avcodec/jpegxl_parse{,r}: fix integer overflow for some malformed files
[FFMpeg-mirror.git] / libavfilter / opencl / deshake.cl
blobf2a7c7221d34efc08b4742d0605c3dd8513e3f97
1 /*
2 * This file is part of FFmpeg.
4 * FFmpeg is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2.1 of the License, or (at your option) any later version.
9 * FFmpeg is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with FFmpeg; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 * Copyright (C) 2000, Intel Corporation, all rights reserved.
19 * Copyright (C) 2013, OpenCV Foundation, all rights reserved.
20 * Third party copyrights are property of their respective owners.
22 * Redistribution and use in source and binary forms, with or without modification,
23 * are permitted provided that the following conditions are met:
25 * * Redistribution's of source code must retain the above copyright notice,
26 * this list of conditions and the following disclaimer.
28 * * Redistribution's in binary form must reproduce the above copyright notice,
29 * this list of conditions and the following disclaimer in the documentation
30 * and/or other materials provided with the distribution.
32 * * The name of the copyright holders may not be used to endorse or promote products
33 * derived from this software without specific prior written permission.
35 * This software is provided by the copyright holders and contributors "as is" and
36 * any express or implied warranties, including, but not limited to, the implied
37 * warranties of merchantability and fitness for a particular purpose are disclaimed.
38 * In no event shall the Intel Corporation or contributors be liable for any direct,
39 * indirect, incidental, special, exemplary, or consequential damages
40 * (including, but not limited to, procurement of substitute goods or services;
41 * loss of use, data, or profits; or business interruption) however caused
42 * and on any theory of liability, whether in contract, strict liability,
43 * or tort (including negligence or otherwise) arising in any way out of
44 * the use of this software, even if advised of the possibility of such damage.
47 #define HARRIS_THRESHOLD 3.0f
48 // Block size over which to compute harris response
50 // Note that changing this will require fiddling with the local array sizes in
51 // harris_response
52 #define HARRIS_RADIUS 2
53 #define DISTANCE_THRESHOLD 80
55 // Sub-pixel refinement window for feature points
56 #define REFINE_WIN_HALF_W 5
57 #define REFINE_WIN_HALF_H 5
58 #define REFINE_WIN_W 11 // REFINE_WIN_HALF_W * 2 + 1
59 #define REFINE_WIN_H 11
61 // Non-maximum suppression window size
62 #define NONMAX_WIN 30
63 #define NONMAX_WIN_HALF 15 // NONMAX_WIN / 2
65 typedef struct PointPair {
66 // Previous frame
67 float2 p1;
68 // Current frame
69 float2 p2;
70 } PointPair;
72 typedef struct SmoothedPointPair {
73 // Non-smoothed point in current frame
74 int2 p1;
75 // Smoothed point in current frame
76 float2 p2;
77 } SmoothedPointPair;
79 typedef struct MotionVector {
80 PointPair p;
81 // Used to mark vectors as potential outliers
82 int should_consider;
83 } MotionVector;
85 const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE |
86 CLK_ADDRESS_CLAMP_TO_EDGE |
87 CLK_FILTER_NEAREST;
89 const sampler_t sampler_linear = CLK_NORMALIZED_COORDS_FALSE |
90 CLK_ADDRESS_CLAMP_TO_EDGE |
91 CLK_FILTER_LINEAR;
93 const sampler_t sampler_linear_mirror = CLK_NORMALIZED_COORDS_TRUE |
94 CLK_ADDRESS_MIRRORED_REPEAT |
95 CLK_FILTER_LINEAR;
97 // Writes to a 1D array at loc, treating it as a 2D array with the same
98 // dimensions as the global work size.
99 static void write_to_1d_arrf(__global float *buf, int2 loc, float val) {
100 buf[loc.x + loc.y * get_global_size(0)] = val;
103 static void write_to_1d_arrul8(__global ulong8 *buf, int2 loc, ulong8 val) {
104 buf[loc.x + loc.y * get_global_size(0)] = val;
107 static void write_to_1d_arrvec(__global MotionVector *buf, int2 loc, MotionVector val) {
108 buf[loc.x + loc.y * get_global_size(0)] = val;
111 static void write_to_1d_arrf2(__global float2 *buf, int2 loc, float2 val) {
112 buf[loc.x + loc.y * get_global_size(0)] = val;
115 static ulong8 read_from_1d_arrul8(__global const ulong8 *buf, int2 loc) {
116 return buf[loc.x + loc.y * get_global_size(0)];
119 static float2 read_from_1d_arrf2(__global const float2 *buf, int2 loc) {
120 return buf[loc.x + loc.y * get_global_size(0)];
123 // Returns the grayscale value at the given point.
