2 * Copyright (C) 2001-2011 Michael Niedermayer <michaelni@gmx.at>
4 * This file is part of FFmpeg.
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 #ifndef SWSCALE_SWSCALE_INTERNAL_H
22 #define SWSCALE_SWSCALE_INTERNAL_H
24 #include <stdatomic.h>
31 #include "libavutil/avassert.h"
32 #include "libavutil/common.h"
33 #include "libavutil/frame.h"
34 #include "libavutil/intreadwrite.h"
35 #include "libavutil/log.h"
36 #include "libavutil/mem_internal.h"
37 #include "libavutil/pixfmt.h"
38 #include "libavutil/pixdesc.h"
39 #include "libavutil/slicethread.h"
41 #include "libavutil/ppc/util_altivec.h"
43 #include "libavutil/half2float.h"
45 #define STR(s) AV_TOSTRING(s) // AV_STRINGIFY is too long
47 #define YUVRGB_TABLE_HEADROOM 512
48 #define YUVRGB_TABLE_LUMA_HEADROOM 512
50 #define MAX_FILTER_SIZE SWS_MAX_FILTER_SIZE
52 #define SWS_MAX_THREADS 8192 /* sanity clamp */
55 #define ALT32_CORR (-1)
70 #define RETCODE_USE_CASCADE -12345
72 typedef struct SwsInternal SwsInternal
;
74 static inline SwsInternal
*sws_internal(const SwsContext
*sws
)
76 return (SwsInternal
*) sws
;
79 typedef struct Range
{
84 typedef struct RangeList
{
86 unsigned int nb_ranges
;
90 int ff_range_add(RangeList
*r
, unsigned int start
, unsigned int len
);
92 typedef int (*SwsFunc
)(SwsInternal
*c
, const uint8_t *const src
[],
93 const int srcStride
[], int srcSliceY
, int srcSliceH
,
94 uint8_t *const dst
[], const int dstStride
[]);
97 * Write one line of horizontally scaled data to planar output
98 * without any additional vertical scaling (or point-scaling).
100 * @param src scaled source data, 15 bits for 8-10-bit output,
101 * 19 bits for 16-bit output (in int32_t)
102 * @param dest pointer to the output plane. For >8-bit
103 * output, this is in uint16_t
104 * @param dstW width of destination in pixels
105 * @param dither ordered dither array of type int16_t and size 8
106 * @param offset Dither offset
108 typedef void (*yuv2planar1_fn
)(const int16_t *src
, uint8_t *dest
, int dstW
,
109 const uint8_t *dither
, int offset
);
112 * Write one line of horizontally scaled data to planar output
113 * with multi-point vertical scaling between input pixels.
115 * @param filter vertical luma/alpha scaling coefficients, 12 bits [0,4096]
116 * @param src scaled luma (Y) or alpha (A) source data, 15 bits for
117 * 8-10-bit output, 19 bits for 16-bit output (in int32_t)
118 * @param filterSize number of vertical input lines to scale
119 * @param dest pointer to output plane. For >8-bit
120 * output, this is in uint16_t
121 * @param dstW width of destination pixels
122 * @param offset Dither offset
124 typedef void (*yuv2planarX_fn
)(const int16_t *filter
, int filterSize
,
125 const int16_t **src
, uint8_t *dest
, int dstW
,
126 const uint8_t *dither
, int offset
);
129 * Write one line of horizontally scaled chroma to interleaved output
130 * with multi-point vertical scaling between input pixels.
132 * @param dstFormat destination pixel format
133 * @param chrDither ordered dither array of type uint8_t and size 8
134 * @param chrFilter vertical chroma scaling coefficients, 12 bits [0,4096]
135 * @param chrUSrc scaled chroma (U) source data, 15 bits for 8-10-bit
136 * output, 19 bits for 16-bit output (in int32_t)
137 * @param chrVSrc scaled chroma (V) source data, 15 bits for 8-10-bit
138 * output, 19 bits for 16-bit output (in int32_t)
139 * @param chrFilterSize number of vertical chroma input lines to scale
140 * @param dest pointer to the output plane. For >8-bit
141 * output, this is in uint16_t
142 * @param dstW width of chroma planes
144 typedef void (*yuv2interleavedX_fn
)(enum AVPixelFormat dstFormat
,
145 const uint8_t *chrDither
,
146 const int16_t *chrFilter
,
148 const int16_t **chrUSrc
,
149 const int16_t **chrVSrc
,
150 uint8_t *dest
, int dstW
);
153 * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
154 * output without any additional vertical scaling (or point-scaling). Note
155 * that this function may do chroma scaling, see the "uvalpha" argument.
157 * @param c SWS scaling context
158 * @param lumSrc scaled luma (Y) source data, 15 bits for 8-10-bit output,
159 * 19 bits for 16-bit output (in int32_t)
160 * @param chrUSrc scaled chroma (U) source data, 15 bits for 8-10-bit output,
161 * 19 bits for 16-bit output (in int32_t)
162 * @param chrVSrc scaled chroma (V) source data, 15 bits for 8-10-bit output,
163 * 19 bits for 16-bit output (in int32_t)
164 * @param alpSrc scaled alpha (A) source data, 15 bits for 8-10-bit output,
165 * 19 bits for 16-bit output (in int32_t)
166 * @param dest pointer to the output plane. For 16-bit output, this is
168 * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
169 * to write into dest[]
170 * @param uvalpha chroma scaling coefficient for the second line of chroma
171 * pixels, either 2048 or 0. If 0, one chroma input is used
172 * for 2 output pixels (or if the SWS_FLAG_FULL_CHR_INT flag
173 * is set, it generates 1 output pixel). If 2048, two chroma
174 * input pixels should be averaged for 2 output pixels (this
175 * only happens if SWS_FLAG_FULL_CHR_INT is not set)
176 * @param y vertical line number for this output. This does not need
177 * to be used to calculate the offset in the destination,
178 * but can be used to generate comfort noise using dithering
179 * for some output formats.
181 typedef void (*yuv2packed1_fn
)(SwsInternal
*c
, const int16_t *lumSrc
,
182 const int16_t *chrUSrc
[2],
183 const int16_t *chrVSrc
[2],
184 const int16_t *alpSrc
, uint8_t *dest
,
185 int dstW
, int uvalpha
, int y
);
187 * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
188 * output by doing bilinear scaling between two input lines.
