinfo
->entropy
;
544 register int temp
, temp2
;
549 jpeg_component_info
* compptr
;
552 entropy
->next_output_byte
= cinfo
->dest
->next_output_byte
;
553 entropy
->free_in_buffer
= cinfo
->dest
->free_in_buffer
;
555 /* Emit restart marker if needed */
556 if (cinfo
->restart_interval
)
557 if (entropy
->restarts_to_go
== 0)
558 emit_restart_e(entropy
, entropy
->next_restart_num
);
560 /* Encode the MCU data blocks */
561 for (blkn
= 0; blkn
< cinfo
->blocks_in_MCU
; blkn
++) {
562 block
= MCU_data
[blkn
];
563 ci
= cinfo
->MCU_membership
[blkn
];
564 compptr
= cinfo
->cur_comp_info
[ci
];
566 /* Compute the DC value after the required point transform by Al.
567 * This is simply an arithmetic right shift.
569 temp2
= IRIGHT_SHIFT((int) ((*block
)[0]), Al
);
571 /* DC differences are figured on the point-transformed values. */
572 temp
= temp2
- entropy
->saved
.last_dc_val
[ci
];
573 entropy
->saved
.last_dc_val
[ci
] = temp2
;
575 /* Encode the DC coefficient difference per section G.1.2.1 */
578 temp
= -temp
; /* temp is abs value of input */
579 /* For a negative input, want temp2 = bitwise complement of abs(input) */
580 /* This code assumes we are on a two's complement machine */
584 /* Find the number of bits needed for the magnitude of the coefficient */
590 /* Check for out-of-range coefficient values.
591 * Since we're encoding a difference, the range limit is twice as much.
593 if (nbits
> MAX_COEF_BITS
+1)
594 ERREXIT(cinfo
, JERR_BAD_DCT_COEF
);
596 /* Count/emit the Huffman-coded symbol for the number of bits */
597 emit_dc_symbol(entropy
, compptr
->dc_tbl_no
, nbits
);
599 /* Emit that number of bits of the value, if positive, */
600 /* or the complement of its magnitude, if negative. */
601 if (nbits
) /* emit_bits rejects calls with size 0 */
602 emit_bits_e(entropy
, (unsigned int) temp2
, nbits
);
605 cinfo
->dest
->next_output_byte
= entropy
->next_output_byte
;
606 cinfo
->dest
->free_in_buffer
= entropy
->free_in_buffer
;
608 /* Update restart-interval state too */
609 if (cinfo
->restart_interval
) {
610 if (entropy
->restarts_to_go
== 0) {
611 entropy
->restarts_to_go
= cinfo
->restart_interval
;
612 entropy
->next_restart_num
++;
613 entropy
->next_restart_num
&= 7;
615 entropy
->restarts_to_go
--;
623 * MCU encoding for AC initial scan (either spectral selection,
624 * or first pass of successive approximation).
628 encode_mcu_AC_first (j_compress_ptr cinfo
, JBLOCKROW
*MCU_data
)
630 huff_entropy_ptr entropy
= (huff_entropy_ptr
) cinfo
->entropy
;
631 register int temp
, temp2
;
635 const int * natural_order
;
638 entropy
->next_output_byte
= cinfo
->dest
->next_output_byte
;
639 entropy
->free_in_buffer
= cinfo
->dest
->free_in_buffer
;
641 /* Emit restart marker if needed */
642 if (cinfo
->restart_interval
)
643 if (entropy
->restarts_to_go
== 0)
644 emit_restart_e(entropy
, entropy
->next_restart_num
);
648 natural_order
= cinfo
->natural_order
;
650 /* Encode the MCU data block */
653 /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */
655 r
= 0; /* r = run length of zeros */
657 for (k
= cinfo
->Ss
; k
<= Se
; k
++) {
658 if ((temp
= (*block
)[natural_order
[k
]]) == 0) {
662 /* We must apply the point transform by Al. For AC coefficients this
663 * is an integer division with rounding towards 0. To do this portably
664 * in C, we shift after obtaining the absolute value; so the code is
665 * interwoven with finding the abs value (temp) and output bits (temp2).
