It makes more sense to return 1 here in case of overflow.
[FFMpeg-mirror/DVCPRO-HD.git] / libavcodec / sonic.c
blobee5ecd4dc7db65c609381e9699f3d6349ed580f3
1 /*
2 * Simple free lossless/lossy audio codec
3 * Copyright (c) 2004 Alex Beregszaszi
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 #include "avcodec.h"
22 #include "bitstream.h"
23 #include "golomb.h"
25 /**
26 * @file sonic.c
27 * Simple free lossless/lossy audio codec
28 * Based on Paul Francis Harrison's Bonk (http://www.logarithmic.net/pfh/bonk)
29 * Written and designed by Alex Beregszaszi
31 * TODO:
32 * - CABAC put/get_symbol
33 * - independent quantizer for channels
34 * - >2 channels support
35 * - more decorrelation types
36 * - more tap_quant tests
37 * - selectable intlist writers/readers (bonk-style, golomb, cabac)
40 #define MAX_CHANNELS 2
42 #define MID_SIDE 0
43 #define LEFT_SIDE 1
44 #define RIGHT_SIDE 2
46 typedef struct SonicContext {
47 int lossless, decorrelation;
49 int num_taps, downsampling;
50 double quantization;
52 int channels, samplerate, block_align, frame_size;
54 int *tap_quant;
55 int *int_samples;
56 int *coded_samples[MAX_CHANNELS];
58 // for encoding
59 int *tail;
60 int tail_size;
61 int *window;
62 int window_size;
64 // for decoding
65 int *predictor_k;
66 int *predictor_state[MAX_CHANNELS];
67 } SonicContext;
69 #define LATTICE_SHIFT 10
70 #define SAMPLE_SHIFT 4
71 #define LATTICE_FACTOR (1 << LATTICE_SHIFT)
72 #define SAMPLE_FACTOR (1 << SAMPLE_SHIFT)
74 #define BASE_QUANT 0.6
75 #define RATE_VARIATION 3.0
77 static inline int divide(int a, int b)
79 if (a < 0)
80 return -( (-a + b/2)/b );
81 else
82 return (a + b/2)/b;
85 static inline int shift(int a,int b)
87 return (a+(1<<(b-1))) >> b;
90 static inline int shift_down(int a,int b)
92 return (a>>b)+((a<0)?1:0);
95 #if 1
96 static inline int intlist_write(PutBitContext *pb, int *buf, int entries, int base_2_part)
98 int i;
100 for (i = 0; i < entries; i++)
101 set_se_golomb(pb, buf[i]);
103 return 1;
106 static inline int intlist_read(GetBitContext *gb, int *buf, int entries, int base_2_part)
108 int i;
110 for (i = 0; i < entries; i++)
111 buf[i] = get_se_golomb(gb);
113 return 1;
116 #else
118 #define ADAPT_LEVEL 8
120 static int bits_to_store(uint64_t x)
122 int res = 0;
124 while(x)
126 res++;
127 x >>= 1;
129 return res;
132 static void write_uint_max(PutBitContext *pb, unsigned int value, unsigned int max)
134 int i, bits;
136 if (!max)
137 return;
139 bits = bits_to_store(max);
141 for (i = 0; i < bits-1; i++)
142 put_bits(pb, 1, value & (1 << i));
144 if ( (value | (1 << (bits-1))) <= max)
145 put_bits(pb, 1, value & (1 << (bits-1)));
148 static unsigned int read_uint_max(GetBitContext *gb, int max)
150 int i, bits, value = 0;
152 if (!max)
153 return 0;
155 bits = bits_to_store(max);
157 for (i = 0; i < bits-1; i++)
158 if (get_bits1(gb))
159 value += 1 << i;
161 if ( (value | (1<<(bits-1))) <= max)
162 if (get_bits1(gb))
163 value += 1 << (bits-1);
165 return value;
168 static int intlist_write(PutBitContext *pb, int *buf, int entries, int base_2_part)
170 int i, j, x = 0, low_bits = 0, max = 0;
