It makes more sense to return 1 here in case of overflow.
[FFMpeg-mirror/DVCPRO-HD.git] / libavcodec / jrevdct.c
blobd9612ebd8224b58e10d810b2f1f8b62fd05aaed8
1 /*
2 * jrevdct.c
4 * This file is part of the Independent JPEG Group's software.
6 * The authors make NO WARRANTY or representation, either express or implied,
7 * with respect to this software, its quality, accuracy, merchantability, or
8 * fitness for a particular purpose. This software is provided "AS IS", and
9 * you, its user, assume the entire risk as to its quality and accuracy.
11 * This software is copyright (C) 1991, 1992, Thomas G. Lane.
12 * All Rights Reserved except as specified below.
14 * Permission is hereby granted to use, copy, modify, and distribute this
15 * software (or portions thereof) for any purpose, without fee, subject to
16 * these conditions:
17 * (1) If any part of the source code for this software is distributed, then
18 * this README file must be included, with this copyright and no-warranty
19 * notice unaltered; and any additions, deletions, or changes to the original
20 * files must be clearly indicated in accompanying documentation.
21 * (2) If only executable code is distributed, then the accompanying
22 * documentation must state that "this software is based in part on the work
23 * of the Independent JPEG Group".
24 * (3) Permission for use of this software is granted only if the user accepts
25 * full responsibility for any undesirable consequences; the authors accept
26 * NO LIABILITY for damages of any kind.
28 * These conditions apply to any software derived from or based on the IJG
29 * code, not just to the unmodified library. If you use our work, you ought
30 * to acknowledge us.
32 * Permission is NOT granted for the use of any IJG author's name or company
33 * name in advertising or publicity relating to this software or products
34 * derived from it. This software may be referred to only as "the Independent
35 * JPEG Group's software".
37 * We specifically permit and encourage the use of this software as the basis
38 * of commercial products, provided that all warranty or liability claims are
39 * assumed by the product vendor.
41 * This file contains the basic inverse-DCT transformation subroutine.
43 * This implementation is based on an algorithm described in
44 * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
45 * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
46 * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
47 * The primary algorithm described there uses 11 multiplies and 29 adds.
48 * We use their alternate method with 12 multiplies and 32 adds.
49 * The advantage of this method is that no data path contains more than one
50 * multiplication; this allows a very simple and accurate implementation in
51 * scaled fixed-point arithmetic, with a minimal number of shifts.
53 * I've made lots of modifications to attempt to take advantage of the
54 * sparse nature of the DCT matrices we're getting. Although the logic
55 * is cumbersome, it's straightforward and the resulting code is much
56 * faster.
58 * A better way to do this would be to pass in the DCT block as a sparse
59 * matrix, perhaps with the difference cases encoded.
62 /**
63 * @file jrevdct.c
64 * Independent JPEG Group's LLM idct.
67 #include "libavutil/common.h"
68 #include "dsputil.h"
70 #define EIGHT_BIT_SAMPLES
72 #define DCTSIZE 8
73 #define DCTSIZE2 64
75 #define GLOBAL
77 #define RIGHT_SHIFT(x, n) ((x) >> (n))
79 typedef DCTELEM DCTBLOCK[DCTSIZE2];
81 #define CONST_BITS 13
84 * This routine is specialized to the case DCTSIZE = 8.
87 #if DCTSIZE != 8
88 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
89 #endif
93 * A 2-D IDCT can be done by 1-D IDCT on each row followed by 1-D IDCT
94 * on each column. Direct algorithms are also available, but they are
95 * much more complex and seem not to be any faster when reduced to code.
97 * The poop on this scaling stuff is as follows:
99 * Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
100 * larger than the true IDCT outputs. The final outputs are therefore
101 * a factor of N larger than desired; since N=8 this can be cured by
102 * a simple right shift at the end of the algorithm. The advantage of
103 * this arrangement is that we save two multiplications per 1-D IDCT,
104 * because the y0 and y4 inputs need not be divided by sqrt(N).
106 * We have to do addition and subtraction of the integer inputs, which
107 * is no problem, and multiplication by fractional constants, which is
108 * a problem to do in integer arithmetic. We multiply all the constants
109 * by CONST_SCALE and convert them to integer constants (thus retaining
110 * CONST_BITS bits of precision in the constants). After doing a
111 * multiplication we have to divide the product by CONST_SCALE, with proper
112 * rounding, to produce the correct output. This division can be done
113 * cheaply as a right shift of CONST_BITS bits. We postpone shifting
114 * as long as possible so that partial sums can be added together with
115 * full fractional precision.
117 * The outputs of the first pass are scaled up by PASS1_BITS bits so that
118 * they are represented to better-than-integral precision. These outputs
119 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
120 * with the recommended scaling. (To scale up 12-bit sample data further, an
121 * intermediate int32 array would be needed.)
123 * To avoid overflow of the 32-bit intermediate results in pass 2, we must
124 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
125 * shows that the values given below are the most effective.
128 #ifdef EIGHT_BIT_SAMPLES
129 #define PASS1_BITS 2
130 #else
131 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */
132 #endif
134 #define ONE ((int32_t) 1)
136 #define CONST_SCALE (ONE << CONST_BITS)
138 /* Convert a positive real constant to an integer scaled by CONST_SCALE.
139 * IMPORTANT: if your compiler doesn't do this arithmetic at compile time,
140 * you will pay a significant penalty in run time. In that case, figure
141 * the correct integer constant values and insert them by hand.
