Use (u)int16_t instead of (unsigned) short
[FFMpeg-mirror/DVCPRO-HD.git] / libavcodec / cook.c
blob9384fc3c53113764ed9948168cf5ed01128179da
1 /*
2 * COOK compatible decoder
3 * Copyright (c) 2003 Sascha Sommer
4 * Copyright (c) 2005 Benjamin Larsson
6 * This file is part of FFmpeg.
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 /**
24 * @file cook.c
25 * Cook compatible decoder. Bastardization of the G.722.1 standard.
26 * This decoder handles RealNetworks, RealAudio G2 data.
27 * Cook is identified by the codec name cook in RM files.
29 * To use this decoder, a calling application must supply the extradata
30 * bytes provided from the RM container; 8+ bytes for mono streams and
31 * 16+ for stereo streams (maybe more).
33 * Codec technicalities (all this assume a buffer length of 1024):
34 * Cook works with several different techniques to achieve its compression.
35 * In the timedomain the buffer is divided into 8 pieces and quantized. If
36 * two neighboring pieces have different quantization index a smooth
37 * quantization curve is used to get a smooth overlap between the different
38 * pieces.
39 * To get to the transformdomain Cook uses a modulated lapped transform.
40 * The transform domain has 50 subbands with 20 elements each. This
41 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
42 * available.
45 #include <math.h>
46 #include <stddef.h>
47 #include <stdio.h>
49 #include "libavutil/random.h"
50 #include "avcodec.h"
51 #include "bitstream.h"
52 #include "dsputil.h"
53 #include "bytestream.h"
55 #include "cookdata.h"
57 /* the different Cook versions */
58 #define MONO 0x1000001
59 #define STEREO 0x1000002
60 #define JOINT_STEREO 0x1000003
61 #define MC_COOK 0x2000000 //multichannel Cook, not supported
63 #define SUBBAND_SIZE 20
64 //#define COOKDEBUG
66 typedef struct {
67 int *now;
68 int *previous;
69 } cook_gains;
71 typedef struct cook {
73 * The following 5 functions provide the lowlevel arithmetic on
74 * the internal audio buffers.
76 void (* scalar_dequant)(struct cook *q, int index, int quant_index,
77 int* subband_coef_index, int* subband_coef_sign,
78 float* mlt_p);
80 void (* decouple) (struct cook *q,
81 int subband,
82 float f1, float f2,
83 float *decode_buffer,
84 float *mlt_buffer1, float *mlt_buffer2);
86 void (* imlt_window) (struct cook *q, float *buffer1,
87 cook_gains *gains_ptr, float *previous_buffer);
89 void (* interpolate) (struct cook *q, float* buffer,
90 int gain_index, int gain_index_next);
92 void (* saturate_output) (struct cook *q, int chan, int16_t *out);
94 GetBitContext gb;
95 /* stream data */
96 int nb_channels;
97 int joint_stereo;
98 int bit_rate;
99 int sample_rate;
100 int samples_per_channel;
101 int samples_per_frame;
102 int subbands;
103 int log2_numvector_size;
104 int numvector_size; //1 << log2_numvector_size;
105 int js_subband_start;
106 int total_subbands;
107 int num_vectors;
108 int bits_per_subpacket;
109 int cookversion;
110 /* states */
111 AVRandomState random_state;
113 /* transform data */
114 MDCTContext mdct_ctx;
115 DECLARE_ALIGNED_16(FFTSample, mdct_tmp[1024]); /* temporary storage for imlt */
116 float* mlt_window;
118 /* gain buffers */
119 cook_gains gains1;
120 cook_gains gains2;
121 int gain_1[9];
122 int gain_2[9];
123 int gain_3[9];
124 int gain_4[9];
126 /* VLC data */
127 int js_vlc_bits;
128 VLC envelope_quant_index[13];
129 VLC sqvh[7]; //scalar quantization
130 VLC ccpl; //channel coupling
132 /* generatable tables and related variables */
133 int gain_size_factor;
134 float gain_table[23];
136 /* data buffers */
138 uint8_t* decoded_bytes_buffer;
139 DECLARE_ALIGNED_16(float,mono_mdct_output[2048]);
140 float mono_previous_buffer1[1024];
141 float mono_previous_buffer2[1024];
142 float decode_buffer_1[1024];
143 float decode_buffer_2[1024];
144 float decode_buffer_0[1060]; /* static allocation for joint decode */
146 const float *cplscales[5];
147 } COOKContext;
149 static float pow2tab[127];
150 static float rootpow2tab[127];
152 /* debug functions */
154 #ifdef COOKDEBUG
155 static void dump_float_table(float* table, int size, int delimiter) {
156 int i=0;
157 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
158 for (i=0 ; i<size ; i++) {
159 av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]);
160 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
164 static void dump_int_table(int* table, int size, int delimiter) {
165 int i=0;
166 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
167 for (i=0 ; i<size ; i++) {
168 av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
169 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
173 static void dump_short_table(short* table, int size, int delimiter) {
174 int i=0;