668 temp
= -temp
; /* temp is abs value of input */
669 temp
>>= Al
; /* apply the point transform */
670 /* For a negative coef, want temp2 = bitwise complement of abs(coef) */
673 temp
>>= Al
; /* apply the point transform */
676 /* Watch out for case that nonzero coef is zero after point transform */
682 /* Emit any pending EOBRUN */
683 if (entropy
->EOBRUN
> 0)
684 emit_eobrun(entropy
);
685 /* if run length > 15, must emit special run-length-16 codes (0xF0) */
687 emit_ac_symbol(entropy
, entropy
->ac_tbl_no
, 0xF0);
691 /* Find the number of bits needed for the magnitude of the coefficient */
692 nbits
= 1; /* there must be at least one 1 bit */
695 /* Check for out-of-range coefficient values */
696 if (nbits
> MAX_COEF_BITS
)
697 ERREXIT(cinfo
, JERR_BAD_DCT_COEF
);
699 /* Count/emit Huffman symbol for run length / number of bits */
700 emit_ac_symbol(entropy
, entropy
->ac_tbl_no
, (r
<< 4) + nbits
);
702 /* Emit that number of bits of the value, if positive, */
703 /* or the complement of its magnitude, if negative. */
704 emit_bits_e(entropy
, (unsigned int) temp2
, nbits
);
706 r
= 0; /* reset zero run length */
709 if (r
> 0) { /* If there are trailing zeroes, */
710 entropy
->EOBRUN
++; /* count an EOB */
711 if (entropy
->EOBRUN
== 0x7FFF)
712 emit_eobrun(entropy
); /* force it out to avoid overflow */
715 cinfo
->dest
->next_output_byte
= entropy
->next_output_byte
;
716 cinfo
->dest
->free_in_buffer
= entropy
->free_in_buffer
;
718 /* Update restart-interval state too */
719 if (cinfo
->restart_interval
) {
720 if (entropy
->restarts_to_go
== 0) {
721 entropy
->restarts_to_go
= cinfo
->restart_interval
;
722 entropy
->next_restart_num
++;
723 entropy
->next_restart_num
&= 7;
725 entropy
->restarts_to_go
--;
733 * MCU encoding for DC successive approximation refinement scan.
734 * Note: we assume such scans can be multi-component, although the spec
735 * is not very clear on the point.
739 encode_mcu_DC_refine (j_compress_ptr cinfo
, JBLOCKROW
*MCU_data
)
741 huff_entropy_ptr entropy
= (huff_entropy_ptr
) cinfo
->entropy
;
747 entropy
->next_output_byte
= cinfo
->dest
->next_output_byte
;
748 entropy
->free_in_buffer
= cinfo
->dest
->free_in_buffer
;
750 /* Emit restart marker if needed */
751 if (cinfo
->restart_interval
)
752 if (entropy
->restarts_to_go
== 0)
753 emit_restart_e(entropy
, entropy
->next_restart_num
);
755 /* Encode the MCU data blocks */
756 for (blkn
= 0; blkn
< cinfo
->blocks_in_MCU
; blkn
++) {
757 block
= MCU_data
[blkn
];
759 /* We simply emit the Al'th bit of the DC coefficient value. */
761 emit_bits_e(entropy
, (unsigned int) (temp
>> Al
), 1);
764 cinfo
->dest
->next_output_byte
= entropy
->next_output_byte
;
765 cinfo
->dest
->free_in_buffer
= entropy
->free_in_buffer
;
767 /* Update restart-interval state too */
768 if (cinfo
->restart_interval
) {
769 if (entropy
->restarts_to_go
== 0) {
770 entropy
->restarts_to_go
= cinfo
->restart_interval
;
771 entropy
->next_restart_num
++;
772 entropy
->next_restart_num
&= 7;
774 entropy
->restarts_to_go
--;
782 * MCU encoding for AC successive approximation refinement scan.
786 encode_mcu_AC_refine (j_compress_ptr cinfo
, JBLOCKROW
*MCU_data
)
788 huff_entropy_ptr entropy
= (huff_entropy_ptr
) cinfo
->entropy
;
795 const int * natural_order
;
797 int absvalues
[DCTSIZE2
];
799 entropy
->next_output_byte
= cinfo
->dest
->next_output_byte
;
800 entropy
->free_in_buffer
= cinfo
->dest
->free_in_buffer
;
802 /* Emit restart marker if needed */
803 if (cinfo
->restart_interval
)
804 if (entropy
->restarts_to_go
== 0)
805 emit_restart_e(entropy
, entropy
->next_restart_num
);
809 natural_order
= cinfo
->natural_order
;
811 /* Encode the MCU data block */
814 /* It is convenient to make a pre-pass to determine the transformed
815 * coefficients' absolute values and the EOB position.
818 for (k
= cinfo
->Ss
; k
<= Se
; k
++) {
819 temp
= (*block
)[natural_order
[k
]];
820 /* We must apply the point transform by Al. For AC coefficients this
821 * is an integer division with rounding towards 0. To do this portably
822 * in C, we shift after obtaining the absolute value.