190 * @param c SWS scaling context
191 * @param lumSrc scaled luma (Y) source data, 15 bits for 8-10-bit output,
192 * 19 bits for 16-bit output (in int32_t)
193 * @param chrUSrc scaled chroma (U) source data, 15 bits for 8-10-bit output,
194 * 19 bits for 16-bit output (in int32_t)
195 * @param chrVSrc scaled chroma (V) source data, 15 bits for 8-10-bit output,
196 * 19 bits for 16-bit output (in int32_t)
197 * @param alpSrc scaled alpha (A) source data, 15 bits for 8-10-bit output,
198 * 19 bits for 16-bit output (in int32_t)
199 * @param dest pointer to the output plane. For 16-bit output, this is
201 * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
202 * to write into dest[]
203 * @param yalpha luma/alpha scaling coefficients for the second input line.
204 * The first line's coefficients can be calculated by using
206 * @param uvalpha chroma scaling coefficient for the second input line. The
207 * first line's coefficients can be calculated by using
209 * @param y vertical line number for this output. This does not need
210 * to be used to calculate the offset in the destination,
211 * but can be used to generate comfort noise using dithering
212 * for some output formats.
214 typedef void (*yuv2packed2_fn
)(SwsInternal
*c
, const int16_t *lumSrc
[2],
215 const int16_t *chrUSrc
[2],
216 const int16_t *chrVSrc
[2],
217 const int16_t *alpSrc
[2],
219 int dstW
, int yalpha
, int uvalpha
, int y
);
221 * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
222 * output by doing multi-point vertical scaling between input pixels.
224 * @param c SWS scaling context
225 * @param lumFilter vertical luma/alpha scaling coefficients, 12 bits [0,4096]
226 * @param lumSrc scaled luma (Y) source data, 15 bits for 8-10-bit output,
227 * 19 bits for 16-bit output (in int32_t)
228 * @param lumFilterSize number of vertical luma/alpha input lines to scale
229 * @param chrFilter vertical chroma scaling coefficients, 12 bits [0,4096]
230 * @param chrUSrc scaled chroma (U) source data, 15 bits for 8-10-bit output,
231 * 19 bits for 16-bit output (in int32_t)
232 * @param chrVSrc scaled chroma (V) source data, 15 bits for 8-10-bit output,
233 * 19 bits for 16-bit output (in int32_t)
234 * @param chrFilterSize number of vertical chroma input lines to scale
235 * @param alpSrc scaled alpha (A) source data, 15 bits for 8-10-bit output,
236 * 19 bits for 16-bit output (in int32_t)
237 * @param dest pointer to the output plane. For 16-bit output, this is
239 * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
240 * to write into dest[]
241 * @param y vertical line number for this output. This does not need
242 * to be used to calculate the offset in the destination,
243 * but can be used to generate comfort noise using dithering
244 * or some output formats.
246 typedef void (*yuv2packedX_fn
)(SwsInternal
*c
, const int16_t *lumFilter
,
247 const int16_t **lumSrc
, int lumFilterSize
,
248 const int16_t *chrFilter
,
249 const int16_t **chrUSrc
,
250 const int16_t **chrVSrc
, int chrFilterSize
,
251 const int16_t **alpSrc
, uint8_t *dest
,
255 * Write one line of horizontally scaled Y/U/V/A to YUV/RGB
256 * output by doing multi-point vertical scaling between input pixels.
258 * @param c SWS scaling context
259 * @param lumFilter vertical luma/alpha scaling coefficients, 12 bits [0,4096]
260 * @param lumSrc scaled luma (Y) source data, 15 bits for 8-10-bit output,
261 * 19 bits for 16-bit output (in int32_t)
262 * @param lumFilterSize number of vertical luma/alpha input lines to scale
263 * @param chrFilter vertical chroma scaling coefficients, 12 bits [0,4096]
264 * @param chrUSrc scaled chroma (U) source data, 15 bits for 8-10-bit output,
265 * 19 bits for 16-bit output (in int32_t)
266 * @param chrVSrc scaled chroma (V) source data, 15 bits for 8-10-bit output,
267 * 19 bits for 16-bit output (in int32_t)
268 * @param chrFilterSize number of vertical chroma input lines to scale
269 * @param alpSrc scaled alpha (A) source data, 15 bits for 8-10-bit output,
270 * 19 bits for 16-bit output (in int32_t)
271 * @param dest pointer to the output planes. For 16-bit output, this is
273 * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
274 * to write into dest[]
275 * @param y vertical line number for this output. This does not need
276 * to be used to calculate the offset in the destination,
277 * but can be used to generate comfort noise using dithering
278 * or some output formats.
280 typedef void (*yuv2anyX_fn
)(SwsInternal
*c
, const int16_t *lumFilter
,
281 const int16_t **lumSrc
, int lumFilterSize
,
282 const int16_t *chrFilter
,
283 const int16_t **chrUSrc
,
284 const int16_t **chrVSrc
, int chrFilterSize
,
285 const int16_t **alpSrc
, uint8_t **dest
,
289 * Unscaled conversion of luma/alpha plane to YV12 for horizontal scaler.
291 typedef void (*planar1_YV12_fn
)(uint8_t *dst
, const uint8_t *src
, const uint8_t *src2
,
292 const uint8_t *src3
, int width
, uint32_t *pal
,
296 * Unscaled conversion of chroma plane to YV12 for horizontal scaler.
298 typedef void (*planar2_YV12_fn
)(uint8_t *dst
, uint8_t *dst2
, const uint8_t *src
,
299 const uint8_t *src2
, const uint8_t *src3
,
300 int width
, uint32_t *pal
, void *opaque
);
303 * Unscaled conversion of arbitrary planar data (e.g. RGBA) to YV12, through
304 * conversion using the given color matrix.
306 typedef void (*planarX_YV12_fn
)(uint8_t *dst
, const uint8_t *src
[4], int width
,
307 int32_t *rgb2yuv
, void *opaque
);
309 typedef void (*planarX2_YV12_fn
)(uint8_t *dst
, uint8_t *dst2
,
310 const uint8_t *src
[4], int width
,
311 int32_t *rgb2yuv
, void *opaque
);
314 struct SwsFilterDescriptor
;
316 /* This struct should be aligned on at least a 32-byte boundary. */
318 /* Currently active user-facing options. Also contains AVClass */
321 /* Parent context (for slice contexts) */
324 AVSliceThread
*slicethread
;
325 SwsContext
**slice_ctx
;
329 /* Scaling graph, reinitialized dynamically as needed. */
330 SwsGraph
*graph
[2]; /* top, bottom fields */
332 // values passed to current sws_receive_slice() call
334 int dst_slice_height
;
337 * Note that src, dst, srcStride, dstStride will be copied in the
338 * sws_scale() wrapper so they can be freely modified here.
340 SwsFunc convert_unscaled
;
341 int chrSrcW
; ///< Width of source chroma planes.
342 int chrSrcH
; ///< Height of source chroma planes.
343 int chrDstW
; ///< Width of destination chroma planes.
344 int chrDstH
; ///< Height of destination chroma planes.
