fix dependency generation
[FFMpeg-mirror/DVCPRO-HD.git] / libavcodec / cavs.c
blob60219d4a340eddbc6942229e8b4d9caad35a2ec7
1 /*
2 * Chinese AVS video (AVS1-P2, JiZhun profile) decoder.
3 * Copyright (c) 2006 Stefan Gehrer <stefan.gehrer@gmx.de>
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 /**
23 * @file cavs.c
24 * Chinese AVS video (AVS1-P2, JiZhun profile) decoder
25 * @author Stefan Gehrer <stefan.gehrer@gmx.de>
28 #include "avcodec.h"
29 #include "bitstream.h"
30 #include "golomb.h"
31 #include "cavs.h"
32 #include "cavsdata.h"
34 /*****************************************************************************
36 * in-loop deblocking filter
38 ****************************************************************************/
40 static inline int get_bs(vector_t *mvP, vector_t *mvQ, int b) {
41 if((mvP->ref == REF_INTRA) || (mvQ->ref == REF_INTRA))
42 return 2;
43 if( (abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4) )
44 return 1;
45 if(b){
46 mvP += MV_BWD_OFFS;
47 mvQ += MV_BWD_OFFS;
48 if( (abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4) )
49 return 1;
50 }else{
51 if(mvP->ref != mvQ->ref)
52 return 1;
54 return 0;
57 #define SET_PARAMS \
58 alpha = alpha_tab[av_clip(qp_avg + h->alpha_offset,0,63)]; \
59 beta = beta_tab[av_clip(qp_avg + h->beta_offset, 0,63)]; \
60 tc = tc_tab[av_clip(qp_avg + h->alpha_offset,0,63)];
62 /**
63 * in-loop deblocking filter for a single macroblock
65 * boundary strength (bs) mapping:
67 * --4---5--
68 * 0 2 |
69 * | 6 | 7 |
70 * 1 3 |
71 * ---------
74 void ff_cavs_filter(AVSContext *h, enum mb_t mb_type) {
75 DECLARE_ALIGNED_8(uint8_t, bs[8]);
76 int qp_avg, alpha, beta, tc;
77 int i;
79 /* save un-deblocked lines */
80 h->topleft_border_y = h->top_border_y[h->mbx*16+15];
81 h->topleft_border_u = h->top_border_u[h->mbx*10+8];
82 h->topleft_border_v = h->top_border_v[h->mbx*10+8];
83 memcpy(&h->top_border_y[h->mbx*16], h->cy + 15* h->l_stride,16);
84 memcpy(&h->top_border_u[h->mbx*10+1], h->cu + 7* h->c_stride,8);
85 memcpy(&h->top_border_v[h->mbx*10+1], h->cv + 7* h->c_stride,8);
86 for(i=0;i<8;i++) {
87 h->left_border_y[i*2+1] = *(h->cy + 15 + (i*2+0)*h->l_stride);
88 h->left_border_y[i*2+2] = *(h->cy + 15 + (i*2+1)*h->l_stride);
89 h->left_border_u[i+1] = *(h->cu + 7 + i*h->c_stride);
90 h->left_border_v[i+1] = *(h->cv + 7 + i*h->c_stride);
92 if(!h->loop_filter_disable) {
93 /* determine bs */
94 if(mb_type == I_8X8)
95 *((uint64_t *)bs) = 0x0202020202020202ULL;
96 else{
97 *((uint64_t *)bs) = 0;
98 if(ff_cavs_partition_flags[mb_type] & SPLITV){
99 bs[2] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X1], mb_type > P_8X8);
100 bs[3] = get_bs(&h->mv[MV_FWD_X2], &h->mv[MV_FWD_X3], mb_type > P_8X8);
102 if(ff_cavs_partition_flags[mb_type] & SPLITH){
103 bs[6] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X2], mb_type > P_8X8);