175 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
176 for (i=0 ; i<size ; i++) {
177 av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
178 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
182 #endif
184 /*************** init functions ***************/
186 /* table generator */
187 static void init_pow2table(void){
188 int i;
189 for (i=-63 ; i<64 ; i++){
190 pow2tab[63+i]= pow(2, i);
191 rootpow2tab[63+i]=sqrt(pow(2, i));
195 /* table generator */
196 static void init_gain_table(COOKContext *q) {
197 int i;
198 q->gain_size_factor = q->samples_per_channel/8;
199 for (i=0 ; i<23 ; i++) {
200 q->gain_table[i] = pow(pow2tab[i+52] ,
201 (1.0/(double)q->gain_size_factor));
206 static int init_cook_vlc_tables(COOKContext *q) {
207 int i, result;
209 result = 0;
210 for (i=0 ; i<13 ; i++) {
211 result |= init_vlc (&q->envelope_quant_index[i], 9, 24,
212 envelope_quant_index_huffbits[i], 1, 1,
213 envelope_quant_index_huffcodes[i], 2, 2, 0);
215 av_log(NULL,AV_LOG_DEBUG,"sqvh VLC init\n");
216 for (i=0 ; i<7 ; i++) {
217 result |= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
218 cvh_huffbits[i], 1, 1,
219 cvh_huffcodes[i], 2, 2, 0);
222 if (q->nb_channels==2 && q->joint_stereo==1){
223 result |= init_vlc (&q->ccpl, 6, (1<<q->js_vlc_bits)-1,
224 ccpl_huffbits[q->js_vlc_bits-2], 1, 1,
225 ccpl_huffcodes[q->js_vlc_bits-2], 2, 2, 0);
226 av_log(NULL,AV_LOG_DEBUG,"Joint-stereo VLC used.\n");
229 av_log(NULL,AV_LOG_DEBUG,"VLC tables initialized.\n");
230 return result;
233 static int init_cook_mlt(COOKContext *q) {
234 int j;
235 float alpha;
236 int mlt_size = q->samples_per_channel;
238 if ((q->mlt_window = av_malloc(sizeof(float)*mlt_size)) == 0)
239 return -1;
241 /* Initialize the MLT window: simple sine window. */
242 alpha = M_PI / (2.0 * (float)mlt_size);
243 for(j=0 ; j<mlt_size ; j++)
244 q->mlt_window[j] = sin((j + 0.5) * alpha) * sqrt(2.0 / q->samples_per_channel);
246 /* Initialize the MDCT. */
247 if (ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size)+1, 1)) {
248 av_free(q->mlt_window);
249 return -1;
251 av_log(NULL,AV_LOG_DEBUG,"MDCT initialized, order = %d.\n",
252 av_log2(mlt_size)+1);
254 return 0;
257 static const float *maybe_reformat_buffer32 (COOKContext *q, const float *ptr, int n)
259 if (1)
260 return ptr;
263 static void init_cplscales_table (COOKContext *q) {
264 int i;
265 for (i=0;i<5;i++)
266 q->cplscales[i] = maybe_reformat_buffer32 (q, cplscales[i], (1<<(i+2))-1);
269 /*************** init functions end ***********/
272 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
273 * Why? No idea, some checksum/error detection method maybe.
275 * Out buffer size: extra bytes are needed to cope with
276 * padding/misalignment.
277 * Subpackets passed to the decoder can contain two, consecutive
278 * half-subpackets, of identical but arbitrary size.
279 * 1234 1234 1234 1234 extraA extraB
280 * Case 1: AAAA BBBB 0 0
281 * Case 2: AAAA ABBB BB-- 3 3
282 * Case 3: AAAA AABB BBBB 2 2
283 * Case 4: AAAA AAAB BBBB BB-- 1 5
285 * Nice way to waste CPU cycles.
287 * @param inbuffer pointer to byte array of indata
288 * @param out pointer to byte array of outdata
289 * @param bytes number of bytes
291 #define DECODE_BYTES_PAD1(bytes) (3 - ((bytes)+3) % 4)
292 #define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
294 static inline int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){
295 int i, off;
296 uint32_t c;
297 const uint32_t* buf;
298 uint32_t* obuf = (uint32_t*) out;
299 /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
300 * I'm too lazy though, should be something like
301 * for(i=0 ; i<bitamount/64 ; i++)
302 * (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]);
303 * Buffer alignment needs to be checked. */
305 off = (int)((long)inbuffer & 3);
306 buf = (const uint32_t*) (inbuffer - off);
307 c = be2me_32((0x37c511f2 >> (off*8)) | (0x37c511f2 << (32-(off*8))));
308 bytes += 3 + off;
309 for (i = 0; i < bytes/4; i++)
310 obuf[i] = c ^ buf[i];
312 return off;
316 * Cook uninit
319 static int cook_decode_close(AVCodecContext *avctx)
321 int i;
322 COOKContext *q = avctx->priv_data;
323 av_log(avctx,AV_LOG_DEBUG, "Deallocating memory.\n");
325 /* Free allocated memory buffers. */
326 av_free(q->mlt_window);
327 av_free(q->decoded_bytes_buffer);
329 /* Free the transform. */
330 ff_mdct_end(&q->mdct_ctx);
332 /* Free the VLC tables. */
333 for (i=0 ; i<13 ; i++) {
334 free_vlc(&q->envelope_quant_index[i]);
336 for (i=0 ; i<7 ; i++) {
337 free_vlc(&q->sqvh[i]);
339 if(q->nb_channels==2 && q->joint_stereo==1 ){
340 free_vlc(&q->ccpl);
343 av_log(NULL,AV_LOG_DEBUG,"Memory deallocated.\n");
345 return 0;
349 * Fill the gain array for the timedomain quantization.