171 int step = 256, pos = 0, dominant = 0, any = 0;
172 int *copy, *bits;
174 copy = av_mallocz(4* entries);
175 if (!copy)
176 return -1;
178 if (base_2_part)
180 int energy = 0;
182 for (i = 0; i < entries; i++)
183 energy += abs(buf[i]);
185 low_bits = bits_to_store(energy / (entries * 2));
186 if (low_bits > 15)
187 low_bits = 15;
189 put_bits(pb, 4, low_bits);
192 for (i = 0; i < entries; i++)
194 put_bits(pb, low_bits, abs(buf[i]));
195 copy[i] = abs(buf[i]) >> low_bits;
196 if (copy[i] > max)
197 max = abs(copy[i]);
200 bits = av_mallocz(4* entries*max);
201 if (!bits)
203 // av_free(copy);
204 return -1;
207 for (i = 0; i <= max; i++)
209 for (j = 0; j < entries; j++)
210 if (copy[j] >= i)
211 bits[x++] = copy[j] > i;
214 // store bitstream
215 while (pos < x)
217 int steplet = step >> 8;
219 if (pos + steplet > x)
220 steplet = x - pos;
222 for (i = 0; i < steplet; i++)
223 if (bits[i+pos] != dominant)
224 any = 1;
226 put_bits(pb, 1, any);
228 if (!any)
230 pos += steplet;
231 step += step / ADAPT_LEVEL;
233 else
235 int interloper = 0;
237 while (((pos + interloper) < x) && (bits[pos + interloper] == dominant))
238 interloper++;
240 // note change
241 write_uint_max(pb, interloper, (step >> 8) - 1);
243 pos += interloper + 1;
244 step -= step / ADAPT_LEVEL;
247 if (step < 256)
249 step = 65536 / step;
250 dominant = !dominant;
254 // store signs
255 for (i = 0; i < entries; i++)
256 if (buf[i])
257 put_bits(pb, 1, buf[i] < 0);
259 // av_free(bits);
260 // av_free(copy);
262 return 0;
265 static int intlist_read(GetBitContext *gb, int *buf, int entries, int base_2_part)
267 int i, low_bits = 0, x = 0;
268 int n_zeros = 0, step = 256, dominant = 0;
269 int pos = 0, level = 0;
270 int *bits = av_mallocz(4* entries);
272 if (!bits)
273 return -1;
275 if (base_2_part)
277 low_bits = get_bits(gb, 4);
279 if (low_bits)
280 for (i = 0; i < entries; i++)
281 buf[i] = get_bits(gb, low_bits);
284 // av_log(NULL, AV_LOG_INFO, "entries: %d, low bits: %d\n", entries, low_bits);
286 while (n_zeros < entries)
288 int steplet = step >> 8;
290 if (!get_bits1(gb))
292 for (i = 0; i < steplet; i++)
293 bits[x++] = dominant;
295 if (!dominant)
296 n_zeros += steplet;
298 step += step / ADAPT_LEVEL;
300 else
302 int actual_run = read_uint_max(gb, steplet-1);
304 // av_log(NULL, AV_LOG_INFO, "actual run: %d\n", actual_run);
306 for (i = 0; i < actual_run; i++)
307 bits[x++] = dominant;
309 bits[x++] = !dominant;
311 if (!dominant)
312 n_zeros += actual_run;
313 else
314 n_zeros++;
316 step -= step / ADAPT_LEVEL;
319 if (step < 256)
321 step = 65536 / step;
322 dominant = !dominant;
326 // reconstruct unsigned values
327 n_zeros = 0;
328 for (i = 0; n_zeros < entries; i++)
330 while(1)
332 if (pos >= entries)
334 pos = 0;
335 level += 1 << low_bits;
338 if (buf[pos] >= level)
339 break;
341 pos++;
344 if (bits[i])
345 buf[pos] += 1 << low_bits;
346 else
347 n_zeros++;
349 pos++;
351 // av_free(bits);
353 // read signs
354 for (i = 0; i < entries; i++)
355 if (buf[i] && get_bits1(gb))
356 buf[i] = -buf[i];
358 // av_log(NULL, AV_LOG_INFO, "zeros: %d pos: %d\n", n_zeros, pos);