345 int lumXInc
, chrXInc
;
346 int lumYInc
, chrYInc
;
347 int dstFormatBpp
; ///< Number of bits per pixel of the destination pixel format.
348 int srcFormatBpp
; ///< Number of bits per pixel of the source pixel format.
350 int chrSrcHSubSample
; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in source image.
351 int chrSrcVSubSample
; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in source image.
352 int chrDstHSubSample
; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in destination image.
353 int chrDstVSubSample
; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in destination image.
354 int vChrDrop
; ///< Binary logarithm of extra vertical subsampling factor in source image chroma planes specified by user.
355 int sliceDir
; ///< Direction that slices are fed to the scaler (1 = top-to-bottom, -1 = bottom-to-top).
360 RangeList src_ranges
;
362 /* The cascaded_* fields allow spliting a scaler task into multiple
363 * sequential steps, this is for example used to limit the maximum
364 * downscaling factor that needs to be supported in one scaler.
366 SwsContext
*cascaded_context
[3];
367 int cascaded_tmpStride
[2][4];
368 uint8_t *cascaded_tmp
[2][4];
369 int cascaded_mainindex
;
372 int is_internal_gamma
;
379 struct SwsSlice
*slice
;
380 struct SwsFilterDescriptor
*desc
;
382 uint32_t pal_yuv
[256];
383 uint32_t pal_rgb
[256];
385 float uint2float_lut
[256];
388 * @name Scaled horizontal lines ring buffer.
389 * The horizontal scaler keeps just enough scaled lines in a ring buffer
390 * so they may be passed to the vertical scaler. The pointers to the
391 * allocated buffers for each line are duplicated in sequence in the ring
392 * buffer to simplify indexing and avoid wrapping around between lines
393 * inside the vertical scaler code. The wrapping is done before the
394 * vertical scaler is called.
397 int lastInLumBuf
; ///< Last scaled horizontal luma/alpha line from source in the ring buffer.
398 int lastInChrBuf
; ///< Last scaled horizontal chroma line from source in the ring buffer.
401 uint8_t *formatConvBuffer
;
405 * @name Horizontal and vertical filters.
406 * To better understand the following fields, here is a pseudo-code of
407 * their usage in filtering a horizontal line:
409 * for (i = 0; i < width; i++) {
411 * for (j = 0; j < filterSize; j++)
412 * dst[i] += src[ filterPos[i] + j ] * filter[ filterSize * i + j ];
413 * dst[i] >>= FRAC_BITS; // The actual implementation is fixed-point.
418 int16_t *hLumFilter
; ///< Array of horizontal filter coefficients for luma/alpha planes.
419 int16_t *hChrFilter
; ///< Array of horizontal filter coefficients for chroma planes.
420 int16_t *vLumFilter
; ///< Array of vertical filter coefficients for luma/alpha planes.
421 int16_t *vChrFilter
; ///< Array of vertical filter coefficients for chroma planes.
422 int32_t *hLumFilterPos
; ///< Array of horizontal filter starting positions for each dst[i] for luma/alpha planes.
423 int32_t *hChrFilterPos
; ///< Array of horizontal filter starting positions for each dst[i] for chroma planes.
424 int32_t *vLumFilterPos
; ///< Array of vertical filter starting positions for each dst[i] for luma/alpha planes.
425 int32_t *vChrFilterPos
; ///< Array of vertical filter starting positions for each dst[i] for chroma planes.
426 int hLumFilterSize
; ///< Horizontal filter size for luma/alpha pixels.
427 int hChrFilterSize
; ///< Horizontal filter size for chroma pixels.
428 int vLumFilterSize
; ///< Vertical filter size for luma/alpha pixels.
429 int vChrFilterSize
; ///< Vertical filter size for chroma pixels.
432 int lumMmxextFilterCodeSize
; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for luma/alpha planes.
433 int chrMmxextFilterCodeSize
; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for chroma planes.
434 uint8_t *lumMmxextFilterCode
; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for luma/alpha planes.
435 uint8_t *chrMmxextFilterCode
; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for chroma planes.
438 int warned_unuseable_bilinear
;
440 int dstY
; ///< Last destination vertical line output from last slice.
441 void *yuvTable
; // pointer to the yuv->rgb table start so it can be freed()
442 // alignment ensures the offset can be added in a single
443 // instruction on e.g. ARM
444 DECLARE_ALIGNED(16, int, table_gV
)[256 + 2*YUVRGB_TABLE_HEADROOM
];
445 uint8_t *table_rV
[256 + 2*YUVRGB_TABLE_HEADROOM
];
446 uint8_t *table_gU
[256 + 2*YUVRGB_TABLE_HEADROOM
];
447 uint8_t *table_bU
[256 + 2*YUVRGB_TABLE_HEADROOM
];
448 DECLARE_ALIGNED(16, int32_t, input_rgb2yuv_table
)[16+40*4]; // This table can contain both C and SIMD formatted values, the C vales are always at the XY_IDX points
458 #define RGB2YUV_SHIFT 15
460 int *dither_error
[4];
463 int contrast
, brightness
, saturation
; // for sws_getColorspaceDetails
464 int srcColorspaceTable
[4];
465 int dstColorspaceTable
[4];
470 int yuv2rgb_y_offset
;
472 int yuv2rgb_v2r_coeff
;
473 int yuv2rgb_v2g_coeff
;
474 int yuv2rgb_u2g_coeff
;
475 int yuv2rgb_u2b_coeff
;
477 #define RED_DITHER "0*8"
478 #define GREEN_DITHER "1*8"
479 #define BLUE_DITHER "2*8"
480 #define Y_COEFF "3*8"
481 #define VR_COEFF "4*8"
482 #define UB_COEFF "5*8"
483 #define VG_COEFF "6*8"
484 #define UG_COEFF "7*8"
485 #define Y_OFFSET "8*8"
486 #define U_OFFSET "9*8"
487 #define V_OFFSET "10*8"
488 #define LUM_MMX_FILTER_OFFSET "11*8"
489 #define CHR_MMX_FILTER_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)
490 #define DSTW_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2"
491 #define ESP_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+8"
492 #define VROUNDER_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+16"
493 #define U_TEMP "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+24"
494 #define V_TEMP "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+32"
495 #define Y_TEMP "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+40"
496 #define ALP_MMX_FILTER_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+48"
497 #define UV_OFF_PX "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+48"
498 #define UV_OFF_BYTE "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+56"
499 #define DITHER16 "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+64"
500 #define DITHER32 "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+80"
501 #define DITHER32_INT (11*8+4*4*MAX_FILTER_SIZE*3+80) // value equal to above, used for checking that the struct hasn't been changed by mistake
503 DECLARE_ALIGNED(8, uint64_t, redDither
);
504 DECLARE_ALIGNED(8, uint64_t, greenDither
);
505 DECLARE_ALIGNED(8, uint64_t, blueDither
);
507 DECLARE_ALIGNED(8, uint64_t, yCoeff
);
508 DECLARE_ALIGNED(8, uint64_t, vrCoeff
);
509 DECLARE_ALIGNED(8, uint64_t, ubCoeff
);
510 DECLARE_ALIGNED(8, uint64_t, vgCoeff
);
511 DECLARE_ALIGNED(8, uint64_t, ugCoeff
);
512 DECLARE_ALIGNED(8, uint64_t, yOffset
);
513 DECLARE_ALIGNED(8, uint64_t, uOffset
);
514 DECLARE_ALIGNED(8, uint64_t, vOffset
);
515 int32_t lumMmxFilter
[4 * MAX_FILTER_SIZE
];
516 int32_t chrMmxFilter
[4 * MAX_FILTER_SIZE
];
518 DECLARE_ALIGNED(8, uint64_t, esp
);
519 DECLARE_ALIGNED(8, uint64_t, vRounder
);
520 DECLARE_ALIGNED(8, uint64_t, u_temp
);
521 DECLARE_ALIGNED(8, uint64_t, v_temp
);
522 DECLARE_ALIGNED(8, uint64_t, y_temp
);
523 int32_t alpMmxFilter
[4 * MAX_FILTER_SIZE
];
524 // alignment of these values is not necessary, but merely here
525 // to maintain the same offset across x8632 and x86-64. Once we
526 // use proper offset macros in the asm, they can be removed.