351 * @param q pointer to the COOKContext
352 * @param gaininfo[9] array of gain indices
355 static void decode_gain_info(GetBitContext *gb, int *gaininfo)
357 int i, n;
359 while (get_bits1(gb)) {}
360 n = get_bits_count(gb) - 1; //amount of elements*2 to update
362 i = 0;
363 while (n--) {
364 int index = get_bits(gb, 3);
365 int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
367 while (i <= index) gaininfo[i++] = gain;
369 while (i <= 8) gaininfo[i++] = 0;
373 * Create the quant index table needed for the envelope.
375 * @param q pointer to the COOKContext
376 * @param quant_index_table pointer to the array
379 static void decode_envelope(COOKContext *q, int* quant_index_table) {
380 int i,j, vlc_index;
382 quant_index_table[0]= get_bits(&q->gb,6) - 6; //This is used later in categorize
384 for (i=1 ; i < q->total_subbands ; i++){
385 vlc_index=i;
386 if (i >= q->js_subband_start * 2) {
387 vlc_index-=q->js_subband_start;
388 } else {
389 vlc_index/=2;
390 if(vlc_index < 1) vlc_index = 1;
392 if (vlc_index>13) vlc_index = 13; //the VLC tables >13 are identical to No. 13
394 j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table,
395 q->envelope_quant_index[vlc_index-1].bits,2);
396 quant_index_table[i] = quant_index_table[i-1] + j - 12; //differential encoding
401 * Calculate the category and category_index vector.
403 * @param q pointer to the COOKContext
404 * @param quant_index_table pointer to the array
405 * @param category pointer to the category array
406 * @param category_index pointer to the category_index array
409 static void categorize(COOKContext *q, int* quant_index_table,
410 int* category, int* category_index){
411 int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
412 int exp_index2[102];
413 int exp_index1[102];
415 int tmp_categorize_array[128*2];
416 int tmp_categorize_array1_idx=q->numvector_size;
417 int tmp_categorize_array2_idx=q->numvector_size;
419 bits_left = q->bits_per_subpacket - get_bits_count(&q->gb);
421 if(bits_left > q->samples_per_channel) {
422 bits_left = q->samples_per_channel +
423 ((bits_left - q->samples_per_channel)*5)/8;
424 //av_log(NULL, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
427 memset(&exp_index1,0,102*sizeof(int));
428 memset(&exp_index2,0,102*sizeof(int));
429 memset(&tmp_categorize_array,0,128*2*sizeof(int));
431 bias=-32;
433 /* Estimate bias. */
434 for (i=32 ; i>0 ; i=i/2){
435 num_bits = 0;
436 index = 0;
437 for (j=q->total_subbands ; j>0 ; j--){
438 exp_idx = av_clip((i - quant_index_table[index] + bias) / 2, 0, 7);
439 index++;
440 num_bits+=expbits_tab[exp_idx];
442 if(num_bits >= bits_left - 32){
443 bias+=i;
447 /* Calculate total number of bits. */
448 num_bits=0;
449 for (i=0 ; i<q->total_subbands ; i++) {
450 exp_idx = av_clip((bias - quant_index_table[i]) / 2, 0, 7);
451 num_bits += expbits_tab[exp_idx];
452 exp_index1[i] = exp_idx;
453 exp_index2[i] = exp_idx;
455 tmpbias1 = tmpbias2 = num_bits;
457 for (j = 1 ; j < q->numvector_size ; j++) {
458 if (tmpbias1 + tmpbias2 > 2*bits_left) { /* ---> */
459 int max = -999999;
460 index=-1;
461 for (i=0 ; i<q->total_subbands ; i++){
462 if (exp_index1[i] < 7) {
463 v = (-2*exp_index1[i]) - quant_index_table[i] + bias;
464 if ( v >= max) {
465 max = v;
466 index = i;
470 if(index==-1)break;
471 tmp_categorize_array[tmp_categorize_array1_idx++] = index;
472 tmpbias1 -= expbits_tab[exp_index1[index]] -
473 expbits_tab[exp_index1[index]+1];
474 ++exp_index1[index];
475 } else { /* <--- */
476 int min = 999999;
477 index=-1;
478 for (i=0 ; i<q->total_subbands ; i++){
479 if(exp_index2[i] > 0){
480 v = (-2*exp_index2[i])-quant_index_table[i]+bias;
481 if ( v < min) {
482 min = v;
483 index = i;
487 if(index == -1)break;
488 tmp_categorize_array[--tmp_categorize_array2_idx] = index;
489 tmpbias2 -= expbits_tab[exp_index2[index]] -
490 expbits_tab[exp_index2[index]-1];
491 --exp_index2[index];
495 for(i=0 ; i<q->total_subbands ; i++)
496 category[i] = exp_index2[i];
498 for(i=0 ; i<q->numvector_size-1 ; i++)
499 category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
505 * Expand the category vector.