825 temp
= -temp
; /* temp is abs value of input */
826 temp
>>= Al
; /* apply the point transform */
827 absvalues
[k
] = temp
; /* save abs value for main pass */
829 EOB
= k
; /* EOB = index of last newly-nonzero coef */
832 /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */
834 r
= 0; /* r = run length of zeros */
835 BR
= 0; /* BR = count of buffered bits added now */
836 BR_buffer
= entropy
->bit_buffer
+ entropy
->BE
; /* Append bits to buffer */
838 for (k
= cinfo
->Ss
; k
<= Se
; k
++) {
839 if ((temp
= absvalues
[k
]) == 0) {
844 /* Emit any required ZRLs, but not if they can be folded into EOB */
845 while (r
> 15 && k
<= EOB
) {
846 /* emit any pending EOBRUN and the BE correction bits */
847 emit_eobrun(entropy
);
849 emit_ac_symbol(entropy
, entropy
->ac_tbl_no
, 0xF0);
851 /* Emit buffered correction bits that must be associated with ZRL */
852 emit_buffered_bits(entropy
, BR_buffer
, BR
);
853 BR_buffer
= entropy
->bit_buffer
; /* BE bits are gone now */
857 /* If the coef was previously nonzero, it only needs a correction bit.
858 * NOTE: a straight translation of the spec's figure G.7 would suggest
859 * that we also need to test r > 15. But if r > 15, we can only get here
860 * if k > EOB, which implies that this coefficient is not 1.
863 /* The correction bit is the next bit of the absolute value. */
864 BR_buffer
[BR
++] = (char) (temp
& 1);
868 /* Emit any pending EOBRUN and the BE correction bits */
869 emit_eobrun(entropy
);
871 /* Count/emit Huffman symbol for run length / number of bits */
872 emit_ac_symbol(entropy
, entropy
->ac_tbl_no
, (r
<< 4) + 1);
874 /* Emit output bit for newly-nonzero coef */
875 temp
= ((*block
)[natural_order
[k
]] < 0) ? 0 : 1;
876 emit_bits_e(entropy
, (unsigned int) temp
, 1);
878 /* Emit buffered correction bits that must be associated with this code */
879 emit_buffered_bits(entropy
, BR_buffer
, BR
);
880 BR_buffer
= entropy
->bit_buffer
; /* BE bits are gone now */
882 r
= 0; /* reset zero run length */
885 if (r
> 0 || BR
> 0) { /* If there are trailing zeroes, */
886 entropy
->EOBRUN
++; /* count an EOB */
887 entropy
->BE
+= BR
; /* concat my correction bits to older ones */
888 /* We force out the EOB if we risk either:
889 * 1. overflow of the EOB counter;
890 * 2. overflow of the correction bit buffer during the next MCU.
892 if (entropy
->EOBRUN
== 0x7FFF || entropy
->BE
> (MAX_CORR_BITS
-DCTSIZE2
+1))
893 emit_eobrun(entropy
);
896 cinfo
->dest
->next_output_byte
= entropy
->next_output_byte
;
897 cinfo
->dest
->free_in_buffer
= entropy
->free_in_buffer
;
899 /* Update restart-interval state too */
900 if (cinfo
->restart_interval
) {
901 if (entropy
->restarts_to_go
== 0) {
902 entropy
->restarts_to_go
= cinfo
->restart_interval
;
903 entropy
->next_restart_num
++;
904 entropy
->next_restart_num
&= 7;
906 entropy
->restarts_to_go
--;
913 /* Encode a single block's worth of coefficients */
916 encode_one_block (working_state
* state
, JCOEFPTR block
, int last_dc_val
,
917 c_derived_tbl
*dctbl
, c_derived_tbl
*actbl
)
919 register int temp
, temp2
;
921 register int k
, r
, i
;
922 int Se
= state
->cinfo
->lim_Se
;
923 const int * natural_order
= state
->cinfo
->natural_order
;
925 /* Encode the DC coefficient difference per section F.1.2.1 */
927 temp
= temp2
= block
[0] - last_dc_val
;
930 temp
= -temp
; /* temp is abs value of input */
931 /* For a negative input, want temp2 = bitwise complement of abs(input) */
932 /* This code assumes we are on a two's complement machine */
936 /* Find the number of bits needed for the magnitude of the coefficient */
942 /* Check for out-of-range coefficient values.
943 * Since we're encoding a difference, the range limit is twice as much.