360 return 0;
362 #endif
364 static void predictor_init_state(int *k, int *state, int order)
366 int i;
368 for (i = order-2; i >= 0; i--)
370 int j, p, x = state[i];
372 for (j = 0, p = i+1; p < order; j++,p++)
374 int tmp = x + shift_down(k[j] * state[p], LATTICE_SHIFT);
375 state[p] += shift_down(k[j]*x, LATTICE_SHIFT);
376 x = tmp;
381 static int predictor_calc_error(int *k, int *state, int order, int error)
383 int i, x = error - shift_down(k[order-1] * state[order-1], LATTICE_SHIFT);
385 #if 1
386 int *k_ptr = &(k[order-2]),
387 *state_ptr = &(state[order-2]);
388 for (i = order-2; i >= 0; i--, k_ptr--, state_ptr--)
390 int k_value = *k_ptr, state_value = *state_ptr;
391 x -= shift_down(k_value * state_value, LATTICE_SHIFT);
392 state_ptr[1] = state_value + shift_down(k_value * x, LATTICE_SHIFT);
394 #else
395 for (i = order-2; i >= 0; i--)
397 x -= shift_down(k[i] * state[i], LATTICE_SHIFT);
398 state[i+1] = state[i] + shift_down(k[i] * x, LATTICE_SHIFT);
400 #endif
402 // don't drift too far, to avoid overflows
403 if (x > (SAMPLE_FACTOR<<16)) x = (SAMPLE_FACTOR<<16);
404 if (x < -(SAMPLE_FACTOR<<16)) x = -(SAMPLE_FACTOR<<16);
406 state[0] = x;
408 return x;
411 #ifdef CONFIG_ENCODERS
412 // Heavily modified Levinson-Durbin algorithm which
413 // copes better with quantization, and calculates the
414 // actual whitened result as it goes.
416 static void modified_levinson_durbin(int *window, int window_entries,
417 int *out, int out_entries, int channels, int *tap_quant)
419 int i;
420 int *state = av_mallocz(4* window_entries);
422 memcpy(state, window, 4* window_entries);
424 for (i = 0; i < out_entries; i++)
426 int step = (i+1)*channels, k, j;
427 double xx = 0.0, xy = 0.0;
428 #if 1
429 int *x_ptr = &(window[step]), *state_ptr = &(state[0]);
430 j = window_entries - step;
431 for (;j>=0;j--,x_ptr++,state_ptr++)
433 double x_value = *x_ptr, state_value = *state_ptr;
434 xx += state_value*state_value;
435 xy += x_value*state_value;
437 #else
438 for (j = 0; j <= (window_entries - step); j++);
440 double stepval = window[step+j], stateval = window[j];
441 // xx += (double)window[j]*(double)window[j];
442 // xy += (double)window[step+j]*(double)window[j];
443 xx += stateval*stateval;
444 xy += stepval*stateval;
446 #endif
447 if (xx == 0.0)
448 k = 0;
449 else
450 k = (int)(floor(-xy/xx * (double)LATTICE_FACTOR / (double)(tap_quant[i]) + 0.5));
452 if (k > (LATTICE_FACTOR/tap_quant[i]))
453 k = LATTICE_FACTOR/tap_quant[i];
454 if (-k > (LATTICE_FACTOR/tap_quant[i]))
455 k = -(LATTICE_FACTOR/tap_quant[i]);
457 out[i] = k;
458 k *= tap_quant[i];
460 #if 1
461 x_ptr = &(window[step]);
462 state_ptr = &(state[0]);
463 j = window_entries - step;
464 for (;j>=0;j--,x_ptr++,state_ptr++)
466 int x_value = *x_ptr, state_value = *state_ptr;
467 *x_ptr = x_value + shift_down(k*state_value,LATTICE_SHIFT);
468 *state_ptr = state_value + shift_down(k*x_value, LATTICE_SHIFT);
470 #else
471 for (j=0; j <= (window_entries - step); j++)
473 int stepval = window[step+j], stateval=state[j];
474 window[step+j] += shift_down(k * stateval, LATTICE_SHIFT);