507 * @param q pointer to the COOKContext
508 * @param category pointer to the category array
509 * @param category_index pointer to the category_index array
512 static inline void expand_category(COOKContext *q, int* category,
513 int* category_index){
514 int i;
515 for(i=0 ; i<q->num_vectors ; i++){
516 ++category[category_index[i]];
521 * The real requantization of the mltcoefs
523 * @param q pointer to the COOKContext
524 * @param index index
525 * @param quant_index quantisation index
526 * @param subband_coef_index array of indexes to quant_centroid_tab
527 * @param subband_coef_sign signs of coefficients
528 * @param mlt_p pointer into the mlt buffer
531 static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
532 int* subband_coef_index, int* subband_coef_sign,
533 float* mlt_p){
534 int i;
535 float f1;
537 for(i=0 ; i<SUBBAND_SIZE ; i++) {
538 if (subband_coef_index[i]) {
539 f1 = quant_centroid_tab[index][subband_coef_index[i]];
540 if (subband_coef_sign[i]) f1 = -f1;
541 } else {
542 /* noise coding if subband_coef_index[i] == 0 */
543 f1 = dither_tab[index];
544 if (av_random(&q->random_state) < 0x80000000) f1 = -f1;
546 mlt_p[i] = f1 * rootpow2tab[quant_index+63];
550 * Unpack the subband_coef_index and subband_coef_sign vectors.
552 * @param q pointer to the COOKContext
553 * @param category pointer to the category array
554 * @param subband_coef_index array of indexes to quant_centroid_tab
555 * @param subband_coef_sign signs of coefficients
558 static int unpack_SQVH(COOKContext *q, int category, int* subband_coef_index,
559 int* subband_coef_sign) {
560 int i,j;
561 int vlc, vd ,tmp, result;
563 vd = vd_tab[category];
564 result = 0;
565 for(i=0 ; i<vpr_tab[category] ; i++){
566 vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
567 if (q->bits_per_subpacket < get_bits_count(&q->gb)){
568 vlc = 0;
569 result = 1;
571 for(j=vd-1 ; j>=0 ; j--){
572 tmp = (vlc * invradix_tab[category])/0x100000;
573 subband_coef_index[vd*i+j] = vlc - tmp * (kmax_tab[category]+1);
574 vlc = tmp;
576 for(j=0 ; j<vd ; j++){
577 if (subband_coef_index[i*vd + j]) {
578 if(get_bits_count(&q->gb) < q->bits_per_subpacket){
579 subband_coef_sign[i*vd+j] = get_bits1(&q->gb);
580 } else {
581 result=1;
582 subband_coef_sign[i*vd+j]=0;
584 } else {
585 subband_coef_sign[i*vd+j]=0;
589 return result;
594 * Fill the mlt_buffer with mlt coefficients.
596 * @param q pointer to the COOKContext
597 * @param category pointer to the category array
598 * @param quant_index_table pointer to the array
599 * @param mlt_buffer pointer to mlt coefficients
603 static void decode_vectors(COOKContext* q, int* category,
604 int *quant_index_table, float* mlt_buffer){
605 /* A zero in this table means that the subband coefficient is
606 random noise coded. */
607 int subband_coef_index[SUBBAND_SIZE];
608 /* A zero in this table means that the subband coefficient is a
609 positive multiplicator. */
610 int subband_coef_sign[SUBBAND_SIZE];
611 int band, j;
612 int index=0;
614 for(band=0 ; band<q->total_subbands ; band++){
615 index = category[band];
616 if(category[band] < 7){
617 if(unpack_SQVH(q, category[band], subband_coef_index, subband_coef_sign)){
618 index=7;
619 for(j=0 ; j<q->total_subbands ; j++) category[band+j]=7;
622 if(index==7) {
623 memset(subband_coef_index, 0, sizeof(subband_coef_index));
624 memset(subband_coef_sign, 0, sizeof(subband_coef_sign));
626 q->scalar_dequant(q, index, quant_index_table[band],
627 subband_coef_index, subband_coef_sign,
628 &mlt_buffer[band * SUBBAND_SIZE]);
631 if(q->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){
632 return;
633 } /* FIXME: should this be removed, or moved into loop above? */
638 * function for decoding mono data
640 * @param q pointer to the COOKContext
641 * @param mlt_buffer pointer to mlt coefficients
644 static void mono_decode(COOKContext *q, float* mlt_buffer) {
646 int category_index[128];
647 int quant_index_table[102];
648 int category[128];
650 memset(&category, 0, 128*sizeof(int));
651 memset(&category_index, 0, 128*sizeof(int));