945 if (nbits
> MAX_COEF_BITS
+1)
946 ERREXIT(state
->cinfo
, JERR_BAD_DCT_COEF
);
948 /* Emit the Huffman-coded symbol for the number of bits */
949 if (! emit_bits_s(state
, dctbl
->ehufco
[nbits
], dctbl
->ehufsi
[nbits
]))
952 /* Emit that number of bits of the value, if positive, */
953 /* or the complement of its magnitude, if negative. */
954 if (nbits
) /* emit_bits rejects calls with size 0 */
955 if (! emit_bits_s(state
, (unsigned int) temp2
, nbits
))
958 /* Encode the AC coefficients per section F.1.2.2 */
960 r
= 0; /* r = run length of zeros */
962 for (k
= 1; k
<= Se
; k
++) {
963 if ((temp
= block
[natural_order
[k
]]) == 0) {
966 /* if run length > 15, must emit special run-length-16 codes (0xF0) */
968 if (! emit_bits_s(state
, actbl
->ehufco
[0xF0], actbl
->ehufsi
[0xF0]))
975 temp
= -temp
; /* temp is abs value of input */
976 /* This code assumes we are on a two's complement machine */
980 /* Find the number of bits needed for the magnitude of the coefficient */
981 nbits
= 1; /* there must be at least one 1 bit */
984 /* Check for out-of-range coefficient values */
985 if (nbits
> MAX_COEF_BITS
)
986 ERREXIT(state
->cinfo
, JERR_BAD_DCT_COEF
);
988 /* Emit Huffman symbol for run length / number of bits */
989 i
= (r
<< 4) + nbits
;
990 if (! emit_bits_s(state
, actbl
->ehufco
[i
], actbl
->ehufsi
[i
]))
993 /* Emit that number of bits of the value, if positive, */
994 /* or the complement of its magnitude, if negative. */
995 if (! emit_bits_s(state
, (unsigned int) temp2
, nbits
))
1002 /* If the last coef(s) were zero, emit an end-of-block code */
1004 if (! emit_bits_s(state
, actbl
->ehufco
[0], actbl
->ehufsi
[0]))
1012 * Encode and output one MCU's worth of Huffman-compressed coefficients.
1016 encode_mcu_huff (j_compress_ptr cinfo
, JBLOCKROW
*MCU_data
)
1018 huff_entropy_ptr entropy
= (huff_entropy_ptr
) cinfo
->entropy
;
1019 working_state state
;
1021 jpeg_component_info
* compptr
;
1023 /* Load up working state */
1024 state
.next_output_byte
= cinfo
->dest
->next_output_byte
;
1025 state
.free_in_buffer
= cinfo
->dest
->free_in_buffer
;
1026 ASSIGN_STATE(state
.cur
, entropy
->saved
);
1027 state
.cinfo
= cinfo
;
1029 /* Emit restart marker if needed */
1030 if (cinfo
->restart_interval
) {
1031 if (entropy
->restarts_to_go
== 0)
1032 if (! emit_restart_s(&state
, entropy
->next_restart_num
))
1036 /* Encode the MCU data blocks */
1037 for (blkn
= 0; blkn
< cinfo
->blocks_in_MCU
; blkn
++) {
1038 ci
= cinfo
->MCU_membership
[blkn
];
1039 compptr
= cinfo
->cur_comp_info
[ci
];
1040 if (! encode_one_block(&state
,
1041 MCU_data
[blkn
][0], state
.cur
.last_dc_val
[ci
],
1042 entropy
->dc_derived_tbls
[compptr
->dc_tbl_no
],
1043 entropy
->ac_derived_tbls
[compptr
->ac_tbl_no
]))
1045 /* Update last_dc_val */
1046 state
.cur
.last_dc_val
[ci
] = MCU_data
[blkn
][0][0];
1049 /* Completed MCU, so update state */
1050 cinfo
->dest
->next_output_byte
= state
.next_output_byte
;
1051 cinfo
->dest
->free_in_buffer
= state
.free_in_buffer
;
1052 ASSIGN_STATE(entropy
->saved
, state
.cur
);
1054 /* Update restart-interval state too */
1055 if (cinfo
->restart_interval
) {
1056 if (entropy
->restarts_to_go
== 0) {
1057 entropy
->restarts_to_go
= cinfo
->restart_interval
;
1058 entropy
->next_restart_num
++;
1059 entropy
->next_restart_num
&= 7;
1061 entropy
->restarts_to_go
--;
1069 * Finish up at the end of a Huffman-compressed scan.