124 static float pixel_grayscale(__read_only image2d_t src, int2 loc) {
125 float4 pixel = read_imagef(src, sampler, loc);
126 return (pixel.x + pixel.y + pixel.z) / 3.0f;
129 static float convolve(
130 __local const float *grayscale,
131 int local_idx_x,
132 int local_idx_y,
133 float mask[3][3]
135 float ret = 0;
137 // These loops touch each pixel surrounding loc as well as loc itself
138 for (int i = 1, i2 = 0; i >= -1; --i, ++i2) {
139 for (int j = -1, j2 = 0; j <= 1; ++j, ++j2) {
140 ret += mask[i2][j2] * grayscale[(local_idx_x + 3 + j) + (local_idx_y + 3 + i) * 14];
144 return ret;
147 // Sums dx * dy for all pixels within radius of loc
148 static float sum_deriv_prod(
149 __local const float *grayscale,
150 float mask_x[3][3],
151 float mask_y[3][3]
153 float ret = 0;
155 for (int i = HARRIS_RADIUS; i >= -HARRIS_RADIUS; --i) {
156 for (int j = -HARRIS_RADIUS; j <= HARRIS_RADIUS; ++j) {
157 ret += convolve(grayscale, get_local_id(0) + j, get_local_id(1) + i, mask_x) *
158 convolve(grayscale, get_local_id(0) + j, get_local_id(1) + i, mask_y);
162 return ret;
165 // Sums d<>^2 (determined by mask) for all pixels within radius of loc
166 static float sum_deriv_pow(__local const float *grayscale, float mask[3][3])
168 float ret = 0;
170 for (int i = HARRIS_RADIUS; i >= -HARRIS_RADIUS; --i) {
171 for (int j = -HARRIS_RADIUS; j <= HARRIS_RADIUS; ++j) {
172 float deriv = convolve(grayscale, get_local_id(0) + j, get_local_id(1) + i, mask);
173 ret += deriv * deriv;
177 return ret;
180 // Fills a box with the given radius and pixel around loc
181 static void draw_box(__write_only image2d_t dst, int2 loc, float4 pixel, int radius)
183 for (int i = -radius; i <= radius; ++i) {
184 for (int j = -radius; j <= radius; ++j) {
185 write_imagef(
186 dst,
187 (int2)(
188 // Clamp to avoid writing outside image bounds
189 clamp(loc.x + i, 0, get_image_dim(dst).x - 1),
190 clamp(loc.y + j, 0, get_image_dim(dst).y - 1)
192 pixel
198 // Converts the src image to grayscale
199 __kernel void grayscale(
200 __read_only image2d_t src,
201 __write_only image2d_t grayscale
203 int2 loc = (int2)(get_global_id(0), get_global_id(1));
204 write_imagef(grayscale, loc, (float4)(pixel_grayscale(src, loc), 0.0f, 0.0f, 1.0f));
207 // This kernel computes the harris response for the given grayscale src image
208 // within the given radius and writes it to harris_buf
209 __kernel void harris_response(
210 __read_only image2d_t grayscale,
211 __global float *harris_buf
213 int2 loc = (int2)(get_global_id(0), get_global_id(1));
215 if (loc.x > get_image_width(grayscale) - 1 || loc.y > get_image_height(grayscale) - 1) {
216 write_to_1d_arrf(harris_buf, loc, 0);
217 return;
220 float scale = 1.0f / ((1 << 2) * HARRIS_RADIUS * 255.0f);
222 float sobel_mask_x[3][3] = {
223 {-1, 0, 1},
224 {-2, 0, 2},
225 {-1, 0, 1}
228 float sobel_mask_y[3][3] = {
229 { 1, 2, 1},
230 { 0, 0, 0},
231 {-1, -2, -1}
234 // 8 x 8 local work + 3 pixels around each side (needed to accommodate for the
235 // block size radius of 2)
236 __local float grayscale_data[196];
238 int idx = get_group_id(0) * get_local_size(0);
239 int idy = get_group_id(1) * get_local_size(1);
241 for (int i = idy - 3, it = 0; i < idy + (int)get_local_size(1) + 3; i++, it++) {
242 for (int j = idx - 3, jt = 0; j < idx + (int)get_local_size(0) + 3; j++, jt++) {
243 grayscale_data[jt + it * 14] = read_imagef(grayscale, sampler, (int2)(j, i)).x;
247 barrier(CLK_LOCAL_MEM_FENCE);
249 float sumdxdy = sum_deriv_prod(grayscale_data, sobel_mask_x, sobel_mask_y);
250 float sumdx2 = sum_deriv_pow(grayscale_data, sobel_mask_x);