653 decode_envelope(q, quant_index_table);
654 q->num_vectors = get_bits(&q->gb,q->log2_numvector_size);
655 categorize(q, quant_index_table, category, category_index);
656 expand_category(q, category, category_index);
657 decode_vectors(q, category, quant_index_table, mlt_buffer);
662 * the actual requantization of the timedomain samples
664 * @param q pointer to the COOKContext
665 * @param buffer pointer to the timedomain buffer
666 * @param gain_index index for the block multiplier
667 * @param gain_index_next index for the next block multiplier
670 static void interpolate_float(COOKContext *q, float* buffer,
671 int gain_index, int gain_index_next){
672 int i;
673 float fc1, fc2;
674 fc1 = pow2tab[gain_index+63];
676 if(gain_index == gain_index_next){ //static gain
677 for(i=0 ; i<q->gain_size_factor ; i++){
678 buffer[i]*=fc1;
680 return;
681 } else { //smooth gain
682 fc2 = q->gain_table[11 + (gain_index_next-gain_index)];
683 for(i=0 ; i<q->gain_size_factor ; i++){
684 buffer[i]*=fc1;
685 fc1*=fc2;
687 return;
692 * Apply transform window, overlap buffers.
694 * @param q pointer to the COOKContext
695 * @param inbuffer pointer to the mltcoefficients
696 * @param gains_ptr current and previous gains
697 * @param previous_buffer pointer to the previous buffer to be used for overlapping
700 static void imlt_window_float (COOKContext *q, float *buffer1,
701 cook_gains *gains_ptr, float *previous_buffer)
703 const float fc = pow2tab[gains_ptr->previous[0] + 63];
704 int i;
705 /* The weird thing here, is that the two halves of the time domain
706 * buffer are swapped. Also, the newest data, that we save away for
707 * next frame, has the wrong sign. Hence the subtraction below.
708 * Almost sounds like a complex conjugate/reverse data/FFT effect.
711 /* Apply window and overlap */
712 for(i = 0; i < q->samples_per_channel; i++){
713 buffer1[i] = buffer1[i] * fc * q->mlt_window[i] -
714 previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
719 * The modulated lapped transform, this takes transform coefficients
720 * and transforms them into timedomain samples.
721 * Apply transform window, overlap buffers, apply gain profile
722 * and buffer management.
724 * @param q pointer to the COOKContext
725 * @param inbuffer pointer to the mltcoefficients
726 * @param gains_ptr current and previous gains
727 * @param previous_buffer pointer to the previous buffer to be used for overlapping
730 static void imlt_gain(COOKContext *q, float *inbuffer,
731 cook_gains *gains_ptr, float* previous_buffer)
733 float *buffer0 = q->mono_mdct_output;
734 float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
735 int i;
737 /* Inverse modified discrete cosine transform */
738 q->mdct_ctx.fft.imdct_calc(&q->mdct_ctx, q->mono_mdct_output,
739 inbuffer, q->mdct_tmp);
741 q->imlt_window (q, buffer1, gains_ptr, previous_buffer);
743 /* Apply gain profile */
744 for (i = 0; i < 8; i++) {
745 if (gains_ptr->now[i] || gains_ptr->now[i + 1])
746 q->interpolate(q, &buffer1[q->gain_size_factor * i],
747 gains_ptr->now[i], gains_ptr->now[i + 1]);
750 /* Save away the current to be previous block. */
751 memcpy(previous_buffer, buffer0, sizeof(float)*q->samples_per_channel);
756 * function for getting the jointstereo coupling information
758 * @param q pointer to the COOKContext
759 * @param decouple_tab decoupling array
763 static void decouple_info(COOKContext *q, int* decouple_tab){
764 int length, i;
766 if(get_bits1(&q->gb)) {
767 if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
769 length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
770 for (i=0 ; i<length ; i++) {
771 decouple_tab[cplband[q->js_subband_start] + i] = get_vlc2(&q->gb, q->ccpl.table, q->ccpl.bits, 2);
773 return;
776 if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
778 length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
779 for (i=0 ; i<length ; i++) {
780 decouple_tab[cplband[q->js_subband_start] + i] = get_bits(&q->gb, q->js_vlc_bits);
782 return;
786 * function decouples a pair of signals from a single signal via multiplication.