527 DECLARE_ALIGNED(8, ptrdiff_t, uv_off
); ///< offset (in pixels) between u and v planes
528 DECLARE_ALIGNED(8, ptrdiff_t, uv_offx2
); ///< offset (in bytes) between u and v planes
529 DECLARE_ALIGNED(8, uint16_t, dither16
)[8];
530 DECLARE_ALIGNED(8, uint32_t, dither32
)[8];
532 const uint8_t *chrDither8
, *lumDither8
;
535 vector
signed short CY
;
536 vector
signed short CRV
;
537 vector
signed short CBU
;
538 vector
signed short CGU
;
539 vector
signed short CGV
;
540 vector
signed short OY
;
541 vector
unsigned short CSHIFT
;
542 vector
signed short *vYCoeffsBank
, *vCCoeffsBank
;
547 /* pre defined color-spaces gamma */
548 #define XYZ_GAMMA (2.6f)
549 #define RGB_GAMMA (2.2f)
552 uint16_t *xyzgammainv
;
553 uint16_t *rgbgammainv
;
554 int16_t xyz2rgb_matrix
[3][4];
555 int16_t rgb2xyz_matrix
[3][4];
557 /* function pointers for swscale() */
558 yuv2planar1_fn yuv2plane1
;
559 yuv2planarX_fn yuv2planeX
;
560 yuv2interleavedX_fn yuv2nv12cX
;
561 yuv2packed1_fn yuv2packed1
;
562 yuv2packed2_fn yuv2packed2
;
563 yuv2packedX_fn yuv2packedX
;
564 yuv2anyX_fn yuv2anyX
;
566 /// Opaque data pointer passed to all input functions.
569 planar1_YV12_fn lumToYV12
;
570 planar1_YV12_fn alpToYV12
;
571 planar2_YV12_fn chrToYV12
;
574 * Functions to read planar input, such as planar RGB, and convert
575 * internally to Y/UV/A.
578 planarX_YV12_fn readLumPlanar
;
579 planarX_YV12_fn readAlpPlanar
;
580 planarX2_YV12_fn readChrPlanar
;
584 * Scale one horizontal line of input data using a bilinear filter
585 * to produce one line of output data. Compared to SwsInternal->hScale(),
586 * please take note of the following caveats when using these:
587 * - Scaling is done using only 7 bits instead of 14-bit coefficients.
588 * - You can use no more than 5 input pixels to produce 4 output
589 * pixels. Therefore, this filter should not be used for downscaling
590 * by more than ~20% in width (because that equals more than 5/4th
591 * downscaling and thus more than 5 pixels input per 4 pixels output).
592 * - In general, bilinear filters create artifacts during downscaling
593 * (even when <20%), because one output pixel will span more than one
594 * input pixel, and thus some pixels will need edges of both neighbor
595 * pixels to interpolate the output pixel. Since you can use at most
596 * two input pixels per output pixel in bilinear scaling, this is
597 * impossible and thus downscaling by any size will create artifacts.
598 * To enable this type of scaling, set SWS_FLAG_FAST_BILINEAR
599 * in SwsInternal->flags.
602 void (*hyscale_fast
)(SwsInternal
*c
,
603 int16_t *dst
, int dstWidth
,
604 const uint8_t *src
, int srcW
, int xInc
);
605 void (*hcscale_fast
)(SwsInternal
*c
,
606 int16_t *dst1
, int16_t *dst2
, int dstWidth
,
607 const uint8_t *src1
, const uint8_t *src2
,
612 * Scale one horizontal line of input data using a filter over the input
613 * lines, to produce one (differently sized) line of output data.
615 * @param dst pointer to destination buffer for horizontally scaled
616 * data. If the number of bits per component of one
617 * destination pixel (SwsInternal->dstBpc) is <= 10, data
618 * will be 15 bpc in 16 bits (int16_t) width. Else (i.e.
619 * SwsInternal->dstBpc == 16), data will be 19bpc in
620 * 32 bits (int32_t) width.
621 * @param dstW width of destination image
622 * @param src pointer to source data to be scaled. If the number of
623 * bits per component of a source pixel (SwsInternal->srcBpc)
624 * is 8, this is 8bpc in 8 bits (uint8_t) width. Else
625 * (i.e. SwsInternal->dstBpc > 8), this is native depth
626 * in 16 bits (uint16_t) width. In other words, for 9-bit
627 * YUV input, this is 9bpc, for 10-bit YUV input, this is
628 * 10bpc, and for 16-bit RGB or YUV, this is 16bpc.
629 * @param filter filter coefficients to be used per output pixel for
630 * scaling. This contains 14bpp filtering coefficients.
631 * Guaranteed to contain dstW * filterSize entries.
632 * @param filterPos position of the first input pixel to be used for
633 * each output pixel during scaling. Guaranteed to
634 * contain dstW entries.
635 * @param filterSize the number of input coefficients to be used (and
636 * thus the number of input pixels to be used) for
637 * creating a single output pixel. Is aligned to 4
638 * (and input coefficients thus padded with zeroes)
639 * to simplify creating SIMD code.