104 bs[7] = get_bs(&h->mv[MV_FWD_X1], &h->mv[MV_FWD_X3], mb_type > P_8X8);
106 bs[0] = get_bs(&h->mv[MV_FWD_A1], &h->mv[MV_FWD_X0], mb_type > P_8X8);
107 bs[1] = get_bs(&h->mv[MV_FWD_A3], &h->mv[MV_FWD_X2], mb_type > P_8X8);
108 bs[4] = get_bs(&h->mv[MV_FWD_B2], &h->mv[MV_FWD_X0], mb_type > P_8X8);
109 bs[5] = get_bs(&h->mv[MV_FWD_B3], &h->mv[MV_FWD_X1], mb_type > P_8X8);
111 if( *((uint64_t *)bs) ) {
112 if(h->flags & A_AVAIL) {
113 qp_avg = (h->qp + h->left_qp + 1) >> 1;
114 SET_PARAMS;
115 h->s.dsp.cavs_filter_lv(h->cy,h->l_stride,alpha,beta,tc,bs[0],bs[1]);
116 h->s.dsp.cavs_filter_cv(h->cu,h->c_stride,alpha,beta,tc,bs[0],bs[1]);
117 h->s.dsp.cavs_filter_cv(h->cv,h->c_stride,alpha,beta,tc,bs[0],bs[1]);
119 qp_avg = h->qp;
120 SET_PARAMS;
121 h->s.dsp.cavs_filter_lv(h->cy + 8,h->l_stride,alpha,beta,tc,bs[2],bs[3]);
122 h->s.dsp.cavs_filter_lh(h->cy + 8*h->l_stride,h->l_stride,alpha,beta,tc,
123 bs[6],bs[7]);
125 if(h->flags & B_AVAIL) {
126 qp_avg = (h->qp + h->top_qp[h->mbx] + 1) >> 1;
127 SET_PARAMS;
128 h->s.dsp.cavs_filter_lh(h->cy,h->l_stride,alpha,beta,tc,bs[4],bs[5]);
129 h->s.dsp.cavs_filter_ch(h->cu,h->c_stride,alpha,beta,tc,bs[4],bs[5]);
130 h->s.dsp.cavs_filter_ch(h->cv,h->c_stride,alpha,beta,tc,bs[4],bs[5]);
134 h->left_qp = h->qp;
135 h->top_qp[h->mbx] = h->qp;
138 #undef SET_PARAMS
140 /*****************************************************************************
142 * spatial intra prediction
144 ****************************************************************************/
146 void ff_cavs_load_intra_pred_luma(AVSContext *h, uint8_t *top,
147 uint8_t **left, int block) {
148 int i;
150 switch(block) {
151 case 0:
152 *left = h->left_border_y;
153 h->left_border_y[0] = h->left_border_y[1];
154 memset(&h->left_border_y[17],h->left_border_y[16],9);
155 memcpy(&top[1],&h->top_border_y[h->mbx*16],16);
156 top[17] = top[16];
157 top[0] = top[1];
158 if((h->flags & A_AVAIL) && (h->flags & B_AVAIL))
159 h->left_border_y[0] = top[0] = h->topleft_border_y;
160 break;
161 case 1:
162 *left = h->intern_border_y;
163 for(i=0;i<8;i++)
164 h->intern_border_y[i+1] = *(h->cy + 7 + i*h->l_stride);
165 memset(&h->intern_border_y[9],h->intern_border_y[8],9);
166 h->intern_border_y[0] = h->intern_border_y[1];
167 memcpy(&top[1],&h->top_border_y[h->mbx*16+8],8);
168 if(h->flags & C_AVAIL)
169 memcpy(&top[9],&h->top_border_y[(h->mbx + 1)*16],8);
170 else
171 memset(&top[9],top[8],9);
172 top[17] = top[16];
173 top[0] = top[1];
174 if(h->flags & B_AVAIL)
175 h->intern_border_y[0] = top[0] = h->top_border_y[h->mbx*16+7];
176 break;
177 case 2:
178 *left = &h->left_border_y[8];
179 memcpy(&top[1],h->cy + 7*h->l_stride,16);
180 top[17] = top[16];
181 top[0] = top[1];
182 if(h->flags & A_AVAIL)
183 top[0] = h->left_border_y[8];
184 break;
185 case 3:
186 *left = &h->intern_border_y[8];
187 for(i=0;i<8;i++)