144 /* Actually FIX is no longer used, we precomputed them all */
145 #define FIX(x) ((int32_t) ((x) * CONST_SCALE + 0.5))
147 /* Descale and correctly round an int32_t value that's scaled by N bits.
148 * We assume RIGHT_SHIFT rounds towards minus infinity, so adding
149 * the fudge factor is correct for either sign of X.
152 #define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
154 /* Multiply an int32_t variable by an int32_t constant to yield an int32_t result.
155 * For 8-bit samples with the recommended scaling, all the variable
156 * and constant values involved are no more than 16 bits wide, so a
157 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply;
158 * this provides a useful speedup on many machines.
159 * There is no way to specify a 16x16->32 multiply in portable C, but
160 * some C compilers will do the right thing if you provide the correct
161 * combination of casts.
162 * NB: for 12-bit samples, a full 32-bit multiplication will be needed.
165 #ifdef EIGHT_BIT_SAMPLES
166 #ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
167 #define MULTIPLY(var,const) (((int16_t) (var)) * ((int16_t) (const)))
168 #endif
169 #ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */
170 #define MULTIPLY(var,const) (((int16_t) (var)) * ((int32_t) (const)))
171 #endif
172 #endif
174 #ifndef MULTIPLY /* default definition */
175 #define MULTIPLY(var,const) ((var) * (const))
176 #endif
180 Unlike our decoder where we approximate the FIXes, we need to use exact
181 ones here or successive P-frames will drift too much with Reference frame coding
183 #define FIX_0_211164243 1730
184 #define FIX_0_275899380 2260
185 #define FIX_0_298631336 2446
186 #define FIX_0_390180644 3196
187 #define FIX_0_509795579 4176
188 #define FIX_0_541196100 4433
189 #define FIX_0_601344887 4926
190 #define FIX_0_765366865 6270
191 #define FIX_0_785694958 6436
192 #define FIX_0_899976223 7373
193 #define FIX_1_061594337 8697
194 #define FIX_1_111140466 9102
195 #define FIX_1_175875602 9633
196 #define FIX_1_306562965 10703
197 #define FIX_1_387039845 11363
198 #define FIX_1_451774981 11893
199 #define FIX_1_501321110 12299
200 #define FIX_1_662939225 13623
201 #define FIX_1_847759065 15137
202 #define FIX_1_961570560 16069
203 #define FIX_2_053119869 16819
204 #define FIX_2_172734803 17799
205 #define FIX_2_562915447 20995
206 #define FIX_3_072711026 25172
209 * Perform the inverse DCT on one block of coefficients.
212 void j_rev_dct(DCTBLOCK data)
214 int32_t tmp0, tmp1, tmp2, tmp3;
215 int32_t tmp10, tmp11, tmp12, tmp13;
216 int32_t z1, z2, z3, z4, z5;
217 int32_t d0, d1, d2, d3, d4, d5, d6, d7;
218 register DCTELEM *dataptr;
219 int rowctr;
221 /* Pass 1: process rows. */
222 /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
223 /* furthermore, we scale the results by 2**PASS1_BITS. */
225 dataptr = data;
227 for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
228 /* Due to quantization, we will usually find that many of the input
229 * coefficients are zero, especially the AC terms. We can exploit this
230 * by short-circuiting the IDCT calculation for any row in which all
231 * the AC terms are zero. In that case each output is equal to the
232 * DC coefficient (with scale factor as needed).
233 * With typical images and quantization tables, half or more of the
234 * row DCT calculations can be simplified this way.
237 register int *idataptr = (int*)dataptr;
239 /* WARNING: we do the same permutation as MMX idct to simplify the
240 video core */
241 d0 = dataptr[0];
242 d2 = dataptr[1];
243 d4 = dataptr[2];
244 d6 = dataptr[3];
245 d1 = dataptr[4];
246 d3 = dataptr[5];
247 d5 = dataptr[6];
248 d7 = dataptr[7];
250 if ((d1 | d2 | d3 | d4 | d5 | d6 | d7) == 0) {
251 /* AC terms all zero */
252 if (d0) {
253 /* Compute a 32 bit value to assign. */
254 DCTELEM dcval = (DCTELEM) (d0 << PASS1_BITS);
255 register int v = (dcval & 0xffff) | ((dcval << 16) & 0xffff0000);
257 idataptr[0] = v;
258 idataptr[1] = v;
259 idataptr[2] = v;
260 idataptr[3] = v;
263 dataptr += DCTSIZE; /* advance pointer to next row */
264 continue;
267 /* Even part: reverse the even part of the forward DCT. */
268 /* The rotator is sqrt(2)*c(-6). */
270 if (d6) {
271 if (d2) {
272 /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
273 z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
274 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
275 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