251 float sumdy2 = sum_deriv_pow(grayscale_data, sobel_mask_y);
253 float trace = sumdx2 + sumdy2;
254 // r = det(M) - k(trace(M))^2
255 // k usually between 0.04 to 0.06
256 float r = (sumdx2 * sumdy2 - sumdxdy * sumdxdy) - 0.04f * (trace * trace) * pown(scale, 4);
258 // Threshold the r value
259 harris_buf[loc.x + loc.y * get_image_width(grayscale)] = r * step(HARRIS_THRESHOLD, r);
262 // Gets a patch centered around a float coordinate from a grayscale image using
263 // bilinear interpolation
264 static void get_rect_sub_pix(
265 __read_only image2d_t grayscale,
266 float *buffer,
267 int size_x,
268 int size_y,
269 float2 center
271 float2 offset = ((float2)(size_x, size_y) - 1.0f) * 0.5f;
273 for (int i = 0; i < size_y; i++) {
274 for (int j = 0; j < size_x; j++) {
275 buffer[i * size_x + j] = read_imagef(
276 grayscale,
277 sampler_linear,
278 (float2)(j, i) + center - offset
279 ).x * 255.0f;
284 // Refines detected features at a sub-pixel level
286 // This function is ported from OpenCV
287 static float2 corner_sub_pix(
288 __read_only image2d_t grayscale,
289 float2 feature,
290 float *mask
292 float2 init = feature;
293 int src_width = get_global_size(0);
294 int src_height = get_global_size(1);
296 const int max_iters = 40;
297 const float eps = 0.001f * 0.001f;
298 int i, j, k;
300 int iter = 0;
301 float err = 0;
302 float subpix[(REFINE_WIN_W + 2) * (REFINE_WIN_H + 2)];
303 const float flt_epsilon = 0x1.0p-23f;
305 do {
306 float2 feature_tmp;
307 float a = 0, b = 0, c = 0, bb1 = 0, bb2 = 0;
309 get_rect_sub_pix(grayscale, subpix, REFINE_WIN_W + 2, REFINE_WIN_H + 2, feature);
310 float *subpix_ptr = subpix;
311 subpix_ptr += REFINE_WIN_W + 2 + 1;
313 // process gradient
314 for (i = 0, k = 0; i < REFINE_WIN_H; i++, subpix_ptr += REFINE_WIN_W + 2) {
315 float py = i - REFINE_WIN_HALF_H;
317 for (j = 0; j < REFINE_WIN_W; j++, k++) {
318 float m = mask[k];
319 float tgx = subpix_ptr[j + 1] - subpix_ptr[j - 1];
320 float tgy = subpix_ptr[j + REFINE_WIN_W + 2] - subpix_ptr[j - REFINE_WIN_W - 2];
321 float gxx = tgx * tgx * m;
322 float gxy = tgx * tgy * m;
323 float gyy = tgy * tgy * m;
324 float px = j - REFINE_WIN_HALF_W;
326 a += gxx;
327 b += gxy;
328 c += gyy;
330 bb1 += gxx * px + gxy * py;
331 bb2 += gxy * px + gyy * py;
335 float det = a * c - b * b;
336 if (fabs(det) <= flt_epsilon * flt_epsilon) {
337 break;
340 // 2x2 matrix inversion
341 float scale = 1.0f / det;
342 feature_tmp.x = (float)(feature.x + (c * scale * bb1) - (b * scale * bb2));
343 feature_tmp.y = (float)(feature.y - (b * scale * bb1) + (a * scale * bb2));
344 err = dot(feature_tmp - feature, feature_tmp - feature);
346 feature = feature_tmp;
347 if (feature.x < 0 || feature.x >= src_width || feature.y < 0 || feature.y >= src_height) {
348 break;
350 } while (++iter < max_iters && err > eps);
352 // Make sure new point isn't too far from the initial point (indicates poor convergence)
353 if (fabs(feature.x - init.x) > REFINE_WIN_HALF_W || fabs(feature.y - init.y) > REFINE_WIN_HALF_H) {
354 feature = init;
357 return feature;
360 // Performs non-maximum suppression on the harris response and writes the resulting
361 // feature locations to refined_features.
363 // Assumes that refined_features and the global work sizes are set up such that the image
364 // is split up into a grid of 32x32 blocks where each block has a single slot in the
365 // refined_features buffer. This kernel finds the best corner in each block (if the
366 // block has any) and writes it to the corresponding slot in the buffer.