188 h->intern_border_y[i+9] = *(h->cy + 7 + (i+8)*h->l_stride);
189 memset(&h->intern_border_y[17],h->intern_border_y[16],9);
190 memcpy(&top[0],h->cy + 7 + 7*h->l_stride,9);
191 memset(&top[9],top[8],9);
192 break;
196 void ff_cavs_load_intra_pred_chroma(AVSContext *h) {
197 /* extend borders by one pixel */
198 h->left_border_u[9] = h->left_border_u[8];
199 h->left_border_v[9] = h->left_border_v[8];
200 h->top_border_u[h->mbx*10+9] = h->top_border_u[h->mbx*10+8];
201 h->top_border_v[h->mbx*10+9] = h->top_border_v[h->mbx*10+8];
202 if(h->mbx && h->mby) {
203 h->top_border_u[h->mbx*10] = h->left_border_u[0] = h->topleft_border_u;
204 h->top_border_v[h->mbx*10] = h->left_border_v[0] = h->topleft_border_v;
205 } else {
206 h->left_border_u[0] = h->left_border_u[1];
207 h->left_border_v[0] = h->left_border_v[1];
208 h->top_border_u[h->mbx*10] = h->top_border_u[h->mbx*10+1];
209 h->top_border_v[h->mbx*10] = h->top_border_v[h->mbx*10+1];
213 static void intra_pred_vert(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
214 int y;
215 uint64_t a = AV_RN64(&top[1]);
216 for(y=0;y<8;y++) {
217 *((uint64_t *)(d+y*stride)) = a;
221 static void intra_pred_horiz(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
222 int y;
223 uint64_t a;
224 for(y=0;y<8;y++) {
225 a = left[y+1] * 0x0101010101010101ULL;
226 *((uint64_t *)(d+y*stride)) = a;
230 static void intra_pred_dc_128(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
231 int y;
232 uint64_t a = 0x8080808080808080ULL;
233 for(y=0;y<8;y++)
234 *((uint64_t *)(d+y*stride)) = a;
237 static void intra_pred_plane(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
238 int x,y,ia;
239 int ih = 0;
240 int iv = 0;
241 uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
243 for(x=0; x<4; x++) {
244 ih += (x+1)*(top[5+x]-top[3-x]);
245 iv += (x+1)*(left[5+x]-left[3-x]);
247 ia = (top[8]+left[8])<<4;
248 ih = (17*ih+16)>>5;
249 iv = (17*iv+16)>>5;
250 for(y=0; y<8; y++)
251 for(x=0; x<8; x++)
252 d[y*stride+x] = cm[(ia+(x-3)*ih+(y-3)*iv+16)>>5];
255 #define LOWPASS(ARRAY,INDEX) \
256 (( ARRAY[(INDEX)-1] + 2*ARRAY[(INDEX)] + ARRAY[(INDEX)+1] + 2) >> 2)
258 static void intra_pred_lp(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
259 int x,y;
260 for(y=0; y<8; y++)
261 for(x=0; x<8; x++)
262 d[y*stride+x] = (LOWPASS(top,x+1) + LOWPASS(left,y+1)) >> 1;
265 static void intra_pred_down_left(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
266 int x,y;
267 for(y=0; y<8; y++)
268 for(x=0; x<8; x++)
269 d[y*stride+x] = (LOWPASS(top,x+y+2) + LOWPASS(left,x+y+2)) >> 1;
272 static void intra_pred_down_right(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
273 int x,y;
274 for(y=0; y<8; y++)
275 for(x=0; x<8; x++)
276 if(x==y)
277 d[y*stride+x] = (left[1]+2*top[0]+top[1]+2)>>2;
278 else if(x>y)
279 d[y*stride+x] = LOWPASS(top,x-y);
280 else
281 d[y*stride+x] = LOWPASS(left,y-x);