277 tmp0 = (d0 + d4) << CONST_BITS;
278 tmp1 = (d0 - d4) << CONST_BITS;
280 tmp10 = tmp0 + tmp3;
281 tmp13 = tmp0 - tmp3;
282 tmp11 = tmp1 + tmp2;
283 tmp12 = tmp1 - tmp2;
284 } else {
285 /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
286 tmp2 = MULTIPLY(-d6, FIX_1_306562965);
287 tmp3 = MULTIPLY(d6, FIX_0_541196100);
289 tmp0 = (d0 + d4) << CONST_BITS;
290 tmp1 = (d0 - d4) << CONST_BITS;
292 tmp10 = tmp0 + tmp3;
293 tmp13 = tmp0 - tmp3;
294 tmp11 = tmp1 + tmp2;
295 tmp12 = tmp1 - tmp2;
297 } else {
298 if (d2) {
299 /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
300 tmp2 = MULTIPLY(d2, FIX_0_541196100);
301 tmp3 = MULTIPLY(d2, FIX_1_306562965);
303 tmp0 = (d0 + d4) << CONST_BITS;
304 tmp1 = (d0 - d4) << CONST_BITS;
306 tmp10 = tmp0 + tmp3;
307 tmp13 = tmp0 - tmp3;
308 tmp11 = tmp1 + tmp2;
309 tmp12 = tmp1 - tmp2;
310 } else {
311 /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
312 tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
313 tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
317 /* Odd part per figure 8; the matrix is unitary and hence its
318 * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
321 if (d7) {
322 if (d5) {
323 if (d3) {
324 if (d1) {
325 /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */
326 z1 = d7 + d1;
327 z2 = d5 + d3;
328 z3 = d7 + d3;
329 z4 = d5 + d1;
330 z5 = MULTIPLY(z3 + z4, FIX_1_175875602);
332 tmp0 = MULTIPLY(d7, FIX_0_298631336);
333 tmp1 = MULTIPLY(d5, FIX_2_053119869);
334 tmp2 = MULTIPLY(d3, FIX_3_072711026);
335 tmp3 = MULTIPLY(d1, FIX_1_501321110);
336 z1 = MULTIPLY(-z1, FIX_0_899976223);
337 z2 = MULTIPLY(-z2, FIX_2_562915447);
338 z3 = MULTIPLY(-z3, FIX_1_961570560);
339 z4 = MULTIPLY(-z4, FIX_0_390180644);
341 z3 += z5;
342 z4 += z5;
344 tmp0 += z1 + z3;
345 tmp1 += z2 + z4;
346 tmp2 += z2 + z3;
347 tmp3 += z1 + z4;
348 } else {
349 /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */
350 z2 = d5 + d3;
351 z3 = d7 + d3;
352 z5 = MULTIPLY(z3 + d5, FIX_1_175875602);
354 tmp0 = MULTIPLY(d7, FIX_0_298631336);
355 tmp1 = MULTIPLY(d5, FIX_2_053119869);
356 tmp2 = MULTIPLY(d3, FIX_3_072711026);
357 z1 = MULTIPLY(-d7, FIX_0_899976223);
358 z2 = MULTIPLY(-z2, FIX_2_562915447);
359 z3 = MULTIPLY(-z3, FIX_1_961570560);
360 z4 = MULTIPLY(-d5, FIX_0_390180644);
362 z3 += z5;
363 z4 += z5;
365 tmp0 += z1 + z3;
366 tmp1 += z2 + z4;
367 tmp2 += z2 + z3;
368 tmp3 = z1 + z4;
370 } else {
371 if (d1) {
372 /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */
373 z1 = d7 + d1;
374 z4 = d5 + d1;
375 z5 = MULTIPLY(d7 + z4, FIX_1_175875602);
377 tmp0 = MULTIPLY(d7, FIX_0_298631336);
378 tmp1 = MULTIPLY(d5, FIX_2_053119869);
379 tmp3 = MULTIPLY(d1, FIX_1_501321110);
380 z1 = MULTIPLY(-z1, FIX_0_899976223);
381 z2 = MULTIPLY(-d5, FIX_2_562915447);
382 z3 = MULTIPLY(-d7, FIX_1_961570560);
383 z4 = MULTIPLY(-z4, FIX_0_390180644);
385 z3 += z5;
386 z4 += z5;
388 tmp0 += z1 + z3;
389 tmp1 += z2 + z4;
390 tmp2 = z2 + z3;
391 tmp3 += z1 + z4;
392 } else {
393 /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */
394 tmp0 = MULTIPLY(-d7, FIX_0_601344887);
395 z1 = MULTIPLY(-d7, FIX_0_899976223);
396 z3 = MULTIPLY(-d7, FIX_1_961570560);
397 tmp1 = MULTIPLY(-d5, FIX_0_509795579);
398 z2 = MULTIPLY(-d5, FIX_2_562915447);
399 z4 = MULTIPLY(-d5, FIX_0_390180644);
400 z5 = MULTIPLY(d5 + d7, FIX_1_175875602);
402 z3 += z5;
403 z4 += z5;
405 tmp0 += z3;
406 tmp1 += z4;
407 tmp2 = z2 + z3;
408 tmp3 = z1 + z4;
411 } else {
412 if (d3) {
413 if (d1) {
414 /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */
415 z1 = d7 + d1;
416 z3 = d7 + d3;
417 z5 = MULTIPLY(z3 + d1, FIX_1_175875602);
419 tmp0 = MULTIPLY(d7, FIX_0_298631336);
420 tmp2 = MULTIPLY(d3, FIX_3_072711026);
421 tmp3 = MULTIPLY(d1, FIX_1_501321110);
422 z1 = MULTIPLY(-z1, FIX_0_899976223);
423 z2 = MULTIPLY(-d3, FIX_2_562915447);
424 z3 = MULTIPLY(-z3, FIX_1_961570560);
425 z4 = MULTIPLY(-d1, FIX_0_390180644);
427 z3 += z5;
428 z4 += z5;
430 tmp0 += z1 + z3;
431 tmp1 = z2 + z4;
432 tmp2 += z2 + z3;
433 tmp3 += z1 + z4;
434 } else {
435 /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */
436 z3 = d7 + d3;
438 tmp0 = MULTIPLY(-d7, FIX_0_601344887);
439 z1 = MULTIPLY(-d7, FIX_0_899976223);
440 tmp2 = MULTIPLY(d3, FIX_0_509795579);
441 z2 = MULTIPLY(-d3, FIX_2_562915447);
442 z5 = MULTIPLY(z3, FIX_1_175875602);
443 z3 = MULTIPLY(-z3, FIX_0_785694958);
445 tmp0 += z3;
446 tmp1 = z2 + z5;
447 tmp2 += z3;
448 tmp3 = z1 + z5;
450 } else {