788 * @param q pointer to the COOKContext
789 * @param subband index of the current subband
790 * @param f1 multiplier for channel 1 extraction
791 * @param f2 multiplier for channel 2 extraction
792 * @param decode_buffer input buffer
793 * @param mlt_buffer1 pointer to left channel mlt coefficients
794 * @param mlt_buffer2 pointer to right channel mlt coefficients
796 static void decouple_float (COOKContext *q,
797 int subband,
798 float f1, float f2,
799 float *decode_buffer,
800 float *mlt_buffer1, float *mlt_buffer2)
802 int j, tmp_idx;
803 for (j=0 ; j<SUBBAND_SIZE ; j++) {
804 tmp_idx = ((q->js_subband_start + subband)*SUBBAND_SIZE)+j;
805 mlt_buffer1[SUBBAND_SIZE*subband + j] = f1 * decode_buffer[tmp_idx];
806 mlt_buffer2[SUBBAND_SIZE*subband + j] = f2 * decode_buffer[tmp_idx];
811 * function for decoding joint stereo data
813 * @param q pointer to the COOKContext
814 * @param mlt_buffer1 pointer to left channel mlt coefficients
815 * @param mlt_buffer2 pointer to right channel mlt coefficients
818 static void joint_decode(COOKContext *q, float* mlt_buffer1,
819 float* mlt_buffer2) {
820 int i,j;
821 int decouple_tab[SUBBAND_SIZE];
822 float *decode_buffer = q->decode_buffer_0;
823 int idx, cpl_tmp;
824 float f1,f2;
825 const float* cplscale;
827 memset(decouple_tab, 0, sizeof(decouple_tab));
828 memset(decode_buffer, 0, sizeof(decode_buffer));
830 /* Make sure the buffers are zeroed out. */
831 memset(mlt_buffer1,0, 1024*sizeof(float));
832 memset(mlt_buffer2,0, 1024*sizeof(float));
833 decouple_info(q, decouple_tab);
834 mono_decode(q, decode_buffer);
836 /* The two channels are stored interleaved in decode_buffer. */
837 for (i=0 ; i<q->js_subband_start ; i++) {
838 for (j=0 ; j<SUBBAND_SIZE ; j++) {
839 mlt_buffer1[i*20+j] = decode_buffer[i*40+j];
840 mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j];
844 /* When we reach js_subband_start (the higher frequencies)
845 the coefficients are stored in a coupling scheme. */
846 idx = (1 << q->js_vlc_bits) - 1;
847 for (i=q->js_subband_start ; i<q->subbands ; i++) {
848 cpl_tmp = cplband[i];
849 idx -=decouple_tab[cpl_tmp];
850 cplscale = q->cplscales[q->js_vlc_bits-2]; //choose decoupler table
851 f1 = cplscale[decouple_tab[cpl_tmp]];
852 f2 = cplscale[idx-1];
853 q->decouple (q, i, f1, f2, decode_buffer, mlt_buffer1, mlt_buffer2);
854 idx = (1 << q->js_vlc_bits) - 1;
859 * First part of subpacket decoding:
860 * decode raw stream bytes and read gain info.
862 * @param q pointer to the COOKContext
863 * @param inbuffer pointer to raw stream data
864 * @param gain_ptr array of current/prev gain pointers
867 static inline void
868 decode_bytes_and_gain(COOKContext *q, const uint8_t *inbuffer,
869 cook_gains *gains_ptr)
871 int offset;
873 offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
874 q->bits_per_subpacket/8);
875 init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
876 q->bits_per_subpacket);
877 decode_gain_info(&q->gb, gains_ptr->now);
879 /* Swap current and previous gains */
880 FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
884 * Saturate the output signal to signed 16bit integers.
886 * @param q pointer to the COOKContext
887 * @param chan channel to saturate
888 * @param out pointer to the output vector
890 static void
891 saturate_output_float (COOKContext *q, int chan, int16_t *out)
893 int j;
894 float *output = q->mono_mdct_output + q->samples_per_channel;
895 /* Clip and convert floats to 16 bits.
897 for (j = 0; j < q->samples_per_channel; j++) {
898 out[chan + q->nb_channels * j] =
899 av_clip_int16(lrintf(output[j]));
904 * Final part of subpacket decoding:
905 * Apply modulated lapped transform, gain compensation,
906 * clip and convert to integer.
908 * @param q pointer to the COOKContext
909 * @param decode_buffer pointer to the mlt coefficients
910 * @param gain_ptr array of current/prev gain pointers
911 * @param previous_buffer pointer to the previous buffer to be used for overlapping
912 * @param out pointer to the output buffer
913 * @param chan 0: left or single channel, 1: right channel
916 static inline void
917 mlt_compensate_output(COOKContext *q, float *decode_buffer,
918 cook_gains *gains, float *previous_buffer,
919 int16_t *out, int chan)
921 imlt_gain(q, decode_buffer, gains, previous_buffer);
922 q->saturate_output (q, chan, out);
927 * Cook subpacket decoding. This function returns one decoded subpacket,
928 * usually 1024 samples per channel.