475 state[j] += shift_down(k * stepval, LATTICE_SHIFT);
477 #endif
480 av_free(state);
482 #endif /* CONFIG_ENCODERS */
484 static int samplerate_table[] =
485 { 44100, 22050, 11025, 96000, 48000, 32000, 24000, 16000, 8000 };
487 #ifdef CONFIG_ENCODERS
489 static inline int code_samplerate(int samplerate)
491 switch (samplerate)
493 case 44100: return 0;
494 case 22050: return 1;
495 case 11025: return 2;
496 case 96000: return 3;
497 case 48000: return 4;
498 case 32000: return 5;
499 case 24000: return 6;
500 case 16000: return 7;
501 case 8000: return 8;
503 return -1;
506 static av_cold int sonic_encode_init(AVCodecContext *avctx)
508 SonicContext *s = avctx->priv_data;
509 PutBitContext pb;
510 int i, version = 0;
512 if (avctx->channels > MAX_CHANNELS)
514 av_log(avctx, AV_LOG_ERROR, "Only mono and stereo streams are supported by now\n");
515 return -1; /* only stereo or mono for now */
518 if (avctx->channels == 2)
519 s->decorrelation = MID_SIDE;
521 if (avctx->codec->id == CODEC_ID_SONIC_LS)
523 s->lossless = 1;
524 s->num_taps = 32;
525 s->downsampling = 1;
526 s->quantization = 0.0;
528 else
530 s->num_taps = 128;
531 s->downsampling = 2;
532 s->quantization = 1.0;
535 // max tap 2048
536 if ((s->num_taps < 32) || (s->num_taps > 1024) ||
537 ((s->num_taps>>5)<<5 != s->num_taps))
539 av_log(avctx, AV_LOG_ERROR, "Invalid number of taps\n");
540 return -1;
543 // generate taps
544 s->tap_quant = av_mallocz(4* s->num_taps);
545 for (i = 0; i < s->num_taps; i++)
546 s->tap_quant[i] = (int)(sqrt(i+1));
548 s->channels = avctx->channels;
549 s->samplerate = avctx->sample_rate;
551 s->block_align = (int)(2048.0*s->samplerate/44100)/s->downsampling;
552 s->frame_size = s->channels*s->block_align*s->downsampling;
554 s->tail = av_mallocz(4* s->num_taps*s->channels);
555 if (!s->tail)
556 return -1;
557 s->tail_size = s->num_taps*s->channels;
559 s->predictor_k = av_mallocz(4 * s->num_taps);
560 if (!s->predictor_k)
561 return -1;
563 for (i = 0; i < s->channels; i++)
565 s->coded_samples[i] = av_mallocz(4* s->block_align);
566 if (!s->coded_samples[i])
567 return -1;
570 s->int_samples = av_mallocz(4* s->frame_size);
572 s->window_size = ((2*s->tail_size)+s->frame_size);
573 s->window = av_mallocz(4* s->window_size);
574 if (!s->window)
575 return -1;
577 avctx->extradata = av_mallocz(16);
578 if (!avctx->extradata)
579 return -1;
580 init_put_bits(&pb, avctx->extradata, 16*8);
582 put_bits(&pb, 2, version); // version
583 if (version == 1)
585 put_bits(&pb, 2, s->channels);
586 put_bits(&pb, 4, code_samplerate(s->samplerate));
588 put_bits(&pb, 1, s->lossless);
589 if (!s->lossless)
590 put_bits(&pb, 3, SAMPLE_SHIFT); // XXX FIXME: sample precision
591 put_bits(&pb, 2, s->decorrelation);
592 put_bits(&pb, 2, s->downsampling);
593 put_bits(&pb, 5, (s->num_taps >> 5)-1); // 32..1024
594 put_bits(&pb, 1, 0); // XXX FIXME: no custom tap quant table
596 flush_put_bits(&pb);
597 avctx->extradata_size = put_bits_count(&pb)/8;
599 av_log(avctx, AV_LOG_INFO, "Sonic: ver: %d ls: %d dr: %d taps: %d block: %d frame: %d downsamp: %d\n",