642 void (*hyScale
)(SwsInternal
*c
, int16_t *dst
, int dstW
,
643 const uint8_t *src
, const int16_t *filter
,
644 const int32_t *filterPos
, int filterSize
);
645 void (*hcScale
)(SwsInternal
*c
, int16_t *dst
, int dstW
,
646 const uint8_t *src
, const int16_t *filter
,
647 const int32_t *filterPos
, int filterSize
);
651 * Color range conversion functions if needed.
652 * If SwsInternal->dstBpc is > 14:
653 * - int16_t *dst (data is 15 bpc)
656 * Otherwise (SwsInternal->dstBpc is <= 14):
657 * - int32_t *dst (data is 19 bpc)
662 void (*lumConvertRange
)(int16_t *dst
, int width
,
663 uint32_t coeff
, int64_t offset
);
664 void (*chrConvertRange
)(int16_t *dst1
, int16_t *dst2
, int width
,
665 uint32_t coeff
, int64_t offset
);
668 uint32_t lumConvertRange_coeff
;
669 uint32_t chrConvertRange_coeff
;
670 int64_t lumConvertRange_offset
;
671 int64_t chrConvertRange_offset
;
673 int needs_hcscale
; ///< Set if there are chroma planes to be converted.
675 // scratch buffer for converting packed rgb0 sources
676 // filled with a copy of the input frame + fully opaque alpha,
677 // then passed as input to further conversion
678 uint8_t *rgb0_scratch
;
679 unsigned int rgb0_scratch_allocated
;
681 // scratch buffer for converting XYZ sources
682 // filled with the input converted to rgb48
683 // then passed as input to further conversion
684 uint8_t *xyz_scratch
;
685 unsigned int xyz_scratch_allocated
;
687 unsigned int dst_slice_align
;
688 atomic_int stride_unaligned_warned
;
689 atomic_int data_unaligned_warned
;
690 int color_conversion_warned
;
692 Half2FloatTables
*h2f_tables
;
694 //FIXME check init (where 0)
696 static_assert(offsetof(SwsInternal
, redDither
) + DITHER32_INT
== offsetof(SwsInternal
, dither32
),
697 "dither32 must be at the same offset as redDither + DITHER32_INT");
700 /* x86 yuv2gbrp uses the SwsInternal for yuv coefficients
701 if struct offsets change the asm needs to be updated too */
702 static_assert(offsetof(SwsInternal
, yuv2rgb_y_offset
) == 40348,
703 "yuv2rgb_y_offset must be updated in x86 asm");
706 SwsFunc
ff_yuv2rgb_get_func_ptr(SwsInternal
*c
);
707 int ff_yuv2rgb_c_init_tables(SwsInternal
*c
, const int inv_table
[4],
708 int fullRange
, int brightness
,
709 int contrast
, int saturation
);
710 void ff_yuv2rgb_init_tables_ppc(SwsInternal
*c
, const int inv_table
[4],
711 int brightness
, int contrast
, int saturation
);
713 void ff_updateMMXDitherTables(SwsInternal
*c
, int dstY
);
715 void ff_update_palette(SwsInternal
*c
, const uint32_t *pal
);
717 av_cold
void ff_sws_init_range_convert(SwsInternal
*c
);
718 av_cold
void ff_sws_init_range_convert_aarch64(SwsInternal
*c
);
719 av_cold
void ff_sws_init_range_convert_loongarch(SwsInternal
*c
);
720 av_cold
void ff_sws_init_range_convert_riscv(SwsInternal
*c
);
721 av_cold
void ff_sws_init_range_convert_x86(SwsInternal
*c
);
723 SwsFunc
ff_yuv2rgb_init_x86(SwsInternal
*c
);
724 SwsFunc
ff_yuv2rgb_init_ppc(SwsInternal
*c
);
725 SwsFunc
ff_yuv2rgb_init_loongarch(SwsInternal
*c
);
727 static av_always_inline
int is16BPS(enum AVPixelFormat pix_fmt
)
729 const AVPixFmtDescriptor
*desc
= av_pix_fmt_desc_get(pix_fmt
);
731 return desc
->comp
[0].depth
== 16;
734 static av_always_inline
int is32BPS(enum AVPixelFormat pix_fmt
)
736 const AVPixFmtDescriptor
*desc
= av_pix_fmt_desc_get(pix_fmt
);
738 return desc
->comp
[0].depth
== 32;
741 static av_always_inline
int isNBPS(enum AVPixelFormat pix_fmt
)
743 const AVPixFmtDescriptor
*desc
= av_pix_fmt_desc_get(pix_fmt
);
745 return desc
->comp
[0].depth
>= 9 && desc
->comp
[0].depth
<= 14;
748 static av_always_inline
int isBE(enum AVPixelFormat pix_fmt
)
750 const AVPixFmtDescriptor
*desc
= av_pix_fmt_desc_get(pix_fmt
);
752 return desc
->flags
& AV_PIX_FMT_FLAG_BE
;
755 static av_always_inline
int isYUV(enum AVPixelFormat pix_fmt
)
757 const AVPixFmtDescriptor
*desc
= av_pix_fmt_desc_get(pix_fmt
);
759 return !(desc
->flags
& AV_PIX_FMT_FLAG_RGB
) && desc
->nb_components
>= 2;
762 static av_always_inline
int isPlanarYUV(enum AVPixelFormat pix_fmt
)
764 const AVPixFmtDescriptor
*desc
= av_pix_fmt_desc_get(pix_fmt
);
766 return ((desc
->flags
& AV_PIX_FMT_FLAG_PLANAR
) && isYUV(pix_fmt
));
770 * Identity semi-planar YUV formats. Specifically, those are YUV formats
771 * where the second and third components (U & V) are on the same plane.