451 if (d1) {
452 /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */
453 z1 = d7 + d1;
454 z5 = MULTIPLY(z1, FIX_1_175875602);
456 z1 = MULTIPLY(z1, FIX_0_275899380);
457 z3 = MULTIPLY(-d7, FIX_1_961570560);
458 tmp0 = MULTIPLY(-d7, FIX_1_662939225);
459 z4 = MULTIPLY(-d1, FIX_0_390180644);
460 tmp3 = MULTIPLY(d1, FIX_1_111140466);
462 tmp0 += z1;
463 tmp1 = z4 + z5;
464 tmp2 = z3 + z5;
465 tmp3 += z1;
466 } else {
467 /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */
468 tmp0 = MULTIPLY(-d7, FIX_1_387039845);
469 tmp1 = MULTIPLY(d7, FIX_1_175875602);
470 tmp2 = MULTIPLY(-d7, FIX_0_785694958);
471 tmp3 = MULTIPLY(d7, FIX_0_275899380);
475 } else {
476 if (d5) {
477 if (d3) {
478 if (d1) {
479 /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */
480 z2 = d5 + d3;
481 z4 = d5 + d1;
482 z5 = MULTIPLY(d3 + z4, FIX_1_175875602);
484 tmp1 = MULTIPLY(d5, FIX_2_053119869);
485 tmp2 = MULTIPLY(d3, FIX_3_072711026);
486 tmp3 = MULTIPLY(d1, FIX_1_501321110);
487 z1 = MULTIPLY(-d1, FIX_0_899976223);
488 z2 = MULTIPLY(-z2, FIX_2_562915447);
489 z3 = MULTIPLY(-d3, FIX_1_961570560);
490 z4 = MULTIPLY(-z4, FIX_0_390180644);
492 z3 += z5;
493 z4 += z5;
495 tmp0 = z1 + z3;
496 tmp1 += z2 + z4;
497 tmp2 += z2 + z3;
498 tmp3 += z1 + z4;
499 } else {
500 /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */
501 z2 = d5 + d3;
503 z5 = MULTIPLY(z2, FIX_1_175875602);
504 tmp1 = MULTIPLY(d5, FIX_1_662939225);
505 z4 = MULTIPLY(-d5, FIX_0_390180644);
506 z2 = MULTIPLY(-z2, FIX_1_387039845);
507 tmp2 = MULTIPLY(d3, FIX_1_111140466);
508 z3 = MULTIPLY(-d3, FIX_1_961570560);
510 tmp0 = z3 + z5;
511 tmp1 += z2;
512 tmp2 += z2;
513 tmp3 = z4 + z5;
515 } else {
516 if (d1) {
517 /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */
518 z4 = d5 + d1;
520 z5 = MULTIPLY(z4, FIX_1_175875602);
521 z1 = MULTIPLY(-d1, FIX_0_899976223);
522 tmp3 = MULTIPLY(d1, FIX_0_601344887);
523 tmp1 = MULTIPLY(-d5, FIX_0_509795579);
524 z2 = MULTIPLY(-d5, FIX_2_562915447);
525 z4 = MULTIPLY(z4, FIX_0_785694958);
527 tmp0 = z1 + z5;
528 tmp1 += z4;
529 tmp2 = z2 + z5;
530 tmp3 += z4;
531 } else {
532 /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */
533 tmp0 = MULTIPLY(d5, FIX_1_175875602);
534 tmp1 = MULTIPLY(d5, FIX_0_275899380);
535 tmp2 = MULTIPLY(-d5, FIX_1_387039845);
536 tmp3 = MULTIPLY(d5, FIX_0_785694958);
539 } else {
540 if (d3) {
541 if (d1) {
542 /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */
543 z5 = d1 + d3;
544 tmp3 = MULTIPLY(d1, FIX_0_211164243);
545 tmp2 = MULTIPLY(-d3, FIX_1_451774981);
546 z1 = MULTIPLY(d1, FIX_1_061594337);
547 z2 = MULTIPLY(-d3, FIX_2_172734803);
548 z4 = MULTIPLY(z5, FIX_0_785694958);
549 z5 = MULTIPLY(z5, FIX_1_175875602);
551 tmp0 = z1 - z4;
552 tmp1 = z2 + z4;
553 tmp2 += z5;
554 tmp3 += z5;
555 } else {
556 /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */
557 tmp0 = MULTIPLY(-d3, FIX_0_785694958);
558 tmp1 = MULTIPLY(-d3, FIX_1_387039845);
559 tmp2 = MULTIPLY(-d3, FIX_0_275899380);
560 tmp3 = MULTIPLY(d3, FIX_1_175875602);
562 } else {
563 if (d1) {
564 /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */
565 tmp0 = MULTIPLY(d1, FIX_0_275899380);
566 tmp1 = MULTIPLY(d1, FIX_0_785694958);
567 tmp2 = MULTIPLY(d1, FIX_1_175875602);
568 tmp3 = MULTIPLY(d1, FIX_1_387039845);
569 } else {
570 /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */
571 tmp0 = tmp1 = tmp2 = tmp3 = 0;
577 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
579 dataptr[0] = (DCTELEM) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
580 dataptr[7] = (DCTELEM) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
581 dataptr[1] = (DCTELEM) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
582 dataptr[6] = (DCTELEM) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
583 dataptr[2] = (DCTELEM) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
584 dataptr[5] = (DCTELEM) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
585 dataptr[3] = (DCTELEM) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
586 dataptr[4] = (DCTELEM) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
588 dataptr += DCTSIZE; /* advance pointer to next row */
591 /* Pass 2: process columns. */
592 /* Note that we must descale the results by a factor of 8 == 2**3, */
593 /* and also undo the PASS1_BITS scaling. */
595 dataptr = data;
596 for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
597 /* Columns of zeroes can be exploited in the same way as we did with rows.