600 version, s->lossless, s->decorrelation, s->num_taps, s->block_align, s->frame_size, s->downsampling);
602 avctx->coded_frame = avcodec_alloc_frame();
603 if (!avctx->coded_frame)
604 return AVERROR(ENOMEM);
605 avctx->coded_frame->key_frame = 1;
606 avctx->frame_size = s->block_align*s->downsampling;
608 return 0;
611 static av_cold int sonic_encode_close(AVCodecContext *avctx)
613 SonicContext *s = avctx->priv_data;
614 int i;
616 av_freep(&avctx->coded_frame);
618 for (i = 0; i < s->channels; i++)
619 av_free(s->coded_samples[i]);
621 av_free(s->predictor_k);
622 av_free(s->tail);
623 av_free(s->tap_quant);
624 av_free(s->window);
625 av_free(s->int_samples);
627 return 0;
630 static int sonic_encode_frame(AVCodecContext *avctx,
631 uint8_t *buf, int buf_size, void *data)
633 SonicContext *s = avctx->priv_data;
634 PutBitContext pb;
635 int i, j, ch, quant = 0, x = 0;
636 short *samples = data;
638 init_put_bits(&pb, buf, buf_size*8);
640 // short -> internal
641 for (i = 0; i < s->frame_size; i++)
642 s->int_samples[i] = samples[i];
644 if (!s->lossless)
645 for (i = 0; i < s->frame_size; i++)
646 s->int_samples[i] = s->int_samples[i] << SAMPLE_SHIFT;
648 switch(s->decorrelation)
650 case MID_SIDE:
651 for (i = 0; i < s->frame_size; i += s->channels)
653 s->int_samples[i] += s->int_samples[i+1];
654 s->int_samples[i+1] -= shift(s->int_samples[i], 1);
656 break;
657 case LEFT_SIDE:
658 for (i = 0; i < s->frame_size; i += s->channels)
659 s->int_samples[i+1] -= s->int_samples[i];
660 break;
661 case RIGHT_SIDE:
662 for (i = 0; i < s->frame_size; i += s->channels)
663 s->int_samples[i] -= s->int_samples[i+1];
664 break;
667 memset(s->window, 0, 4* s->window_size);
669 for (i = 0; i < s->tail_size; i++)
670 s->window[x++] = s->tail[i];
672 for (i = 0; i < s->frame_size; i++)
673 s->window[x++] = s->int_samples[i];
675 for (i = 0; i < s->tail_size; i++)
676 s->window[x++] = 0;
678 for (i = 0; i < s->tail_size; i++)
679 s->tail[i] = s->int_samples[s->frame_size - s->tail_size + i];
681 // generate taps
682 modified_levinson_durbin(s->window, s->window_size,
683 s->predictor_k, s->num_taps, s->channels, s->tap_quant);
684 if (intlist_write(&pb, s->predictor_k, s->num_taps, 0) < 0)
685 return -1;
687 for (ch = 0; ch < s->channels; ch++)
689 x = s->tail_size+ch;
690 for (i = 0; i < s->block_align; i++)
692 int sum = 0;
693 for (j = 0; j < s->downsampling; j++, x += s->channels)
694 sum += s->window[x];
695 s->coded_samples[ch][i] = sum;
699 // simple rate control code
700 if (!s->lossless)
702 double energy1 = 0.0, energy2 = 0.0;
703 for (ch = 0; ch < s->channels; ch++)
705 for (i = 0; i < s->block_align; i++)
707 double sample = s->coded_samples[ch][i];
708 energy2 += sample*sample;
709 energy1 += fabs(sample);
713 energy2 = sqrt(energy2/(s->channels*s->block_align));
714 energy1 = sqrt(2.0)*energy1/(s->channels*s->block_align);
716 // increase bitrate when samples are like a gaussian distribution
717 // reduce bitrate when samples are like a two-tailed exponential distribution
719 if (energy2 > energy1)
720 energy2 += (energy2-energy1)*RATE_VARIATION;
722 quant = (int)(BASE_QUANT*s->quantization*energy2/SAMPLE_FACTOR);