1073 finish_pass_huff (j_compress_ptr cinfo
)
1075 huff_entropy_ptr entropy
= (huff_entropy_ptr
) cinfo
->entropy
;
1076 working_state state
;
1078 if (cinfo
->progressive_mode
) {
1079 entropy
->next_output_byte
= cinfo
->dest
->next_output_byte
;
1080 entropy
->free_in_buffer
= cinfo
->dest
->free_in_buffer
;
1082 /* Flush out any buffered data */
1083 emit_eobrun(entropy
);
1084 flush_bits_e(entropy
);
1086 cinfo
->dest
->next_output_byte
= entropy
->next_output_byte
;
1087 cinfo
->dest
->free_in_buffer
= entropy
->free_in_buffer
;
1089 /* Load up working state ... flush_bits needs it */
1090 state
.next_output_byte
= cinfo
->dest
->next_output_byte
;
1091 state
.free_in_buffer
= cinfo
->dest
->free_in_buffer
;
1092 ASSIGN_STATE(state
.cur
, entropy
->saved
);
1093 state
.cinfo
= cinfo
;
1095 /* Flush out the last data */
1096 if (! flush_bits_s(&state
))
1097 ERREXIT(cinfo
, JERR_CANT_SUSPEND
);
1100 cinfo
->dest
->next_output_byte
= state
.next_output_byte
;
1101 cinfo
->dest
->free_in_buffer
= state
.free_in_buffer
;
1102 ASSIGN_STATE(entropy
->saved
, state
.cur
);
1108 * Huffman coding optimization.
1110 * We first scan the supplied data and count the number of uses of each symbol
1111 * that is to be Huffman-coded. (This process MUST agree with the code above.)
1112 * Then we build a Huffman coding tree for the observed counts.
1113 * Symbols which are not needed at all for the particular image are not
1114 * assigned any code, which saves space in the DHT marker as well as in
1115 * the compressed data.
1119 /* Process a single block's worth of coefficients */
1122 htest_one_block (j_compress_ptr cinfo
, JCOEFPTR block
, int last_dc_val
,
1123 long dc_counts
[], long ac_counts
[])
1128 int Se
= cinfo
->lim_Se
;
1129 const int * natural_order
= cinfo
->natural_order
;
1131 /* Encode the DC coefficient difference per section F.1.2.1 */
1133 temp
= block
[0] - last_dc_val
;
1137 /* Find the number of bits needed for the magnitude of the coefficient */
1143 /* Check for out-of-range coefficient values.
1144 * Since we're encoding a difference, the range limit is twice as much.
1146 if (nbits
> MAX_COEF_BITS
+1)
1147 ERREXIT(cinfo
, JERR_BAD_DCT_COEF
);
1149 /* Count the Huffman symbol for the number of bits */
1152 /* Encode the AC coefficients per section F.1.2.2 */
1154 r
= 0; /* r = run length of zeros */
1156 for (k
= 1; k
<= Se
; k
++) {
1157 if ((temp
= block
[natural_order
[k
]]) == 0) {
1160 /* if run length > 15, must emit special run-length-16 codes (0xF0) */
1166 /* Find the number of bits needed for the magnitude of the coefficient */
1170 /* Find the number of bits needed for the magnitude of the coefficient */
1171 nbits
= 1; /* there must be at least one 1 bit */
1172 while ((temp
>>= 1))
1174 /* Check for out-of-range coefficient values */
1175 if (nbits
> MAX_COEF_BITS
)
1176 ERREXIT(cinfo
, JERR_BAD_DCT_COEF
);
1178 /* Count Huffman symbol for run length / number of bits */
1179 ac_counts
[(r
<< 4) + nbits
]++;
1185 /* If the last coef(s) were zero, emit an end-of-block code */
1192 * Trial-encode one MCU's worth of Huffman-compressed coefficients.
1193 * No data is actually output, so no suspension return is possible.
1197 encode_mcu_gather (j_compress_ptr cinfo
, JBLOCKROW
*MCU_data
)
1199 huff_entropy_ptr entropy
= (huff_entropy_ptr
) cinfo
->entropy
;
1201 jpeg_component_info
* compptr
;
1203 /* Take care of restart intervals if needed */
1204 if (cinfo
->restart_interval
) {
1205 if (entropy
->restarts_to_go
== 0) {
1206 /* Re-initialize DC predictions to 0 */
1207 for (ci
= 0; ci
< cinfo
->comps_in_scan
; ci
++)
1208 entropy
->saved
.last_dc_val
[ci
] = 0;
1209 /* Update restart state */
1210 entropy
->restarts_to_go
= cinfo
->restart_interval
;
1212 entropy
->restarts_to_go
--;
1215 for (blkn
= 0; blkn
< cinfo
->blocks_in_MCU
; blkn
++) {
1216 ci
= cinfo
->MCU_membership
[blkn
];
1217 compptr
= cinfo
->cur_comp_info
[ci
];
1218 htest_one_block(cinfo
, MCU_data
[blkn
][0], entropy
->saved
.last_dc_val
[ci
],
1219 entropy
->dc_count_ptrs
[compptr
->dc_tbl_no
],
1220 entropy
->ac_count_ptrs
[compptr
->ac_tbl_no
]);
1221 entropy
->saved
.last_dc_val
[ci
] = MCU_data
[blkn
][0][0];
1229 * Generate the best Huffman code table for the given counts, fill htbl.