773 static av_always_inline
int isSemiPlanarYUV(enum AVPixelFormat pix_fmt
)
775 const AVPixFmtDescriptor
*desc
= av_pix_fmt_desc_get(pix_fmt
);
777 return (isPlanarYUV(pix_fmt
) && desc
->comp
[1].plane
== desc
->comp
[2].plane
);
780 static av_always_inline
int isRGB(enum AVPixelFormat pix_fmt
)
782 const AVPixFmtDescriptor
*desc
= av_pix_fmt_desc_get(pix_fmt
);
784 return (desc
->flags
& AV_PIX_FMT_FLAG_RGB
);
787 static av_always_inline
int isGray(enum AVPixelFormat pix_fmt
)
789 const AVPixFmtDescriptor
*desc
= av_pix_fmt_desc_get(pix_fmt
);
791 return !(desc
->flags
& AV_PIX_FMT_FLAG_PAL
) &&
792 !(desc
->flags
& AV_PIX_FMT_FLAG_HWACCEL
) &&
793 desc
->nb_components
<= 2 &&
794 pix_fmt
!= AV_PIX_FMT_MONOBLACK
&&
795 pix_fmt
!= AV_PIX_FMT_MONOWHITE
;
798 static av_always_inline
int isRGBinInt(enum AVPixelFormat pix_fmt
)
800 return pix_fmt
== AV_PIX_FMT_RGB48BE
||
801 pix_fmt
== AV_PIX_FMT_RGB48LE
||
802 pix_fmt
== AV_PIX_FMT_RGB32
||
803 pix_fmt
== AV_PIX_FMT_RGB32_1
||
804 pix_fmt
== AV_PIX_FMT_RGB24
||
805 pix_fmt
== AV_PIX_FMT_RGB565BE
||
806 pix_fmt
== AV_PIX_FMT_RGB565LE
||
807 pix_fmt
== AV_PIX_FMT_RGB555BE
||
808 pix_fmt
== AV_PIX_FMT_RGB555LE
||
809 pix_fmt
== AV_PIX_FMT_RGB444BE
||
810 pix_fmt
== AV_PIX_FMT_RGB444LE
||
811 pix_fmt
== AV_PIX_FMT_RGB8
||
812 pix_fmt
== AV_PIX_FMT_RGB4
||
813 pix_fmt
== AV_PIX_FMT_RGB4_BYTE
||
814 pix_fmt
== AV_PIX_FMT_RGBA64BE
||
815 pix_fmt
== AV_PIX_FMT_RGBA64LE
||
816 pix_fmt
== AV_PIX_FMT_MONOBLACK
||
817 pix_fmt
== AV_PIX_FMT_MONOWHITE
;
820 static av_always_inline
int isBGRinInt(enum AVPixelFormat pix_fmt
)
822 return pix_fmt
== AV_PIX_FMT_BGR48BE
||
823 pix_fmt
== AV_PIX_FMT_BGR48LE
||
824 pix_fmt
== AV_PIX_FMT_BGR32
||
825 pix_fmt
== AV_PIX_FMT_BGR32_1
||
826 pix_fmt
== AV_PIX_FMT_BGR24
||
827 pix_fmt
== AV_PIX_FMT_BGR565BE
||
828 pix_fmt
== AV_PIX_FMT_BGR565LE
||
829 pix_fmt
== AV_PIX_FMT_BGR555BE
||
830 pix_fmt
== AV_PIX_FMT_BGR555LE
||
831 pix_fmt
== AV_PIX_FMT_BGR444BE
||
832 pix_fmt
== AV_PIX_FMT_BGR444LE
||
833 pix_fmt
== AV_PIX_FMT_BGR8
||
834 pix_fmt
== AV_PIX_FMT_BGR4
||
835 pix_fmt
== AV_PIX_FMT_BGR4_BYTE
||
836 pix_fmt
== AV_PIX_FMT_BGRA64BE
||
837 pix_fmt
== AV_PIX_FMT_BGRA64LE
||
838 pix_fmt
== AV_PIX_FMT_MONOBLACK
||
839 pix_fmt
== AV_PIX_FMT_MONOWHITE
;
842 static av_always_inline
int isBayer(enum AVPixelFormat pix_fmt
)
844 const AVPixFmtDescriptor
*desc
= av_pix_fmt_desc_get(pix_fmt
);
846 return !!(desc
->flags
& AV_PIX_FMT_FLAG_BAYER
);
849 static av_always_inline
int isBayer16BPS(enum AVPixelFormat pix_fmt
)
851 const AVPixFmtDescriptor
*desc
= av_pix_fmt_desc_get(pix_fmt
);
853 return desc
->comp
[1].depth
== 8;
856 static av_always_inline
int isAnyRGB(enum AVPixelFormat pix_fmt
)
858 const AVPixFmtDescriptor
*desc
= av_pix_fmt_desc_get(pix_fmt
);
860 return (desc
->flags
& AV_PIX_FMT_FLAG_RGB
) ||
861 pix_fmt
== AV_PIX_FMT_MONOBLACK
|| pix_fmt
== AV_PIX_FMT_MONOWHITE
;
864 static av_always_inline
int isFloat(enum AVPixelFormat pix_fmt
)
866 const AVPixFmtDescriptor
*desc
= av_pix_fmt_desc_get(pix_fmt
);
868 return desc
->flags
& AV_PIX_FMT_FLAG_FLOAT
;
871 static av_always_inline
int isFloat16(enum AVPixelFormat pix_fmt
)
873 const AVPixFmtDescriptor
*desc
= av_pix_fmt_desc_get(pix_fmt
);
875 return (desc
->flags
& AV_PIX_FMT_FLAG_FLOAT
) && desc
->comp
[0].depth
== 16;
878 static av_always_inline
int isALPHA(enum AVPixelFormat pix_fmt
)
880 const AVPixFmtDescriptor
*desc
= av_pix_fmt_desc_get(pix_fmt
);
882 if (pix_fmt
== AV_PIX_FMT_PAL8
)
884 return desc
->flags
& AV_PIX_FMT_FLAG_ALPHA
;
887 static av_always_inline
int isPacked(enum AVPixelFormat pix_fmt
)
889 const AVPixFmtDescriptor
*desc
= av_pix_fmt_desc_get(pix_fmt
);
891 return (desc
->nb_components
>= 2 && !(desc
->flags
& AV_PIX_FMT_FLAG_PLANAR
)) ||
892 pix_fmt
== AV_PIX_FMT_PAL8
||
893 pix_fmt
== AV_PIX_FMT_MONOBLACK
|| pix_fmt
== AV_PIX_FMT_MONOWHITE
;
896 static av_always_inline
int isPlanar(enum AVPixelFormat pix_fmt
)
898 const AVPixFmtDescriptor
*desc
= av_pix_fmt_desc_get(pix_fmt
);
900 return (desc
->nb_components
>= 2 && (desc
->flags
& AV_PIX_FMT_FLAG_PLANAR
));
903 static av_always_inline
int isPackedRGB(enum AVPixelFormat pix_fmt
)
905 const AVPixFmtDescriptor
*desc
= av_pix_fmt_desc_get(pix_fmt
);
907 return ((desc
->flags
& (AV_PIX_FMT_FLAG_PLANAR
| AV_PIX_FMT_FLAG_RGB
)) == AV_PIX_FMT_FLAG_RGB
);
910 static av_always_inline
int isPlanarRGB(enum AVPixelFormat pix_fmt
)
912 const AVPixFmtDescriptor
*desc
= av_pix_fmt_desc_get(pix_fmt
);
914 return ((desc
->flags
& (AV_PIX_FMT_FLAG_PLANAR
| AV_PIX_FMT_FLAG_RGB
)) ==
915 (AV_PIX_FMT_FLAG_PLANAR
| AV_PIX_FMT_FLAG_RGB
));
918 static av_always_inline
int usePal(enum AVPixelFormat pix_fmt
)
921 case AV_PIX_FMT_PAL8
:
922 case AV_PIX_FMT_BGR4_BYTE
:
923 case AV_PIX_FMT_BGR8
:
924 case AV_PIX_FMT_GRAY8
:
925 case AV_PIX_FMT_RGB4_BYTE
:
926 case AV_PIX_FMT_RGB8
:
934 * Identity formats where the data is in the high bits, and the low bits are shifted away.