598 * However, the row calculation has created many nonzero AC terms, so the
599 * simplification applies less often (typically 5% to 10% of the time).
600 * On machines with very fast multiplication, it's possible that the
601 * test takes more time than it's worth. In that case this section
602 * may be commented out.
605 d0 = dataptr[DCTSIZE*0];
606 d1 = dataptr[DCTSIZE*1];
607 d2 = dataptr[DCTSIZE*2];
608 d3 = dataptr[DCTSIZE*3];
609 d4 = dataptr[DCTSIZE*4];
610 d5 = dataptr[DCTSIZE*5];
611 d6 = dataptr[DCTSIZE*6];
612 d7 = dataptr[DCTSIZE*7];
614 /* Even part: reverse the even part of the forward DCT. */
615 /* The rotator is sqrt(2)*c(-6). */
616 if (d6) {
617 if (d2) {
618 /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
619 z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
620 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
621 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
623 tmp0 = (d0 + d4) << CONST_BITS;
624 tmp1 = (d0 - d4) << CONST_BITS;
626 tmp10 = tmp0 + tmp3;
627 tmp13 = tmp0 - tmp3;
628 tmp11 = tmp1 + tmp2;
629 tmp12 = tmp1 - tmp2;
630 } else {
631 /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
632 tmp2 = MULTIPLY(-d6, FIX_1_306562965);
633 tmp3 = MULTIPLY(d6, FIX_0_541196100);
635 tmp0 = (d0 + d4) << CONST_BITS;
636 tmp1 = (d0 - d4) << CONST_BITS;
638 tmp10 = tmp0 + tmp3;
639 tmp13 = tmp0 - tmp3;
640 tmp11 = tmp1 + tmp2;
641 tmp12 = tmp1 - tmp2;
643 } else {
644 if (d2) {
645 /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
646 tmp2 = MULTIPLY(d2, FIX_0_541196100);
647 tmp3 = MULTIPLY(d2, FIX_1_306562965);
649 tmp0 = (d0 + d4) << CONST_BITS;
650 tmp1 = (d0 - d4) << CONST_BITS;
652 tmp10 = tmp0 + tmp3;
653 tmp13 = tmp0 - tmp3;
654 tmp11 = tmp1 + tmp2;
655 tmp12 = tmp1 - tmp2;
656 } else {
657 /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
658 tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
659 tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
663 /* Odd part per figure 8; the matrix is unitary and hence its
664 * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
666 if (d7) {
667 if (d5) {
668 if (d3) {
669 if (d1) {
670 /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */
671 z1 = d7 + d1;
672 z2 = d5 + d3;
673 z3 = d7 + d3;
674 z4 = d5 + d1;
675 z5 = MULTIPLY(z3 + z4, FIX_1_175875602);
677 tmp0 = MULTIPLY(d7, FIX_0_298631336);
678 tmp1 = MULTIPLY(d5, FIX_2_053119869);
679 tmp2 = MULTIPLY(d3, FIX_3_072711026);
680 tmp3 = MULTIPLY(d1, FIX_1_501321110);
681 z1 = MULTIPLY(-z1, FIX_0_899976223);
682 z2 = MULTIPLY(-z2, FIX_2_562915447);
683 z3 = MULTIPLY(-z3, FIX_1_961570560);
684 z4 = MULTIPLY(-z4, FIX_0_390180644);
686 z3 += z5;
687 z4 += z5;
689 tmp0 += z1 + z3;
690 tmp1 += z2 + z4;
691 tmp2 += z2 + z3;
692 tmp3 += z1 + z4;
693 } else {
694 /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */
695 z1 = d7;
696 z2 = d5 + d3;
697 z3 = d7 + d3;
698 z5 = MULTIPLY(z3 + d5, FIX_1_175875602);
700 tmp0 = MULTIPLY(d7, FIX_0_298631336);
701 tmp1 = MULTIPLY(d5, FIX_2_053119869);
702 tmp2 = MULTIPLY(d3, FIX_3_072711026);
703 z1 = MULTIPLY(-d7, FIX_0_899976223);
704 z2 = MULTIPLY(-z2, FIX_2_562915447);
705 z3 = MULTIPLY(-z3, FIX_1_961570560);
706 z4 = MULTIPLY(-d5, FIX_0_390180644);
708 z3 += z5;
709 z4 += z5;
711 tmp0 += z1 + z3;
712 tmp1 += z2 + z4;
713 tmp2 += z2 + z3;
714 tmp3 = z1 + z4;
716 } else {
717 if (d1) {
718 /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */
719 z1 = d7 + d1;
720 z2 = d5;
721 z3 = d7;
722 z4 = d5 + d1;
723 z5 = MULTIPLY(z3 + z4, FIX_1_175875602);
725 tmp0 = MULTIPLY(d7, FIX_0_298631336);