723 // av_log(avctx, AV_LOG_DEBUG, "quant: %d energy: %f / %f\n", quant, energy1, energy2);
725 if (quant < 1)
726 quant = 1;
727 if (quant > 65535)
728 quant = 65535;
730 set_ue_golomb(&pb, quant);
732 quant *= SAMPLE_FACTOR;
735 // write out coded samples
736 for (ch = 0; ch < s->channels; ch++)
738 if (!s->lossless)
739 for (i = 0; i < s->block_align; i++)
740 s->coded_samples[ch][i] = divide(s->coded_samples[ch][i], quant);
742 if (intlist_write(&pb, s->coded_samples[ch], s->block_align, 1) < 0)
743 return -1;
746 // av_log(avctx, AV_LOG_DEBUG, "used bytes: %d\n", (put_bits_count(&pb)+7)/8);
748 flush_put_bits(&pb);
749 return (put_bits_count(&pb)+7)/8;
751 #endif //CONFIG_ENCODERS
753 #ifdef CONFIG_DECODERS
754 static av_cold int sonic_decode_init(AVCodecContext *avctx)
756 SonicContext *s = avctx->priv_data;
757 GetBitContext gb;
758 int i, version;
760 s->channels = avctx->channels;
761 s->samplerate = avctx->sample_rate;
763 if (!avctx->extradata)
765 av_log(avctx, AV_LOG_ERROR, "No mandatory headers present\n");
766 return -1;
769 init_get_bits(&gb, avctx->extradata, avctx->extradata_size);
771 version = get_bits(&gb, 2);
772 if (version > 1)
774 av_log(avctx, AV_LOG_ERROR, "Unsupported Sonic version, please report\n");
775 return -1;
778 if (version == 1)
780 s->channels = get_bits(&gb, 2);
781 s->samplerate = samplerate_table[get_bits(&gb, 4)];
782 av_log(avctx, AV_LOG_INFO, "Sonicv2 chans: %d samprate: %d\n",
783 s->channels, s->samplerate);
786 if (s->channels > MAX_CHANNELS)
788 av_log(avctx, AV_LOG_ERROR, "Only mono and stereo streams are supported by now\n");
789 return -1;
792 s->lossless = get_bits1(&gb);
793 if (!s->lossless)
794 skip_bits(&gb, 3); // XXX FIXME
795 s->decorrelation = get_bits(&gb, 2);
797 s->downsampling = get_bits(&gb, 2);
798 s->num_taps = (get_bits(&gb, 5)+1)<<5;
799 if (get_bits1(&gb)) // XXX FIXME
800 av_log(avctx, AV_LOG_INFO, "Custom quant table\n");
802 s->block_align = (int)(2048.0*(s->samplerate/44100))/s->downsampling;
803 s->frame_size = s->channels*s->block_align*s->downsampling;
804 // avctx->frame_size = s->block_align;
806 av_log(avctx, AV_LOG_INFO, "Sonic: ver: %d ls: %d dr: %d taps: %d block: %d frame: %d downsamp: %d\n",
807 version, s->lossless, s->decorrelation, s->num_taps, s->block_align, s->frame_size, s->downsampling);
809 // generate taps
810 s->tap_quant = av_mallocz(4* s->num_taps);
811 for (i = 0; i < s->num_taps; i++)
812 s->tap_quant[i] = (int)(sqrt(i+1));
814 s->predictor_k = av_mallocz(4* s->num_taps);
816 for (i = 0; i < s->channels; i++)
818 s->predictor_state[i] = av_mallocz(4* s->num_taps);
819 if (!s->predictor_state[i])
820 return -1;
823 for (i = 0; i < s->channels; i++)
825 s->coded_samples[i] = av_mallocz(4* s->block_align);
826 if (!s->coded_samples[i])
827 return -1;
829 s->int_samples = av_mallocz(4* s->frame_size);
831 return 0;
834 static av_cold int sonic_decode_close(AVCodecContext *avctx)
836 SonicContext *s = avctx->priv_data;
837 int i;
839 av_free(s->int_samples);
840 av_free(s->tap_quant);
841 av_free(s->predictor_k);
843 for (i = 0; i < s->channels; i++)