284 static void intra_pred_lp_left(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
285 int x,y;
286 for(y=0; y<8; y++)
287 for(x=0; x<8; x++)
288 d[y*stride+x] = LOWPASS(left,y+1);
291 static void intra_pred_lp_top(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
292 int x,y;
293 for(y=0; y<8; y++)
294 for(x=0; x<8; x++)
295 d[y*stride+x] = LOWPASS(top,x+1);
298 #undef LOWPASS
300 void ff_cavs_modify_mb_i(AVSContext *h, int *pred_mode_uv) {
301 /* save pred modes before they get modified */
302 h->pred_mode_Y[3] = h->pred_mode_Y[5];
303 h->pred_mode_Y[6] = h->pred_mode_Y[8];
304 h->top_pred_Y[h->mbx*2+0] = h->pred_mode_Y[7];
305 h->top_pred_Y[h->mbx*2+1] = h->pred_mode_Y[8];
307 /* modify pred modes according to availability of neighbour samples */
308 if(!(h->flags & A_AVAIL)) {
309 modify_pred(ff_left_modifier_l, &h->pred_mode_Y[4] );
310 modify_pred(ff_left_modifier_l, &h->pred_mode_Y[7] );
311 modify_pred(ff_left_modifier_c, pred_mode_uv );
313 if(!(h->flags & B_AVAIL)) {
314 modify_pred(ff_top_modifier_l, &h->pred_mode_Y[4] );
315 modify_pred(ff_top_modifier_l, &h->pred_mode_Y[5] );
316 modify_pred(ff_top_modifier_c, pred_mode_uv );
320 /*****************************************************************************
322 * motion compensation
324 ****************************************************************************/
326 static inline void mc_dir_part(AVSContext *h,Picture *pic,int square,
327 int chroma_height,int delta,int list,uint8_t *dest_y,
328 uint8_t *dest_cb,uint8_t *dest_cr,int src_x_offset,
329 int src_y_offset,qpel_mc_func *qpix_op,
330 h264_chroma_mc_func chroma_op,vector_t *mv){
331 MpegEncContext * const s = &h->s;
332 const int mx= mv->x + src_x_offset*8;
333 const int my= mv->y + src_y_offset*8;
334 const int luma_xy= (mx&3) + ((my&3)<<2);
335 uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*h->l_stride;
336 uint8_t * src_cb= pic->data[1] + (mx>>3) + (my>>3)*h->c_stride;
337 uint8_t * src_cr= pic->data[2] + (mx>>3) + (my>>3)*h->c_stride;
338 int extra_width= 0; //(s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16;
339 int extra_height= extra_width;
340 int emu=0;
341 const int full_mx= mx>>2;
342 const int full_my= my>>2;
343 const int pic_width = 16*h->mb_width;
344 const int pic_height = 16*h->mb_height;
346 if(!pic->data[0])
347 return;
348 if(mx&7) extra_width -= 3;
349 if(my&7) extra_height -= 3;
351 if( full_mx < 0-extra_width
352 || full_my < 0-extra_height
353 || full_mx + 16/*FIXME*/ > pic_width + extra_width
354 || full_my + 16/*FIXME*/ > pic_height + extra_height){
355 ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*h->l_stride, h->l_stride,
356 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
357 src_y= s->edge_emu_buffer + 2 + 2*h->l_stride;
358 emu=1;
361 qpix_op[luma_xy](dest_y, src_y, h->l_stride); //FIXME try variable height perhaps?