726 tmp1 = MULTIPLY(d5, FIX_2_053119869);
727 tmp3 = MULTIPLY(d1, FIX_1_501321110);
728 z1 = MULTIPLY(-z1, FIX_0_899976223);
729 z2 = MULTIPLY(-d5, FIX_2_562915447);
730 z3 = MULTIPLY(-d7, FIX_1_961570560);
731 z4 = MULTIPLY(-z4, FIX_0_390180644);
733 z3 += z5;
734 z4 += z5;
736 tmp0 += z1 + z3;
737 tmp1 += z2 + z4;
738 tmp2 = z2 + z3;
739 tmp3 += z1 + z4;
740 } else {
741 /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */
742 tmp0 = MULTIPLY(-d7, FIX_0_601344887);
743 z1 = MULTIPLY(-d7, FIX_0_899976223);
744 z3 = MULTIPLY(-d7, FIX_1_961570560);
745 tmp1 = MULTIPLY(-d5, FIX_0_509795579);
746 z2 = MULTIPLY(-d5, FIX_2_562915447);
747 z4 = MULTIPLY(-d5, FIX_0_390180644);
748 z5 = MULTIPLY(d5 + d7, FIX_1_175875602);
750 z3 += z5;
751 z4 += z5;
753 tmp0 += z3;
754 tmp1 += z4;
755 tmp2 = z2 + z3;
756 tmp3 = z1 + z4;
759 } else {
760 if (d3) {
761 if (d1) {
762 /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */
763 z1 = d7 + d1;
764 z3 = d7 + d3;
765 z5 = MULTIPLY(z3 + d1, FIX_1_175875602);
767 tmp0 = MULTIPLY(d7, FIX_0_298631336);
768 tmp2 = MULTIPLY(d3, FIX_3_072711026);
769 tmp3 = MULTIPLY(d1, FIX_1_501321110);
770 z1 = MULTIPLY(-z1, FIX_0_899976223);
771 z2 = MULTIPLY(-d3, FIX_2_562915447);
772 z3 = MULTIPLY(-z3, FIX_1_961570560);
773 z4 = MULTIPLY(-d1, FIX_0_390180644);
775 z3 += z5;
776 z4 += z5;
778 tmp0 += z1 + z3;
779 tmp1 = z2 + z4;
780 tmp2 += z2 + z3;
781 tmp3 += z1 + z4;
782 } else {
783 /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */
784 z3 = d7 + d3;
786 tmp0 = MULTIPLY(-d7, FIX_0_601344887);
787 z1 = MULTIPLY(-d7, FIX_0_899976223);
788 tmp2 = MULTIPLY(d3, FIX_0_509795579);
789 z2 = MULTIPLY(-d3, FIX_2_562915447);
790 z5 = MULTIPLY(z3, FIX_1_175875602);
791 z3 = MULTIPLY(-z3, FIX_0_785694958);
793 tmp0 += z3;
794 tmp1 = z2 + z5;
795 tmp2 += z3;
796 tmp3 = z1 + z5;
798 } else {
799 if (d1) {
800 /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */
801 z1 = d7 + d1;
802 z5 = MULTIPLY(z1, FIX_1_175875602);
804 z1 = MULTIPLY(z1, FIX_0_275899380);
805 z3 = MULTIPLY(-d7, FIX_1_961570560);
806 tmp0 = MULTIPLY(-d7, FIX_1_662939225);
807 z4 = MULTIPLY(-d1, FIX_0_390180644);
808 tmp3 = MULTIPLY(d1, FIX_1_111140466);
810 tmp0 += z1;
811 tmp1 = z4 + z5;
812 tmp2 = z3 + z5;
813 tmp3 += z1;
814 } else {
815 /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */
816 tmp0 = MULTIPLY(-d7, FIX_1_387039845);
817 tmp1 = MULTIPLY(d7, FIX_1_175875602);
818 tmp2 = MULTIPLY(-d7, FIX_0_785694958);
819 tmp3 = MULTIPLY(d7, FIX_0_275899380);
823 } else {
824 if (d5) {
825 if (d3) {
826 if (d1) {
827 /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */
828 z2 = d5 + d3;
829 z4 = d5 + d1;
830 z5 = MULTIPLY(d3 + z4, FIX_1_175875602);
832 tmp1 = MULTIPLY(d5, FIX_2_053119869);
833 tmp2 = MULTIPLY(d3, FIX_3_072711026);
834 tmp3 = MULTIPLY(d1, FIX_1_501321110);
835 z1 = MULTIPLY(-d1, FIX_0_899976223);
836 z2 = MULTIPLY(-z2, FIX_2_562915447);
837 z3 = MULTIPLY(-d3, FIX_1_961570560);
838 z4 = MULTIPLY(-z4, FIX_0_390180644);
840 z3 += z5;
841 z4 += z5;
843 tmp0 = z1 + z3;
844 tmp1 += z2 + z4;
845 tmp2 += z2 + z3;
846 tmp3 += z1 + z4;
847 } else {
848 /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */
849 z2 = d5 + d3;
851 z5 = MULTIPLY(z2, FIX_1_175875602);
852 tmp1 = MULTIPLY(d5, FIX_1_662939225);
853 z4 = MULTIPLY(-d5, FIX_0_390180644);
854 z2 = MULTIPLY(-z2, FIX_1_387039845);
855 tmp2 = MULTIPLY(d3, FIX_1_111140466);
856 z3 = MULTIPLY(-d3, FIX_1_961570560);
858 tmp0 = z3 + z5;
859 tmp1 += z2;
860 tmp2 += z2;
861 tmp3 = z4 + z5;
863 } else {
864 if (d1) {