845 av_free(s->predictor_state[i]);
846 av_free(s->coded_samples[i]);
849 return 0;
852 static int sonic_decode_frame(AVCodecContext *avctx,
853 void *data, int *data_size,
854 const uint8_t *buf, int buf_size)
856 SonicContext *s = avctx->priv_data;
857 GetBitContext gb;
858 int i, quant, ch, j;
859 short *samples = data;
861 if (buf_size == 0) return 0;
863 // av_log(NULL, AV_LOG_INFO, "buf_size: %d\n", buf_size);
865 init_get_bits(&gb, buf, buf_size*8);
867 intlist_read(&gb, s->predictor_k, s->num_taps, 0);
869 // dequantize
870 for (i = 0; i < s->num_taps; i++)
871 s->predictor_k[i] *= s->tap_quant[i];
873 if (s->lossless)
874 quant = 1;
875 else
876 quant = get_ue_golomb(&gb) * SAMPLE_FACTOR;
878 // av_log(NULL, AV_LOG_INFO, "quant: %d\n", quant);
880 for (ch = 0; ch < s->channels; ch++)
882 int x = ch;
884 predictor_init_state(s->predictor_k, s->predictor_state[ch], s->num_taps);
886 intlist_read(&gb, s->coded_samples[ch], s->block_align, 1);
888 for (i = 0; i < s->block_align; i++)
890 for (j = 0; j < s->downsampling - 1; j++)
892 s->int_samples[x] = predictor_calc_error(s->predictor_k, s->predictor_state[ch], s->num_taps, 0);
893 x += s->channels;
896 s->int_samples[x] = predictor_calc_error(s->predictor_k, s->predictor_state[ch], s->num_taps, s->coded_samples[ch][i] * quant);
897 x += s->channels;
900 for (i = 0; i < s->num_taps; i++)
901 s->predictor_state[ch][i] = s->int_samples[s->frame_size - s->channels + ch - i*s->channels];
904 switch(s->decorrelation)
906 case MID_SIDE:
907 for (i = 0; i < s->frame_size; i += s->channels)
909 s->int_samples[i+1] += shift(s->int_samples[i], 1);
910 s->int_samples[i] -= s->int_samples[i+1];
912 break;
913 case LEFT_SIDE:
914 for (i = 0; i < s->frame_size; i += s->channels)
915 s->int_samples[i+1] += s->int_samples[i];
916 break;
917 case RIGHT_SIDE:
918 for (i = 0; i < s->frame_size; i += s->channels)
919 s->int_samples[i] += s->int_samples[i+1];
920 break;
923 if (!s->lossless)
924 for (i = 0; i < s->frame_size; i++)
925 s->int_samples[i] = shift(s->int_samples[i], SAMPLE_SHIFT);
927 // internal -> short
928 for (i = 0; i < s->frame_size; i++)
929 samples[i] = av_clip_int16(s->int_samples[i]);
931 align_get_bits(&gb);
933 *data_size = s->frame_size * 2;
935 return (get_bits_count(&gb)+7)/8;
937 #endif
939 #ifdef CONFIG_ENCODERS
940 AVCodec sonic_encoder = {
941 "sonic",
942 CODEC_TYPE_AUDIO,
943 CODEC_ID_SONIC,
944 sizeof(SonicContext),
945 sonic_encode_init,
946 sonic_encode_frame,
947 sonic_encode_close,
948 NULL,
949 .long_name = NULL_IF_CONFIG_SMALL("Sonic"),
952 AVCodec sonic_ls_encoder = {
953 "sonicls",
954 CODEC_TYPE_AUDIO,
955 CODEC_ID_SONIC_LS,
956 sizeof(SonicContext),
957 sonic_encode_init,
958 sonic_encode_frame,
959 sonic_encode_close,
960 NULL,
961 .long_name = NULL_IF_CONFIG_SMALL("Sonic lossless"),
963 #endif
965 #ifdef CONFIG_DECODERS
966 AVCodec sonic_decoder = {
967 "sonic",
968 CODEC_TYPE_AUDIO,
969 CODEC_ID_SONIC,
970 sizeof(SonicContext),
971 sonic_decode_init,
972 NULL,
973 sonic_decode_close,
974 sonic_decode_frame,
975 .long_name = NULL_IF_CONFIG_SMALL("Sonic"),
977 #endif