362 if(!square){
363 qpix_op[luma_xy](dest_y + delta, src_y + delta, h->l_stride);
366 if(emu){
367 ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, h->c_stride,
368 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
369 src_cb= s->edge_emu_buffer;
371 chroma_op(dest_cb, src_cb, h->c_stride, chroma_height, mx&7, my&7);
373 if(emu){
374 ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, h->c_stride,
375 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
376 src_cr= s->edge_emu_buffer;
378 chroma_op(dest_cr, src_cr, h->c_stride, chroma_height, mx&7, my&7);
381 static inline void mc_part_std(AVSContext *h,int square,int chroma_height,int delta,
382 uint8_t *dest_y,uint8_t *dest_cb,uint8_t *dest_cr,
383 int x_offset, int y_offset,qpel_mc_func *qpix_put,
384 h264_chroma_mc_func chroma_put,qpel_mc_func *qpix_avg,
385 h264_chroma_mc_func chroma_avg, vector_t *mv){
386 qpel_mc_func *qpix_op= qpix_put;
387 h264_chroma_mc_func chroma_op= chroma_put;
389 dest_y += 2*x_offset + 2*y_offset*h->l_stride;
390 dest_cb += x_offset + y_offset*h->c_stride;
391 dest_cr += x_offset + y_offset*h->c_stride;
392 x_offset += 8*h->mbx;
393 y_offset += 8*h->mby;
395 if(mv->ref >= 0){
396 Picture *ref= &h->DPB[mv->ref];
397 mc_dir_part(h, ref, square, chroma_height, delta, 0,
398 dest_y, dest_cb, dest_cr, x_offset, y_offset,
399 qpix_op, chroma_op, mv);
401 qpix_op= qpix_avg;
402 chroma_op= chroma_avg;
405 if((mv+MV_BWD_OFFS)->ref >= 0){
406 Picture *ref= &h->DPB[0];
407 mc_dir_part(h, ref, square, chroma_height, delta, 1,
408 dest_y, dest_cb, dest_cr, x_offset, y_offset,
409 qpix_op, chroma_op, mv+MV_BWD_OFFS);
413 void ff_cavs_inter(AVSContext *h, enum mb_t mb_type) {
414 if(ff_cavs_partition_flags[mb_type] == 0){ // 16x16
415 mc_part_std(h, 1, 8, 0, h->cy, h->cu, h->cv, 0, 0,
416 h->s.dsp.put_cavs_qpel_pixels_tab[0],
417 h->s.dsp.put_h264_chroma_pixels_tab[0],
418 h->s.dsp.avg_cavs_qpel_pixels_tab[0],
419 h->s.dsp.avg_h264_chroma_pixels_tab[0],&h->mv[MV_FWD_X0]);
420 }else{
421 mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 0, 0,
422 h->s.dsp.put_cavs_qpel_pixels_tab[1],
423 h->s.dsp.put_h264_chroma_pixels_tab[1],
424 h->s.dsp.avg_cavs_qpel_pixels_tab[1],
425 h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X0]);
426 mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 4, 0,
427 h->s.dsp.put_cavs_qpel_pixels_tab[1],
428 h->s.dsp.put_h264_chroma_pixels_tab[1],
429 h->s.dsp.avg_cavs_qpel_pixels_tab[1],
430 h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X1]);
431 mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 0, 4,
432 h->s.dsp.put_cavs_qpel_pixels_tab[1],
433 h->s.dsp.put_h264_chroma_pixels_tab[1],
434 h->s.dsp.avg_cavs_qpel_pixels_tab[1],
435 h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X2]);
436 mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 4, 4,
437 h->s.dsp.put_cavs_qpel_pixels_tab[1],
438 h->s.dsp.put_h264_chroma_pixels_tab[1],
439 h->s.dsp.avg_cavs_qpel_pixels_tab[1],
440 h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X3]);
444 /*****************************************************************************
446 * motion vector prediction