865 /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */
866 z4 = d5 + d1;
868 z5 = MULTIPLY(z4, FIX_1_175875602);
869 z1 = MULTIPLY(-d1, FIX_0_899976223);
870 tmp3 = MULTIPLY(d1, FIX_0_601344887);
871 tmp1 = MULTIPLY(-d5, FIX_0_509795579);
872 z2 = MULTIPLY(-d5, FIX_2_562915447);
873 z4 = MULTIPLY(z4, FIX_0_785694958);
875 tmp0 = z1 + z5;
876 tmp1 += z4;
877 tmp2 = z2 + z5;
878 tmp3 += z4;
879 } else {
880 /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */
881 tmp0 = MULTIPLY(d5, FIX_1_175875602);
882 tmp1 = MULTIPLY(d5, FIX_0_275899380);
883 tmp2 = MULTIPLY(-d5, FIX_1_387039845);
884 tmp3 = MULTIPLY(d5, FIX_0_785694958);
887 } else {
888 if (d3) {
889 if (d1) {
890 /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */
891 z5 = d1 + d3;
892 tmp3 = MULTIPLY(d1, FIX_0_211164243);
893 tmp2 = MULTIPLY(-d3, FIX_1_451774981);
894 z1 = MULTIPLY(d1, FIX_1_061594337);
895 z2 = MULTIPLY(-d3, FIX_2_172734803);
896 z4 = MULTIPLY(z5, FIX_0_785694958);
897 z5 = MULTIPLY(z5, FIX_1_175875602);
899 tmp0 = z1 - z4;
900 tmp1 = z2 + z4;
901 tmp2 += z5;
902 tmp3 += z5;
903 } else {
904 /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */
905 tmp0 = MULTIPLY(-d3, FIX_0_785694958);
906 tmp1 = MULTIPLY(-d3, FIX_1_387039845);
907 tmp2 = MULTIPLY(-d3, FIX_0_275899380);
908 tmp3 = MULTIPLY(d3, FIX_1_175875602);
910 } else {
911 if (d1) {
912 /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */
913 tmp0 = MULTIPLY(d1, FIX_0_275899380);
914 tmp1 = MULTIPLY(d1, FIX_0_785694958);
915 tmp2 = MULTIPLY(d1, FIX_1_175875602);
916 tmp3 = MULTIPLY(d1, FIX_1_387039845);
917 } else {
918 /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */
919 tmp0 = tmp1 = tmp2 = tmp3 = 0;
925 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
927 dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp3,
928 CONST_BITS+PASS1_BITS+3);
929 dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp10 - tmp3,
930 CONST_BITS+PASS1_BITS+3);
931 dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp11 + tmp2,
932 CONST_BITS+PASS1_BITS+3);
933 dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(tmp11 - tmp2,
934 CONST_BITS+PASS1_BITS+3);
935 dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp12 + tmp1,
936 CONST_BITS+PASS1_BITS+3);
937 dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12 - tmp1,
938 CONST_BITS+PASS1_BITS+3);
939 dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp13 + tmp0,
940 CONST_BITS+PASS1_BITS+3);
941 dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp13 - tmp0,
942 CONST_BITS+PASS1_BITS+3);
944 dataptr++; /* advance pointer to next column */
948 #undef DCTSIZE
949 #define DCTSIZE 4
950 #define DCTSTRIDE 8
952 void j_rev_dct4(DCTBLOCK data)
954 int32_t tmp0, tmp1, tmp2, tmp3;
955 int32_t tmp10, tmp11, tmp12, tmp13;
956 int32_t z1;
957 int32_t d0, d2, d4, d6;
958 register DCTELEM *dataptr;
959 int rowctr;
961 /* Pass 1: process rows. */
962 /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
963 /* furthermore, we scale the results by 2**PASS1_BITS. */
965 data[0] += 4;
967 dataptr = data;
969 for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
970 /* Due to quantization, we will usually find that many of the input
971 * coefficients are zero, especially the AC terms. We can exploit this
972 * by short-circuiting the IDCT calculation for any row in which all
973 * the AC terms are zero. In that case each output is equal to the
974 * DC coefficient (with scale factor as needed).
975 * With typical images and quantization tables, half or more of the
976 * row DCT calculations can be simplified this way.