1231 * The JPEG standard requires that no symbol be assigned a codeword of all
1232 * one bits (so that padding bits added at the end of a compressed segment
1233 * can't look like a valid code). Because of the canonical ordering of
1234 * codewords, this just means that there must be an unused slot in the
1235 * longest codeword length category. Section K.2 of the JPEG spec suggests
1236 * reserving such a slot by pretending that symbol 256 is a valid symbol
1237 * with count 1. In theory that's not optimal; giving it count zero but
1238 * including it in the symbol set anyway should give a better Huffman code.
1239 * But the theoretically better code actually seems to come out worse in
1240 * practice, because it produces more all-ones bytes (which incur stuffed
1241 * zero bytes in the final file). In any case the difference is tiny.
1243 * The JPEG standard requires Huffman codes to be no more than 16 bits long.
1244 * If some symbols have a very small but nonzero probability, the Huffman tree
1245 * must be adjusted to meet the code length restriction. We currently use
1246 * the adjustment method suggested in JPEG section K.2. This method is *not*
1247 * optimal; it may not choose the best possible limited-length code. But
1248 * typically only very-low-frequency symbols will be given less-than-optimal
1249 * lengths, so the code is almost optimal. Experimental comparisons against
1250 * an optimal limited-length-code algorithm indicate that the difference is
1251 * microscopic --- usually less than a hundredth of a percent of total size.
1252 * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
1256 jpeg_gen_optimal_table (j_compress_ptr cinfo
, JHUFF_TBL
* htbl
, long freq
[])
1258 #define MAX_CLEN 32 /* assumed maximum initial code length */
1259 UINT8 bits
[MAX_CLEN
+1]; /* bits[k] = # of symbols with code length k */
1260 int codesize
[257]; /* codesize[k] = code length of symbol k */
1261 int others
[257]; /* next symbol in current branch of tree */
1266 /* This algorithm is explained in section K.2 of the JPEG standard */
1268 MEMZERO(bits
, SIZEOF(bits
));
1269 MEMZERO(codesize
, SIZEOF(codesize
));
1270 for (i
= 0; i
< 257; i
++)
1271 others
[i
] = -1; /* init links to empty */
1273 freq
[256] = 1; /* make sure 256 has a nonzero count */
1274 /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
1275 * that no real symbol is given code-value of all ones, because 256
1276 * will be placed last in the largest codeword category.
1279 /* Huffman's basic algorithm to assign optimal code lengths to symbols */
1282 /* Find the smallest nonzero frequency, set c1 = its symbol */
1283 /* In case of ties, take the larger symbol number */
1286 for (i
= 0; i
<= 256; i
++) {
1287 if (freq
[i
] && freq
[i
] <= v
) {
1293 /* Find the next smallest nonzero frequency, set c2 = its symbol */
1294 /* In case of ties, take the larger symbol number */
1297 for (i
= 0; i
<= 256; i
++) {
1298 if (freq
[i
] && freq
[i
] <= v
&& i
!= c1
) {
1304 /* Done if we've merged everything into one frequency */
1308 /* Else merge the two counts/trees */
1309 freq
[c1
] += freq
[c2
];
1312 /* Increment the codesize of everything in c1's tree branch */
1314 while (others
[c1
] >= 0) {
1319 others
[c1
] = c2
; /* chain c2 onto c1's tree branch */
1321 /* Increment the codesize of everything in c2's tree branch */
1323 while (others
[c2
] >= 0) {
1329 /* Now count the number of symbols of each code length */
1330 for (i
= 0; i
<= 256; i
++) {
1332 /* The JPEG standard seems to think that this can't happen, */
1333 /* but I'm paranoid... */
1334 if (codesize
[i
] > MAX_CLEN
)
1335 ERREXIT(cinfo
, JERR_HUFF_CLEN_OVERFLOW
);
1337 bits
[codesize
[i
]]++;
1341 /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
1342 * Huffman procedure assigned any such lengths, we must adjust the coding.