930 * @param q pointer to the COOKContext
931 * @param inbuffer pointer to the inbuffer
932 * @param sub_packet_size subpacket size
933 * @param outbuffer pointer to the outbuffer
937 static int decode_subpacket(COOKContext *q, const uint8_t *inbuffer,
938 int sub_packet_size, int16_t *outbuffer) {
939 /* packet dump */
940 // for (i=0 ; i<sub_packet_size ; i++) {
941 // av_log(NULL, AV_LOG_ERROR, "%02x", inbuffer[i]);
942 // }
943 // av_log(NULL, AV_LOG_ERROR, "\n");
945 decode_bytes_and_gain(q, inbuffer, &q->gains1);
947 if (q->joint_stereo) {
948 joint_decode(q, q->decode_buffer_1, q->decode_buffer_2);
949 } else {
950 mono_decode(q, q->decode_buffer_1);
952 if (q->nb_channels == 2) {
953 decode_bytes_and_gain(q, inbuffer + sub_packet_size/2, &q->gains2);
954 mono_decode(q, q->decode_buffer_2);
958 mlt_compensate_output(q, q->decode_buffer_1, &q->gains1,
959 q->mono_previous_buffer1, outbuffer, 0);
961 if (q->nb_channels == 2) {
962 if (q->joint_stereo) {
963 mlt_compensate_output(q, q->decode_buffer_2, &q->gains1,
964 q->mono_previous_buffer2, outbuffer, 1);
965 } else {
966 mlt_compensate_output(q, q->decode_buffer_2, &q->gains2,
967 q->mono_previous_buffer2, outbuffer, 1);
970 return q->samples_per_frame * sizeof(int16_t);
975 * Cook frame decoding
977 * @param avctx pointer to the AVCodecContext
980 static int cook_decode_frame(AVCodecContext *avctx,
981 void *data, int *data_size,
982 const uint8_t *buf, int buf_size) {
983 COOKContext *q = avctx->priv_data;
985 if (buf_size < avctx->block_align)
986 return buf_size;
988 *data_size = decode_subpacket(q, buf, avctx->block_align, data);
990 /* Discard the first two frames: no valid audio. */
991 if (avctx->frame_number < 2) *data_size = 0;
993 return avctx->block_align;
996 #ifdef COOKDEBUG
997 static void dump_cook_context(COOKContext *q)
999 //int i=0;
1000 #define PRINT(a,b) av_log(NULL,AV_LOG_ERROR," %s = %d\n", a, b);
1001 av_log(NULL,AV_LOG_ERROR,"COOKextradata\n");
1002 av_log(NULL,AV_LOG_ERROR,"cookversion=%x\n",q->cookversion);
1003 if (q->cookversion > STEREO) {
1004 PRINT("js_subband_start",q->js_subband_start);
1005 PRINT("js_vlc_bits",q->js_vlc_bits);
1007 av_log(NULL,AV_LOG_ERROR,"COOKContext\n");
1008 PRINT("nb_channels",q->nb_channels);
1009 PRINT("bit_rate",q->bit_rate);
1010 PRINT("sample_rate",q->sample_rate);
1011 PRINT("samples_per_channel",q->samples_per_channel);
1012 PRINT("samples_per_frame",q->samples_per_frame);
1013 PRINT("subbands",q->subbands);
1014 PRINT("random_state",q->random_state);
1015 PRINT("js_subband_start",q->js_subband_start);
1016 PRINT("log2_numvector_size",q->log2_numvector_size);
1017 PRINT("numvector_size",q->numvector_size);
1018 PRINT("total_subbands",q->total_subbands);
1020 #endif
1023 * Cook initialization
1025 * @param avctx pointer to the AVCodecContext
1028 static int cook_decode_init(AVCodecContext *avctx)
1030 COOKContext *q = avctx->priv_data;
1031 const uint8_t *edata_ptr = avctx->extradata;
1033 /* Take care of the codec specific extradata. */
1034 if (avctx->extradata_size <= 0) {
1035 av_log(avctx,AV_LOG_ERROR,"Necessary extradata missing!\n");
1036 return -1;
1037 } else {
1038 /* 8 for mono, 16 for stereo, ? for multichannel
1039 Swap to right endianness so we don't need to care later on. */
1040 av_log(avctx,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size);
1041 if (avctx->extradata_size >= 8){
1042 q->cookversion = bytestream_get_be32(&edata_ptr);
1043 q->samples_per_frame = bytestream_get_be16(&edata_ptr);
1044 q->subbands = bytestream_get_be16(&edata_ptr);
1046 if (avctx->extradata_size >= 16){
1047 bytestream_get_be32(&edata_ptr); //Unknown unused
1048 q->js_subband_start = bytestream_get_be16(&edata_ptr);
1049 q->js_vlc_bits = bytestream_get_be16(&edata_ptr);
1053 /* Take data from the AVCodecContext (RM container). */
1054 q->sample_rate = avctx->sample_rate;
1055 q->nb_channels = avctx->channels;
1056 q->bit_rate = avctx->bit_rate;
1058 /* Initialize RNG. */
1059 av_init_random(1, &q->random_state);