936 static av_always_inline
int isDataInHighBits(enum AVPixelFormat pix_fmt
)
939 const AVPixFmtDescriptor
*desc
= av_pix_fmt_desc_get(pix_fmt
);
941 if (desc
->flags
& (AV_PIX_FMT_FLAG_BITSTREAM
| AV_PIX_FMT_FLAG_HWACCEL
))
943 for (i
= 0; i
< desc
->nb_components
; i
++) {
944 if (!desc
->comp
[i
].shift
)
946 if ((desc
->comp
[i
].shift
+ desc
->comp
[i
].depth
) & 0x7)
953 * Identity formats where the chroma planes are swapped (CrCb order).
955 static av_always_inline
int isSwappedChroma(enum AVPixelFormat pix_fmt
)
957 const AVPixFmtDescriptor
*desc
= av_pix_fmt_desc_get(pix_fmt
);
961 if ((desc
->flags
& AV_PIX_FMT_FLAG_ALPHA
) && desc
->nb_components
< 4)
963 if (desc
->nb_components
< 3)
965 if (!isPlanarYUV(pix_fmt
) || isSemiPlanarYUV(pix_fmt
))
966 return desc
->comp
[1].offset
> desc
->comp
[2].offset
;
968 return desc
->comp
[1].plane
> desc
->comp
[2].plane
;
971 extern const uint64_t ff_dither4
[2];
972 extern const uint64_t ff_dither8
[2];
974 extern const uint8_t ff_dither_2x2_4
[3][8];
975 extern const uint8_t ff_dither_2x2_8
[3][8];
976 extern const uint8_t ff_dither_4x4_16
[5][8];
977 extern const uint8_t ff_dither_8x8_32
[9][8];
978 extern const uint8_t ff_dither_8x8_73
[9][8];
979 extern const uint8_t ff_dither_8x8_128
[9][8];
980 extern const uint8_t ff_dither_8x8_220
[9][8];
982 extern const int32_t ff_yuv2rgb_coeffs
[11][4];
984 extern const AVClass ff_sws_context_class
;
986 int ff_sws_init_single_context(SwsContext
*sws
, SwsFilter
*srcFilter
,
987 SwsFilter
*dstFilter
);
990 * Set c->convert_unscaled to an unscaled converter if one exists for the
991 * specific source and destination formats, bit depths, flags, etc.
993 void ff_get_unscaled_swscale(SwsInternal
*c
);
994 void ff_get_unscaled_swscale_ppc(SwsInternal
*c
);
995 void ff_get_unscaled_swscale_arm(SwsInternal
*c
);
996 void ff_get_unscaled_swscale_aarch64(SwsInternal
*c
);
998 void ff_sws_init_scale(SwsInternal
*c
);
1000 void ff_sws_init_input_funcs(SwsInternal
*c
,
1001 planar1_YV12_fn
*lumToYV12
,
1002 planar1_YV12_fn
*alpToYV12
,
1003 planar2_YV12_fn
*chrToYV12
,
1004 planarX_YV12_fn
*readLumPlanar
,
1005 planarX_YV12_fn
*readAlpPlanar
,
1006 planarX2_YV12_fn
*readChrPlanar
);
1007 void ff_sws_init_output_funcs(SwsInternal
*c
,
1008 yuv2planar1_fn
*yuv2plane1
,
1009 yuv2planarX_fn
*yuv2planeX
,
1010 yuv2interleavedX_fn
*yuv2nv12cX
,
1011 yuv2packed1_fn
*yuv2packed1
,
1012 yuv2packed2_fn
*yuv2packed2
,
1013 yuv2packedX_fn
*yuv2packedX
,
1014 yuv2anyX_fn
*yuv2anyX
);
1015 void ff_sws_init_swscale_ppc(SwsInternal
*c
);
1016 void ff_sws_init_swscale_vsx(SwsInternal
*c
);
1017 void ff_sws_init_swscale_x86(SwsInternal
*c
);
1018 void ff_sws_init_swscale_aarch64(SwsInternal
*c
);
1019 void ff_sws_init_swscale_arm(SwsInternal
*c
);
1020 void ff_sws_init_swscale_loongarch(SwsInternal
*c
);
1021 void ff_sws_init_swscale_riscv(SwsInternal
*c
);
1023 void ff_hyscale_fast_c(SwsInternal
*c
, int16_t *dst
, int dstWidth
,
1024 const uint8_t *src
, int srcW
, int xInc
);
1025 void ff_hcscale_fast_c(SwsInternal
*c
, int16_t *dst1
, int16_t *dst2
,
1026 int dstWidth
, const uint8_t *src1
,
1027 const uint8_t *src2
, int srcW
, int xInc
);
1028 int ff_init_hscaler_mmxext(int dstW
, int xInc
, uint8_t *filterCode
,
1029 int16_t *filter
, int32_t *filterPos
,
1031 void ff_hyscale_fast_mmxext(SwsInternal
*c
, int16_t *dst
,
1032 int dstWidth
, const uint8_t *src
,
1033 int srcW
, int xInc
);
1034 void ff_hcscale_fast_mmxext(SwsInternal
*c
, int16_t *dst1
, int16_t *dst2
,
1035 int dstWidth
, const uint8_t *src1
,
1036 const uint8_t *src2
, int srcW
, int xInc
);
1038 int ff_sws_alphablendaway(SwsInternal
*c
, const uint8_t *const src
[],
1039 const int srcStride
[], int srcSliceY
, int srcSliceH
,
1040 uint8_t *const dst
[], const int dstStride
[]);
1042 void ff_copyPlane(const uint8_t *src
, int srcStride
,
1043 int srcSliceY
, int srcSliceH
, int width
,
1044 uint8_t *dst
, int dstStride
);
1046 void ff_xyz12Torgb48(const SwsInternal
*c
, uint8_t *dst
, int dst_stride
,
1047 const uint8_t *src
, int src_stride
, int w
, int h
);
1049 void ff_rgb48Toxyz12(const SwsInternal
*c
, uint8_t *dst
, int dst_stride
,
1050 const uint8_t *src
, int src_stride
, int w
, int h
);
1052 static inline void fillPlane16(uint8_t *plane
, int stride
, int width
, int height
, int y
,
1053 int alpha
, int bits
, const int big_endian
)
1055 uint8_t *ptr
= plane
+ stride
* y
;
1056 int v
= alpha
? 0xFFFF>>(16-bits
) : (1<<(bits
-1));
1057 if (big_endian
!= HAVE_BIGENDIAN
)
1059 for (int i
= 0; i
< height
; i
++) {
1060 for (int j
= 0; j
< width
; j
++)
1061 AV_WN16(ptr
+ 2 * j
, v
);
1066 static inline void fillPlane32(uint8_t *plane
, int stride
, int width
, int height
, int y
,
1067 int alpha
, int bits
, const int big_endian
, int is_float
)
1069 uint8_t *ptr
= plane
+ stride
* y
;
1071 uint32_t onef32
= 0x3f800000;
1073 v
= alpha
? onef32
: 0;
1075 v
= alpha
? 0xFFFFFFFF>>(32-bits
) : (1<<(bits
-1));
1076 if (big_endian
!= HAVE_BIGENDIAN
)
1079 for (int i
= 0; i
< height
; i
++) {
1080 for (int j
= 0; j
< width
; j
++)
1081 AV_WN32(ptr
+ 4 * j
, v
);
1087 #define MAX_SLICE_PLANES 4
1090 typedef struct SwsPlane
1092 int available_lines
; ///< max number of lines that can be hold by this plane
1093 int sliceY
; ///< index of first line
1094 int sliceH
; ///< number of lines
1095 uint8_t **line
; ///< line buffer
1096 uint8_t **tmp
; ///< Tmp line buffer used by mmx code
1100 * Struct which defines a slice of an image to be scaled or an output for
1102 * A slice can also be used as intermediate ring buffer for scaling steps.