1343 * Here is what the JPEG spec says about how this next bit works:
1344 * Since symbols are paired for the longest Huffman code, the symbols are
1345 * removed from this length category two at a time. The prefix for the pair
1346 * (which is one bit shorter) is allocated to one of the pair; then,
1347 * skipping the BITS entry for that prefix length, a code word from the next
1348 * shortest nonzero BITS entry is converted into a prefix for two code words
1352 for (i
= MAX_CLEN
; i
> 16; i
--) {
1353 while (bits
[i
] > 0) {
1354 j
= i
- 2; /* find length of new prefix to be used */
1355 while (bits
[j
] == 0)
1358 bits
[i
] -= 2; /* remove two symbols */
1359 bits
[i
-1]++; /* one goes in this length */
1360 bits
[j
+1] += 2; /* two new symbols in this length */
1361 bits
[j
]--; /* symbol of this length is now a prefix */
1365 /* Remove the count for the pseudo-symbol 256 from the largest codelength */
1366 while (bits
[i
] == 0) /* find largest codelength still in use */
1370 /* Return final symbol counts (only for lengths 0..16) */
1371 MEMCOPY(htbl
->bits
, bits
, SIZEOF(htbl
->bits
));
1373 /* Return a list of the symbols sorted by code length */
1374 /* It's not real clear to me why we don't need to consider the codelength
1375 * changes made above, but the JPEG spec seems to think this works.
1378 for (i
= 1; i
<= MAX_CLEN
; i
++) {
1379 for (j
= 0; j
<= 255; j
++) {
1380 if (codesize
[j
] == i
) {
1381 htbl
->huffval
[p
] = (UINT8
) j
;
1387 /* Set sent_table FALSE so updated table will be written to JPEG file. */
1388 htbl
->sent_table
= FALSE
;
1393 * Finish up a statistics-gathering pass and create the new Huffman tables.
1397 finish_pass_gather (j_compress_ptr cinfo
)
1399 huff_entropy_ptr entropy
= (huff_entropy_ptr
) cinfo
->entropy
;
1401 jpeg_component_info
* compptr
;
1402 JHUFF_TBL
**htblptr
;
1403 boolean did_dc
[NUM_HUFF_TBLS
];
1404 boolean did_ac
[NUM_HUFF_TBLS
];
1406 /* It's important not to apply jpeg_gen_optimal_table more than once
1407 * per table, because it clobbers the input frequency counts!
1409 if (cinfo
->progressive_mode
)
1410 /* Flush out buffered data (all we care about is counting the EOB symbol) */
1411 emit_eobrun(entropy
);
1413 MEMZERO(did_dc
, SIZEOF(did_dc
));
1414 MEMZERO(did_ac
, SIZEOF(did_ac
));
1416 for (ci
= 0; ci
< cinfo
->comps_in_scan
; ci
++) {
1417 compptr
= cinfo
->cur_comp_info
[ci
];
1418 /* DC needs no table for refinement scan */
1419 if (cinfo
->Ss
== 0 && cinfo
->Ah
== 0) {
1420 tbl
= compptr
->dc_tbl_no
;
1421 if (! did_dc
[tbl
]) {
1422 htblptr
= & cinfo
->dc_huff_tbl_ptrs
[tbl
];
1423 if (*htblptr
== NULL
)
1424 *htblptr
= jpeg_alloc_huff_table((j_common_ptr
) cinfo
);
1425 jpeg_gen_optimal_table(cinfo
, *htblptr
, entropy
->dc_count_ptrs
[tbl
]);
1429 /* AC needs no table when not present */
1431 tbl
= compptr
->ac_tbl_no
;
1432 if (! did_ac
[tbl
]) {
1433 htblptr
= & cinfo
->ac_huff_tbl_ptrs
[tbl
];
1434 if (*htblptr
== NULL
)
1435 *htblptr
= jpeg_alloc_huff_table((j_common_ptr
) cinfo
);
1436 jpeg_gen_optimal_table(cinfo
, *htblptr
, entropy
->ac_count_ptrs
[tbl
]);
1445 * Initialize for a Huffman-compressed scan.
1446 * If gather_statistics is TRUE, we do not output anything during the scan,
1447 * just count the Huffman symbols used and generate Huffman code tables.