979 register int *idataptr = (int*)dataptr;
981 d0 = dataptr[0];
982 d2 = dataptr[1];
983 d4 = dataptr[2];
984 d6 = dataptr[3];
986 if ((d2 | d4 | d6) == 0) {
987 /* AC terms all zero */
988 if (d0) {
989 /* Compute a 32 bit value to assign. */
990 DCTELEM dcval = (DCTELEM) (d0 << PASS1_BITS);
991 register int v = (dcval & 0xffff) | ((dcval << 16) & 0xffff0000);
993 idataptr[0] = v;
994 idataptr[1] = v;
997 dataptr += DCTSTRIDE; /* advance pointer to next row */
998 continue;
1001 /* Even part: reverse the even part of the forward DCT. */
1002 /* The rotator is sqrt(2)*c(-6). */
1003 if (d6) {
1004 if (d2) {
1005 /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
1006 z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
1007 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
1008 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
1010 tmp0 = (d0 + d4) << CONST_BITS;
1011 tmp1 = (d0 - d4) << CONST_BITS;
1013 tmp10 = tmp0 + tmp3;
1014 tmp13 = tmp0 - tmp3;
1015 tmp11 = tmp1 + tmp2;
1016 tmp12 = tmp1 - tmp2;
1017 } else {
1018 /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
1019 tmp2 = MULTIPLY(-d6, FIX_1_306562965);
1020 tmp3 = MULTIPLY(d6, FIX_0_541196100);
1022 tmp0 = (d0 + d4) << CONST_BITS;
1023 tmp1 = (d0 - d4) << CONST_BITS;
1025 tmp10 = tmp0 + tmp3;
1026 tmp13 = tmp0 - tmp3;
1027 tmp11 = tmp1 + tmp2;
1028 tmp12 = tmp1 - tmp2;
1030 } else {
1031 if (d2) {
1032 /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
1033 tmp2 = MULTIPLY(d2, FIX_0_541196100);
1034 tmp3 = MULTIPLY(d2, FIX_1_306562965);
1036 tmp0 = (d0 + d4) << CONST_BITS;
1037 tmp1 = (d0 - d4) << CONST_BITS;
1039 tmp10 = tmp0 + tmp3;
1040 tmp13 = tmp0 - tmp3;
1041 tmp11 = tmp1 + tmp2;
1042 tmp12 = tmp1 - tmp2;
1043 } else {
1044 /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
1045 tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
1046 tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
1050 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
1052 dataptr[0] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS);
1053 dataptr[1] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS);
1054 dataptr[2] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS);
1055 dataptr[3] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS);
1057 dataptr += DCTSTRIDE; /* advance pointer to next row */
1060 /* Pass 2: process columns. */
1061 /* Note that we must descale the results by a factor of 8 == 2**3, */
1062 /* and also undo the PASS1_BITS scaling. */
1064 dataptr = data;
1065 for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
1066 /* Columns of zeroes can be exploited in the same way as we did with rows.
1067 * However, the row calculation has created many nonzero AC terms, so the
1068 * simplification applies less often (typically 5% to 10% of the time).
1069 * On machines with very fast multiplication, it's possible that the
1070 * test takes more time than it's worth. In that case this section
1071 * may be commented out.
1074 d0 = dataptr[DCTSTRIDE*0];
1075 d2 = dataptr[DCTSTRIDE*1];
1076 d4 = dataptr[DCTSTRIDE*2];
1077 d6 = dataptr[DCTSTRIDE*3];
1079 /* Even part: reverse the even part of the forward DCT. */
1080 /* The rotator is sqrt(2)*c(-6). */
1081 if (d6) {
1082 if (d2) {
1083 /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
1084 z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
1085 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
1086 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
1088 tmp0 = (d0 + d4) << CONST_BITS;
1089 tmp1 = (d0 - d4) << CONST_BITS;
1091 tmp10 = tmp0 + tmp3;
1092 tmp13 = tmp0 - tmp3;
1093 tmp11 = tmp1 + tmp2;
1094 tmp12 = tmp1 - tmp2;
1095 } else {
1096 /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
1097 tmp2 = MULTIPLY(-d6, FIX_1_306562965);
1098 tmp3 = MULTIPLY(d6, FIX_0_541196100);
1100 tmp0 = (d0 + d4) << CONST_BITS;
1101 tmp1 = (d0 - d4) << CONST_BITS;
1103 tmp10 = tmp0 + tmp3;
1104 tmp13 = tmp0 - tmp3;
1105 tmp11 = tmp1 + tmp2;
1106 tmp12 = tmp1 - tmp2;
1108 } else {
1109 if (d2) {
1110 /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
1111 tmp2 = MULTIPLY(d2, FIX_0_541196100);
1112 tmp3 = MULTIPLY(d2, FIX_1_306562965);
1114 tmp0 = (d0 + d4) << CONST_BITS;
1115 tmp1 = (d0 - d4) << CONST_BITS;
1117 tmp10 = tmp0 + tmp3;
1118 tmp13 = tmp0 - tmp3;
1119 tmp11 = tmp1 + tmp2;
1120 tmp12 = tmp1 - tmp2;
1121 } else {
1122 /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
1123 tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
1124 tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
1128 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
1130 dataptr[DCTSTRIDE*0] = tmp10 >> (CONST_BITS+PASS1_BITS+3);
1131 dataptr[DCTSTRIDE*1] = tmp11 >> (CONST_BITS+PASS1_BITS+3);
1132 dataptr[DCTSTRIDE*2] = tmp12 >> (CONST_BITS+PASS1_BITS+3);
1133 dataptr[DCTSTRIDE*3] = tmp13 >> (CONST_BITS+PASS1_BITS+3);
1135 dataptr++; /* advance pointer to next column */
1139 void j_rev_dct2(DCTBLOCK data){
1140 int d00, d01, d10, d11;
1142 data[0] += 4;
1143 d00 = data[0+0*DCTSTRIDE] + data[1+0*DCTSTRIDE];
1144 d01 = data[0+0*DCTSTRIDE] - data[1+0*DCTSTRIDE];
1145 d10 = data[0+1*DCTSTRIDE] + data[1+1*DCTSTRIDE];
1146 d11 = data[0+1*DCTSTRIDE] - data[1+1*DCTSTRIDE];
1148 data[0+0*DCTSTRIDE]= (d00 + d10)>>3;
1149 data[1+0*DCTSTRIDE]= (d01 + d11)>>3;
1150 data[0+1*DCTSTRIDE]= (d00 - d10)>>3;
1151 data[1+1*DCTSTRIDE]= (d01 - d11)>>3;
1154 void j_rev_dct1(DCTBLOCK data){
1155 data[0] = (data[0] + 4)>>3;
1158 #undef FIX
1159 #undef CONST_BITS