448 ****************************************************************************/
450 static inline void scale_mv(AVSContext *h, int *d_x, int *d_y, vector_t *src, int distp) {
451 int den = h->scale_den[src->ref];
453 *d_x = (src->x*distp*den + 256 + (src->x>>31)) >> 9;
454 *d_y = (src->y*distp*den + 256 + (src->y>>31)) >> 9;
457 static inline void mv_pred_median(AVSContext *h, vector_t *mvP, vector_t *mvA, vector_t *mvB, vector_t *mvC) {
458 int ax, ay, bx, by, cx, cy;
459 int len_ab, len_bc, len_ca, len_mid;
461 /* scale candidates according to their temporal span */
462 scale_mv(h, &ax, &ay, mvA, mvP->dist);
463 scale_mv(h, &bx, &by, mvB, mvP->dist);
464 scale_mv(h, &cx, &cy, mvC, mvP->dist);
465 /* find the geometrical median of the three candidates */
466 len_ab = abs(ax - bx) + abs(ay - by);
467 len_bc = abs(bx - cx) + abs(by - cy);
468 len_ca = abs(cx - ax) + abs(cy - ay);
469 len_mid = mid_pred(len_ab, len_bc, len_ca);
470 if(len_mid == len_ab) {
471 mvP->x = cx;
472 mvP->y = cy;
473 } else if(len_mid == len_bc) {
474 mvP->x = ax;
475 mvP->y = ay;
476 } else {
477 mvP->x = bx;
478 mvP->y = by;
482 void ff_cavs_mv(AVSContext *h, enum mv_loc_t nP, enum mv_loc_t nC,
483 enum mv_pred_t mode, enum block_t size, int ref) {
484 vector_t *mvP = &h->mv[nP];
485 vector_t *mvA = &h->mv[nP-1];
486 vector_t *mvB = &h->mv[nP-4];
487 vector_t *mvC = &h->mv[nC];
488 const vector_t *mvP2 = NULL;
490 mvP->ref = ref;
491 mvP->dist = h->dist[mvP->ref];
492 if(mvC->ref == NOT_AVAIL)
493 mvC = &h->mv[nP-5]; // set to top-left (mvD)
494 if((mode == MV_PRED_PSKIP) &&
495 ((mvA->ref == NOT_AVAIL) || (mvB->ref == NOT_AVAIL) ||
496 ((mvA->x | mvA->y | mvA->ref) == 0) ||
497 ((mvB->x | mvB->y | mvB->ref) == 0) )) {
498 mvP2 = &ff_cavs_un_mv;
499 /* if there is only one suitable candidate, take it */
500 } else if((mvA->ref >= 0) && (mvB->ref < 0) && (mvC->ref < 0)) {
501 mvP2= mvA;
502 } else if((mvA->ref < 0) && (mvB->ref >= 0) && (mvC->ref < 0)) {
503 mvP2= mvB;
504 } else if((mvA->ref < 0) && (mvB->ref < 0) && (mvC->ref >= 0)) {
505 mvP2= mvC;
506 } else if(mode == MV_PRED_LEFT && mvA->ref == ref){
507 mvP2= mvA;
508 } else if(mode == MV_PRED_TOP && mvB->ref == ref){
509 mvP2= mvB;
510 } else if(mode == MV_PRED_TOPRIGHT && mvC->ref == ref){
511 mvP2= mvC;
513 if(mvP2){
514 mvP->x = mvP2->x;
515 mvP->y = mvP2->y;
516 }else
517 mv_pred_median(h, mvP, mvA, mvB, mvC);
519 if(mode < MV_PRED_PSKIP) {
520 mvP->x += get_se_golomb(&h->s.gb);
521 mvP->y += get_se_golomb(&h->s.gb);
523 set_mvs(mvP,size);
526 /*****************************************************************************
528 * macroblock level
530 ****************************************************************************/
533 * initialise predictors for motion vectors and intra prediction
535 void ff_cavs_init_mb(AVSContext *h) {
536 int i;
538 /* copy predictors from top line (MB B and C) into cache */
539 for(i=0;i<3;i++) {
540 h->mv[MV_FWD_B2+i] = h->top_mv[0][h->mbx*2+i];
541 h->mv[MV_BWD_B2+i] = h->top_mv[1][h->mbx*2+i];
543 h->pred_mode_Y[1] = h->top_pred_Y[h->mbx*2+0];
544 h->pred_mode_Y[2] = h->top_pred_Y[h->mbx*2+1];
545 /* clear top predictors if MB B is not available */
546 if(!(h->flags & B_AVAIL)) {