1451 start_pass_huff (j_compress_ptr cinfo
, boolean gather_statistics
)
1453 huff_entropy_ptr entropy
= (huff_entropy_ptr
) cinfo
->entropy
;
1455 jpeg_component_info
* compptr
;
1457 if (gather_statistics
)
1458 entropy
->pub
.finish_pass
= finish_pass_gather
;
1460 entropy
->pub
.finish_pass
= finish_pass_huff
;
1462 if (cinfo
->progressive_mode
) {
1463 entropy
->cinfo
= cinfo
;
1464 entropy
->gather_statistics
= gather_statistics
;
1466 /* We assume jcmaster.c already validated the scan parameters. */
1468 /* Select execution routine */
1469 if (cinfo
->Ah
== 0) {
1471 entropy
->pub
.encode_mcu
= encode_mcu_DC_first
;
1473 entropy
->pub
.encode_mcu
= encode_mcu_AC_first
;
1476 entropy
->pub
.encode_mcu
= encode_mcu_DC_refine
;
1478 entropy
->pub
.encode_mcu
= encode_mcu_AC_refine
;
1479 /* AC refinement needs a correction bit buffer */
1480 if (entropy
->bit_buffer
== NULL
)
1481 entropy
->bit_buffer
= (char *)
1482 (*cinfo
->mem
->alloc_small
) ((j_common_ptr
) cinfo
, JPOOL_IMAGE
,
1483 MAX_CORR_BITS
* SIZEOF(char));
1487 /* Initialize AC stuff */
1488 entropy
->ac_tbl_no
= cinfo
->cur_comp_info
[0]->ac_tbl_no
;
1489 entropy
->EOBRUN
= 0;
1492 if (gather_statistics
)
1493 entropy
->pub
.encode_mcu
= encode_mcu_gather
;
1495 entropy
->pub
.encode_mcu
= encode_mcu_huff
;
1498 for (ci
= 0; ci
< cinfo
->comps_in_scan
; ci
++) {
1499 compptr
= cinfo
->cur_comp_info
[ci
];
1500 /* DC needs no table for refinement scan */
1501 if (cinfo
->Ss
== 0 && cinfo
->Ah
== 0) {
1502 tbl
= compptr
->dc_tbl_no
;
1503 if (gather_statistics
) {
1504 /* Check for invalid table index */
1505 /* (make_c_derived_tbl does this in the other path) */
1506 if (tbl
< 0 || tbl
>= NUM_HUFF_TBLS
)
1507 ERREXIT1(cinfo
, JERR_NO_HUFF_TABLE
, tbl
);
1508 /* Allocate and zero the statistics tables */
1509 /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
1510 if (entropy
->dc_count_ptrs
[tbl
] == NULL
)
1511 entropy
->dc_count_ptrs
[tbl
] = (long *)
1512 (*cinfo
->mem
->alloc_small
) ((j_common_ptr
) cinfo
, JPOOL_IMAGE
,
1513 257 * SIZEOF(long));
1514 MEMZERO(entropy
->dc_count_ptrs
[tbl
], 257 * SIZEOF(long));
1516 /* Compute derived values for Huffman tables */
1517 /* We may do this more than once for a table, but it's not expensive */
1518 jpeg_make_c_derived_tbl(cinfo
, TRUE
, tbl
,
1519 & entropy
->dc_derived_tbls
[tbl
]);
1521 /* Initialize DC predictions to 0 */
1522 entropy
->saved
.last_dc_val
[ci
] = 0;
1524 /* AC needs no table when not present */
1526 tbl
= compptr
->ac_tbl_no
;
1527 if (gather_statistics
) {
1528 if (tbl
< 0 || tbl
>= NUM_HUFF_TBLS
)
1529 ERREXIT1(cinfo
, JERR_NO_HUFF_TABLE
, tbl
);
1530 if (entropy
->ac_count_ptrs
[tbl
] == NULL
)
1531 entropy
->ac_count_ptrs
[tbl
] = (long *)
1532 (*cinfo
->mem
->alloc_small
) ((j_common_ptr
) cinfo
, JPOOL_IMAGE
,
1533 257 * SIZEOF(long));
1534 MEMZERO(entropy
->ac_count_ptrs
[tbl
], 257 * SIZEOF(long));
1536 jpeg_make_c_derived_tbl(cinfo
, FALSE
, tbl
,
1537 & entropy
->ac_derived_tbls
[tbl
]);
1542 /* Initialize bit buffer to empty */
1543 entropy
->saved
.put_buffer
= 0;
1544 entropy
->saved
.put_bits
= 0;
1546 /* Initialize restart stuff */
1547 entropy
->restarts_to_go
= cinfo
->restart_interval
;
1548 entropy
->next_restart_num
= 0;
1553 * Module initialization routine for Huffman entropy encoding.
1557 jinit_huff_encoder (j_compress_ptr cinfo
)
1559 huff_entropy_ptr entropy
;
1562 entropy
= (huff_entropy_ptr
)
1563 (*cinfo
->mem
->alloc_small
) ((j_common_ptr
) cinfo
, JPOOL_IMAGE
,
1564 SIZEOF(huff_entropy_encoder
));
1565 cinfo
->entropy
= (struct jpeg_entropy_encoder
*) entropy
;
1566 entropy
->pub
.start_pass
= start_pass_huff
;
1568 /* Mark tables unallocated */
1569 for (i
= 0; i
< NUM_HUFF_TBLS
; i
++) {
1570 entropy
->dc_derived_tbls
[i
] = entropy
->ac_derived_tbls
[i
] = NULL
;
1571 entropy
->dc_count_ptrs
[i
] = entropy
->ac_count_ptrs
[i
] = NULL
;
1574 if (cinfo
->progressive_mode
)
1575 entropy
->bit_buffer
= NULL
; /* needed only in AC refinement scan */