1104 typedef struct SwsSlice
1106 int width
; ///< Slice line width
1107 int h_chr_sub_sample
; ///< horizontal chroma subsampling factor
1108 int v_chr_sub_sample
; ///< vertical chroma subsampling factor
1109 int is_ring
; ///< flag to identify if this slice is a ring buffer
1110 int should_free_lines
; ///< flag to identify if there are dynamic allocated lines
1111 enum AVPixelFormat fmt
; ///< planes pixel format
1112 SwsPlane plane
[MAX_SLICE_PLANES
]; ///< color planes
1116 * Struct which holds all necessary data for processing a slice.
1117 * A processing step can be a color conversion or horizontal/vertical scaling.
1119 typedef struct SwsFilterDescriptor
1121 SwsSlice
*src
; ///< Source slice
1122 SwsSlice
*dst
; ///< Output slice
1124 int alpha
; ///< Flag for processing alpha channel
1125 void *instance
; ///< Filter instance data
1127 /// Function for processing input slice sliceH lines starting from line sliceY
1128 int (*process
)(SwsInternal
*c
, struct SwsFilterDescriptor
*desc
, int sliceY
, int sliceH
);
1129 } SwsFilterDescriptor
;
1131 // warp input lines in the form (src + width*i + j) to slice format (line[i][j])
1132 // relative=true means first line src[x][0] otherwise first line is src[x][lum/crh Y]
1133 int ff_init_slice_from_src(SwsSlice
* s
, uint8_t *const src
[4], const int stride
[4],
1134 int srcW
, int lumY
, int lumH
, int chrY
, int chrH
, int relative
);
1136 // Initialize scaler filter descriptor chain
1137 int ff_init_filters(SwsInternal
*c
);
1139 // Free all filter data
1140 int ff_free_filters(SwsInternal
*c
);
1143 function for applying ring buffer logic into slice s
1144 It checks if the slice can hold more @lum lines, if yes
1145 do nothing otherwise remove @lum least used lines.
1146 It applies the same procedure for @chr lines.
1148 int ff_rotate_slice(SwsSlice
*s
, int lum
, int chr
);
1150 /// initializes gamma conversion descriptor
1151 int ff_init_gamma_convert(SwsFilterDescriptor
*desc
, SwsSlice
* src
, uint16_t *table
);
1153 /// initializes lum pixel format conversion descriptor
1154 int ff_init_desc_fmt_convert(SwsFilterDescriptor
*desc
, SwsSlice
* src
, SwsSlice
*dst
, uint32_t *pal
);
1156 /// initializes lum horizontal scaling descriptor
1157 int ff_init_desc_hscale(SwsFilterDescriptor
*desc
, SwsSlice
*src
, SwsSlice
*dst
, uint16_t *filter
, int * filter_pos
, int filter_size
, int xInc
);
1159 /// initializes chr pixel format conversion descriptor
1160 int ff_init_desc_cfmt_convert(SwsFilterDescriptor
*desc
, SwsSlice
* src
, SwsSlice
*dst
, uint32_t *pal
);
1162 /// initializes chr horizontal scaling descriptor
1163 int ff_init_desc_chscale(SwsFilterDescriptor
*desc
, SwsSlice
*src
, SwsSlice
*dst
, uint16_t *filter
, int * filter_pos
, int filter_size
, int xInc
);
1165 int ff_init_desc_no_chr(SwsFilterDescriptor
*desc
, SwsSlice
* src
, SwsSlice
*dst
);
1167 /// initializes vertical scaling descriptors
1168 int ff_init_vscale(SwsInternal
*c
, SwsFilterDescriptor
*desc
, SwsSlice
*src
, SwsSlice
*dst
);
1170 /// setup vertical scaler functions
1171 void ff_init_vscale_pfn(SwsInternal
*c
, yuv2planar1_fn yuv2plane1
, yuv2planarX_fn yuv2planeX
,
1172 yuv2interleavedX_fn yuv2nv12cX
, yuv2packed1_fn yuv2packed1
, yuv2packed2_fn yuv2packed2
,
1173 yuv2packedX_fn yuv2packedX
, yuv2anyX_fn yuv2anyX
, int use_mmx
);
1175 void ff_sws_slice_worker(void *priv
, int jobnr
, int threadnr
,
1176 int nb_jobs
, int nb_threads
);
1178 int ff_swscale(SwsInternal
*c
, const uint8_t *const src
[], const int srcStride
[],
1179 int srcSliceY
, int srcSliceH
, uint8_t *const dst
[],
1180 const int dstStride
[], int dstSliceY
, int dstSliceH
);
1183 //number of extra lines to process
1184 #define MAX_LINES_AHEAD 4
1186 //shuffle filter and filterPos for hyScale and hcScale filters in avx2
1187 int ff_shuffle_filter_coefficients(SwsInternal
*c
, int* filterPos
, int filterSize
, int16_t *filter
, int dstW
);
1188 #endif /* SWSCALE_SWSCALE_INTERNAL_H */