368 // If subpixel_refine is true, the features are additionally refined at a sub-pixel
369 // level for increased precision.
370 __kernel void refine_features(
371 __read_only image2d_t grayscale,
372 __global const float *harris_buf,
373 __global float2 *refined_features,
374 int subpixel_refine
376 int2 loc = (int2)(get_global_id(0), get_global_id(1));
377 // The location in the grayscale buffer rather than the compacted grid
378 int2 loc_i = (int2)(loc.x * 32, loc.y * 32);
380 float new_val;
381 float max_val = 0;
382 float2 loc_max = (float2)(-1, -1);
384 int end_x = min(loc_i.x + 32, (int)get_image_dim(grayscale).x - 1);
385 int end_y = min(loc_i.y + 32, (int)get_image_dim(grayscale).y - 1);
387 for (int i = loc_i.x; i < end_x; ++i) {
388 for (int j = loc_i.y; j < end_y; ++j) {
389 new_val = harris_buf[i + j * get_image_dim(grayscale).x];
391 if (new_val > max_val) {
392 max_val = new_val;
393 loc_max = (float2)(i, j);
398 if (max_val == 0) {
399 // There are no features in this part of the frame
400 write_to_1d_arrf2(refined_features, loc, loc_max);
401 return;
404 if (subpixel_refine) {
405 float mask[REFINE_WIN_H * REFINE_WIN_W];
406 for (int i = 0; i < REFINE_WIN_H; i++) {
407 float y = (float)(i - REFINE_WIN_HALF_H) / REFINE_WIN_HALF_H;
408 float vy = exp(-y * y);
410 for (int j = 0; j < REFINE_WIN_W; j++) {
411 float x = (float)(j - REFINE_WIN_HALF_W) / REFINE_WIN_HALF_W;
412 mask[i * REFINE_WIN_W + j] = (float)(vy * exp(-x * x));
416 loc_max = corner_sub_pix(grayscale, loc_max, mask);
419 write_to_1d_arrf2(refined_features, loc, loc_max);
422 // Extracts BRIEF descriptors from the grayscale src image for the given features
423 // using the provided sampler.
424 __kernel void brief_descriptors(
425 __read_only image2d_t grayscale,
426 __global const float2 *refined_features,
427 // for 512 bit descriptors
428 __global ulong8 *desc_buf,
429 __global const PointPair *brief_pattern
431 int2 loc = (int2)(get_global_id(0), get_global_id(1));
432 float2 feature = read_from_1d_arrf2(refined_features, loc);
434 // There was no feature in this part of the frame
435 if (feature.x == -1) {
436 write_to_1d_arrul8(desc_buf, loc, (ulong8)(0));
437 return;
440 ulong8 desc = 0;
441 ulong *p = &desc;
443 for (int i = 0; i < 8; ++i) {
444 for (int j = 0; j < 64; ++j) {
445 PointPair pair = brief_pattern[j * (i + 1)];
446 float l1 = read_imagef(grayscale, sampler_linear, feature + pair.p1).x;
447 float l2 = read_imagef(grayscale, sampler_linear, feature + pair.p2).x;
449 if (l1 < l2) {
450 p[i] |= 1UL << j;
455 write_to_1d_arrul8(desc_buf, loc, desc);
458 // Given buffers with descriptors for the current and previous frame, determines
459 // which ones match, writing correspondences to matches_buf.
461 // Feature and descriptor buffers are assumed to be compacted (each element sourced
462 // from a 32x32 block in the frame being processed).