1061 /* Initialize extradata related variables. */
1062 q->samples_per_channel = q->samples_per_frame / q->nb_channels;
1063 q->bits_per_subpacket = avctx->block_align * 8;
1065 /* Initialize default data states. */
1066 q->log2_numvector_size = 5;
1067 q->total_subbands = q->subbands;
1069 /* Initialize version-dependent variables */
1070 av_log(NULL,AV_LOG_DEBUG,"q->cookversion=%x\n",q->cookversion);
1071 q->joint_stereo = 0;
1072 switch (q->cookversion) {
1073 case MONO:
1074 if (q->nb_channels != 1) {
1075 av_log(avctx,AV_LOG_ERROR,"Container channels != 1, report sample!\n");
1076 return -1;
1078 av_log(avctx,AV_LOG_DEBUG,"MONO\n");
1079 break;
1080 case STEREO:
1081 if (q->nb_channels != 1) {
1082 q->bits_per_subpacket = q->bits_per_subpacket/2;
1084 av_log(avctx,AV_LOG_DEBUG,"STEREO\n");
1085 break;
1086 case JOINT_STEREO:
1087 if (q->nb_channels != 2) {
1088 av_log(avctx,AV_LOG_ERROR,"Container channels != 2, report sample!\n");
1089 return -1;
1091 av_log(avctx,AV_LOG_DEBUG,"JOINT_STEREO\n");
1092 if (avctx->extradata_size >= 16){
1093 q->total_subbands = q->subbands + q->js_subband_start;
1094 q->joint_stereo = 1;
1096 if (q->samples_per_channel > 256) {
1097 q->log2_numvector_size = 6;
1099 if (q->samples_per_channel > 512) {
1100 q->log2_numvector_size = 7;
1102 break;
1103 case MC_COOK:
1104 av_log(avctx,AV_LOG_ERROR,"MC_COOK not supported!\n");
1105 return -1;
1106 break;
1107 default:
1108 av_log(avctx,AV_LOG_ERROR,"Unknown Cook version, report sample!\n");
1109 return -1;
1110 break;
1113 /* Initialize variable relations */
1114 q->numvector_size = (1 << q->log2_numvector_size);
1116 /* Generate tables */
1117 init_pow2table();
1118 init_gain_table(q);
1119 init_cplscales_table(q);
1121 if (init_cook_vlc_tables(q) != 0)
1122 return -1;
1125 if(avctx->block_align >= UINT_MAX/2)
1126 return -1;
1128 /* Pad the databuffer with:
1129 DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
1130 FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
1131 if (q->nb_channels==2 && q->joint_stereo==0) {
1132 q->decoded_bytes_buffer =
1133 av_mallocz(avctx->block_align/2
1134 + DECODE_BYTES_PAD2(avctx->block_align/2)
1135 + FF_INPUT_BUFFER_PADDING_SIZE);
1136 } else {
1137 q->decoded_bytes_buffer =
1138 av_mallocz(avctx->block_align
1139 + DECODE_BYTES_PAD1(avctx->block_align)
1140 + FF_INPUT_BUFFER_PADDING_SIZE);
1142 if (q->decoded_bytes_buffer == NULL)
1143 return -1;
1145 q->gains1.now = q->gain_1;
1146 q->gains1.previous = q->gain_2;
1147 q->gains2.now = q->gain_3;
1148 q->gains2.previous = q->gain_4;
1150 /* Initialize transform. */
1151 if ( init_cook_mlt(q) != 0 )
1152 return -1;
1154 /* Initialize COOK signal arithmetic handling */
1155 if (1) {
1156 q->scalar_dequant = scalar_dequant_float;
1157 q->decouple = decouple_float;
1158 q->imlt_window = imlt_window_float;
1159 q->interpolate = interpolate_float;
1160 q->saturate_output = saturate_output_float;
1163 /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1164 if (q->total_subbands > 53) {
1165 av_log(avctx,AV_LOG_ERROR,"total_subbands > 53, report sample!\n");
1166 return -1;
1168 if (q->subbands > 50) {
1169 av_log(avctx,AV_LOG_ERROR,"subbands > 50, report sample!\n");
1170 return -1;
1172 if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512) || (q->samples_per_channel == 1024)) {
1173 } else {
1174 av_log(avctx,AV_LOG_ERROR,"unknown amount of samples_per_channel = %d, report sample!\n",q->samples_per_channel);
1175 return -1;
1177 if ((q->js_vlc_bits > 6) || (q->js_vlc_bits < 0)) {
1178 av_log(avctx,AV_LOG_ERROR,"q->js_vlc_bits = %d, only >= 0 and <= 6 allowed!\n",q->js_vlc_bits);
1179 return -1;
1182 #ifdef COOKDEBUG
1183 dump_cook_context(q);
1184 #endif
1185 return 0;
1189 AVCodec cook_decoder =
1191 .name = "cook",
1192 .type = CODEC_TYPE_AUDIO,
1193 .id = CODEC_ID_COOK,
1194 .priv_data_size = sizeof(COOKContext),
1195 .init = cook_decode_init,
1196 .close = cook_decode_close,
1197 .decode = cook_decode_frame,
1198 .long_name = "COOK",