547 h->mv[MV_FWD_B2] = ff_cavs_un_mv;
548 h->mv[MV_FWD_B3] = ff_cavs_un_mv;
549 h->mv[MV_BWD_B2] = ff_cavs_un_mv;
550 h->mv[MV_BWD_B3] = ff_cavs_un_mv;
551 h->pred_mode_Y[1] = h->pred_mode_Y[2] = NOT_AVAIL;
552 h->flags &= ~(C_AVAIL|D_AVAIL);
553 } else if(h->mbx) {
554 h->flags |= D_AVAIL;
556 if(h->mbx == h->mb_width-1) //MB C not available
557 h->flags &= ~C_AVAIL;
558 /* clear top-right predictors if MB C is not available */
559 if(!(h->flags & C_AVAIL)) {
560 h->mv[MV_FWD_C2] = ff_cavs_un_mv;
561 h->mv[MV_BWD_C2] = ff_cavs_un_mv;
563 /* clear top-left predictors if MB D is not available */
564 if(!(h->flags & D_AVAIL)) {
565 h->mv[MV_FWD_D3] = ff_cavs_un_mv;
566 h->mv[MV_BWD_D3] = ff_cavs_un_mv;
568 /* set pointer for co-located macroblock type */
569 h->col_type = &h->col_type_base[h->mby*h->mb_width + h->mbx];
573 * save predictors for later macroblocks and increase
574 * macroblock address
575 * @returns 0 if end of frame is reached, 1 otherwise
577 int ff_cavs_next_mb(AVSContext *h) {
578 int i;
580 h->flags |= A_AVAIL;
581 h->cy += 16;
582 h->cu += 8;
583 h->cv += 8;
584 /* copy mvs as predictors to the left */
585 for(i=0;i<=20;i+=4)
586 h->mv[i] = h->mv[i+2];
587 /* copy bottom mvs from cache to top line */
588 h->top_mv[0][h->mbx*2+0] = h->mv[MV_FWD_X2];
589 h->top_mv[0][h->mbx*2+1] = h->mv[MV_FWD_X3];
590 h->top_mv[1][h->mbx*2+0] = h->mv[MV_BWD_X2];
591 h->top_mv[1][h->mbx*2+1] = h->mv[MV_BWD_X3];
592 /* next MB address */
593 h->mbx++;
594 if(h->mbx == h->mb_width) { //new mb line
595 h->flags = B_AVAIL|C_AVAIL;
596 /* clear left pred_modes */
597 h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
598 /* clear left mv predictors */
599 for(i=0;i<=20;i+=4)
600 h->mv[i] = ff_cavs_un_mv;
601 h->mbx = 0;
602 h->mby++;
603 /* re-calculate sample pointers */
604 h->cy = h->picture.data[0] + h->mby*16*h->l_stride;
605 h->cu = h->picture.data[1] + h->mby*8*h->c_stride;
606 h->cv = h->picture.data[2] + h->mby*8*h->c_stride;
607 if(h->mby == h->mb_height) { //frame end
608 return 0;
609 } else {
610 //check_for_slice(h);
613 return 1;
616 /*****************************************************************************
618 * frame level
620 ****************************************************************************/
622 void ff_cavs_init_pic(AVSContext *h) {
623 int i;
625 /* clear some predictors */
626 for(i=0;i<=20;i+=4)
627 h->mv[i] = ff_cavs_un_mv;
628 h->mv[MV_BWD_X0] = ff_cavs_dir_mv;
629 set_mvs(&h->mv[MV_BWD_X0], BLK_16X16);
630 h->mv[MV_FWD_X0] = ff_cavs_dir_mv;
631 set_mvs(&h->mv[MV_FWD_X0], BLK_16X16);
632 h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
633 h->cy = h->picture.data[0];
634 h->cu = h->picture.data[1];
635 h->cv = h->picture.data[2];
636 h->l_stride = h->picture.linesize[0];
637 h->c_stride = h->picture.linesize[1];
638 h->luma_scan[2] = 8*h->l_stride;
639 h->luma_scan[3] = 8*h->l_stride+8;
640 h->mbx = h->mby = 0;
641 h->flags = 0;
644 /*****************************************************************************
646 * headers and interface
648 ****************************************************************************/
651 * some predictions require data from the top-neighbouring macroblock.