463 __kernel void match_descriptors(
464 __global const float2 *prev_refined_features,
465 __global const float2 *refined_features,
466 __global const ulong8 *desc_buf,
467 __global const ulong8 *prev_desc_buf,
468 __global MotionVector *matches_buf
470 int2 loc = (int2)(get_global_id(0), get_global_id(1));
471 ulong8 desc = read_from_1d_arrul8(desc_buf, loc);
472 const int search_radius = 3;
474 MotionVector invalid_vector = (MotionVector) {
475 (PointPair) {
476 (float2)(-1, -1),
477 (float2)(-1, -1)
482 if (desc.s0 == 0 && desc.s1 == 0) {
483 // There was no feature in this part of the frame
484 write_to_1d_arrvec(
485 matches_buf,
486 loc,
487 invalid_vector
489 return;
492 int2 start = max(loc - search_radius, 0);
493 int2 end = min(loc + search_radius, (int2)(get_global_size(0) - 1, get_global_size(1) - 1));
495 for (int i = start.x; i < end.x; ++i) {
496 for (int j = start.y; j < end.y; ++j) {
497 int2 prev_point = (int2)(i, j);
498 int total_dist = 0;
500 ulong8 prev_desc = read_from_1d_arrul8(prev_desc_buf, prev_point);
502 if (prev_desc.s0 == 0 && prev_desc.s1 == 0) {
503 continue;
506 ulong *prev_desc_p = &prev_desc;
507 ulong *desc_p = &desc;
509 for (int i = 0; i < 8; i++) {
510 total_dist += popcount(desc_p[i] ^ prev_desc_p[i]);
513 if (total_dist < DISTANCE_THRESHOLD) {
514 write_to_1d_arrvec(
515 matches_buf,
516 loc,
517 (MotionVector) {
518 (PointPair) {
519 read_from_1d_arrf2(prev_refined_features, prev_point),
520 read_from_1d_arrf2(refined_features, loc)
526 return;
531 // There is no found match for this point
532 write_to_1d_arrvec(
533 matches_buf,
534 loc,
535 invalid_vector
539 // Returns the position of the given point after the transform is applied
540 static float2 transformed_point(float2 p, __global const float *transform) {
541 float2 ret;
543 ret.x = p.x * transform[0] + p.y * transform[1] + transform[2];
544 ret.y = p.x * transform[3] + p.y * transform[4] + transform[5];
546 return ret;
550 // Performs the given transform on the src image
551 __kernel void transform(
552 __read_only image2d_t src,
553 __write_only image2d_t dst,
554 __global const float *transform
556 int2 loc = (int2)(get_global_id(0), get_global_id(1));
557 float2 norm = convert_float2(get_image_dim(src));
559 write_imagef(
560 dst,
561 loc,
562 read_imagef(
563 src,
564 sampler_linear_mirror,
565 transformed_point((float2)(loc.x, loc.y), transform) / norm
570 // Returns the new location of the given point using the given crop bounding box
571 // and the width and height of the original frame.
572 static float2 cropped_point(
573 float2 p,
574 float2 top_left,
575 float2 bottom_right,
576 int2 orig_dim
578 float2 ret;
580 float crop_width = bottom_right.x - top_left.x;
581 float crop_height = bottom_right.y - top_left.y;
583 float width_norm = p.x / (float)orig_dim.x;
584 float height_norm = p.y / (float)orig_dim.y;
586 ret.x = (width_norm * crop_width) + top_left.x;
587 ret.y = (height_norm * crop_height) + ((float)orig_dim.y - bottom_right.y);
589 return ret;
592 // Upscales the given cropped region to the size of the original frame
593 __kernel void crop_upscale(
594 __read_only image2d_t src,
595 __write_only image2d_t dst,
596 float2 top_left,
597 float2 bottom_right
599 int2 loc = (int2)(get_global_id(0), get_global_id(1));
601 write_imagef(
602 dst,
603 loc,
604 read_imagef(
605 src,
606 sampler_linear,
607 cropped_point((float2)(loc.x, loc.y), top_left, bottom_right, get_image_dim(dst))
612 // Draws boxes to represent the given point matches and uses the given transform
613 // and crop info to make sure their positions are accurate on the transformed frame.
615 // model_matches is an array of three points that were used by the RANSAC process
616 // to generate the given transform
617 __kernel void draw_debug_info(
618 __write_only image2d_t dst,
619 __global const MotionVector *matches,
620 __global const MotionVector *model_matches,
621 int num_model_matches,
622 __global const float *transform
624 int loc = get_global_id(0);
625 MotionVector vec = matches[loc];
626 // Black box: matched point that RANSAC considered an outlier
627 float4 big_rect_color = (float4)(0.1f, 0.1f, 0.1f, 1.0f);
629 if (vec.should_consider) {
630 // Green box: matched point that RANSAC considered an inlier
631 big_rect_color = (float4)(0.0f, 1.0f, 0.0f, 1.0f);
634 for (int i = 0; i < num_model_matches; i++) {
635 if (vec.p.p2.x == model_matches[i].p.p2.x && vec.p.p2.y == model_matches[i].p.p2.y) {
636 // Orange box: point used to calculate model
637 big_rect_color = (float4)(1.0f, 0.5f, 0.0f, 1.0f);
641 float2 transformed_p1 = transformed_point(vec.p.p1, transform);
642 float2 transformed_p2 = transformed_point(vec.p.p2, transform);
644 draw_box(dst, (int2)(transformed_p2.x, transformed_p2.y), big_rect_color, 5);
645 // Small light blue box: the point in the previous frame
646 draw_box(dst, (int2)(transformed_p1.x, transformed_p1.y), (float4)(0.0f, 0.3f, 0.7f, 1.0f), 3);