652 * this data has to be stored for one complete row of macroblocks
653 * and this storage space is allocated here
655 void ff_cavs_init_top_lines(AVSContext *h) {
656 /* alloc top line of predictors */
657 h->top_qp = av_malloc( h->mb_width);
658 h->top_mv[0] = av_malloc((h->mb_width*2+1)*sizeof(vector_t));
659 h->top_mv[1] = av_malloc((h->mb_width*2+1)*sizeof(vector_t));
660 h->top_pred_Y = av_malloc( h->mb_width*2*sizeof(*h->top_pred_Y));
661 h->top_border_y = av_malloc((h->mb_width+1)*16);
662 h->top_border_u = av_malloc((h->mb_width)*10);
663 h->top_border_v = av_malloc((h->mb_width)*10);
665 /* alloc space for co-located MVs and types */
666 h->col_mv = av_malloc( h->mb_width*h->mb_height*4*sizeof(vector_t));
667 h->col_type_base = av_malloc(h->mb_width*h->mb_height);
668 h->block = av_mallocz(64*sizeof(DCTELEM));
671 av_cold int ff_cavs_init(AVCodecContext *avctx) {
672 AVSContext *h = avctx->priv_data;
673 MpegEncContext * const s = &h->s;
675 MPV_decode_defaults(s);
676 s->avctx = avctx;
678 avctx->pix_fmt= PIX_FMT_YUV420P;
680 h->luma_scan[0] = 0;
681 h->luma_scan[1] = 8;
682 h->intra_pred_l[ INTRA_L_VERT] = intra_pred_vert;
683 h->intra_pred_l[ INTRA_L_HORIZ] = intra_pred_horiz;
684 h->intra_pred_l[ INTRA_L_LP] = intra_pred_lp;
685 h->intra_pred_l[ INTRA_L_DOWN_LEFT] = intra_pred_down_left;
686 h->intra_pred_l[INTRA_L_DOWN_RIGHT] = intra_pred_down_right;
687 h->intra_pred_l[ INTRA_L_LP_LEFT] = intra_pred_lp_left;
688 h->intra_pred_l[ INTRA_L_LP_TOP] = intra_pred_lp_top;
689 h->intra_pred_l[ INTRA_L_DC_128] = intra_pred_dc_128;
690 h->intra_pred_c[ INTRA_C_LP] = intra_pred_lp;
691 h->intra_pred_c[ INTRA_C_HORIZ] = intra_pred_horiz;
692 h->intra_pred_c[ INTRA_C_VERT] = intra_pred_vert;
693 h->intra_pred_c[ INTRA_C_PLANE] = intra_pred_plane;
694 h->intra_pred_c[ INTRA_C_LP_LEFT] = intra_pred_lp_left;
695 h->intra_pred_c[ INTRA_C_LP_TOP] = intra_pred_lp_top;
696 h->intra_pred_c[ INTRA_C_DC_128] = intra_pred_dc_128;
697 h->mv[ 7] = ff_cavs_un_mv;
698 h->mv[19] = ff_cavs_un_mv;
699 return 0;
702 av_cold int ff_cavs_end(AVCodecContext *avctx) {
703 AVSContext *h = avctx->priv_data;
705 av_free(h->top_qp);
706 av_free(h->top_mv[0]);
707 av_free(h->top_mv[1]);
708 av_free(h->top_pred_Y);
709 av_free(h->top_border_y);
710 av_free(h->top_border_u);
711 av_free(h->top_border_v);
712 av_free(h->col_mv);
713 av_free(h->col_type_base);
714 av_free(h->block);
715 return 0;