Rename dec2() function
[FFMpeg-mirror/DVCPRO-HD.git] / libavcodec / atrac3.c
blob6015ef6ab6edf7f2fcde200a17da16bb09f65cad
1 /*
2 * Atrac 3 compatible decoder
3 * Copyright (c) 2006-2008 Maxim Poliakovski
4 * Copyright (c) 2006-2008 Benjamin Larsson
6 * This file is part of FFmpeg.
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 /**
24 * @file atrac3.c
25 * Atrac 3 compatible decoder.
26 * This decoder handles Sony's ATRAC3 data.
28 * Container formats used to store atrac 3 data:
29 * RealMedia (.rm), RIFF WAV (.wav, .at3), Sony OpenMG (.oma, .aa3).
31 * To use this decoder, a calling application must supply the extradata
32 * bytes provided in the containers above.
35 #include <math.h>
36 #include <stddef.h>
37 #include <stdio.h>
39 #include "avcodec.h"
40 #include "bitstream.h"
41 #include "dsputil.h"
42 #include "bytestream.h"
44 #include "atrac3data.h"
46 #define JOINT_STEREO 0x12
47 #define STEREO 0x2
50 /* These structures are needed to store the parsed gain control data. */
51 typedef struct {
52 int num_gain_data;
53 int levcode[8];
54 int loccode[8];
55 } gain_info;
57 typedef struct {
58 gain_info gBlock[4];
59 } gain_block;
61 typedef struct {
62 int pos;
63 int numCoefs;
64 float coef[8];
65 } tonal_component;
67 typedef struct {
68 int bandsCoded;
69 int numComponents;
70 tonal_component components[64];
71 float prevFrame[1024];
72 int gcBlkSwitch;
73 gain_block gainBlock[2];
75 DECLARE_ALIGNED_16(float, spectrum[1024]);
76 DECLARE_ALIGNED_16(float, IMDCT_buf[1024]);
78 float delayBuf1[46]; ///<qmf delay buffers
79 float delayBuf2[46];
80 float delayBuf3[46];
81 } channel_unit;
83 typedef struct {
84 GetBitContext gb;
85 //@{
86 /** stream data */
87 int channels;
88 int codingMode;
89 int bit_rate;
90 int sample_rate;
91 int samples_per_channel;
92 int samples_per_frame;
94 int bits_per_frame;
95 int bytes_per_frame;
96 int pBs;
97 channel_unit* pUnits;
98 //@}
99 //@{
100 /** joint-stereo related variables */
101 int matrix_coeff_index_prev[4];
102 int matrix_coeff_index_now[4];
103 int matrix_coeff_index_next[4];
104 int weighting_delay[6];
105 //@}
106 //@{
107 /** data buffers */
108 float outSamples[2048];
109 uint8_t* decoded_bytes_buffer;
110 float tempBuf[1070];
111 DECLARE_ALIGNED_16(float,mdct_tmp[512]);
112 //@}
113 //@{
114 /** extradata */
115 int atrac3version;
116 int delay;
117 int scrambled_stream;
118 int frame_factor;
119 //@}
120 } ATRAC3Context;
122 static DECLARE_ALIGNED_16(float,mdct_window[512]);
123 static float qmf_window[48];
124 static VLC spectral_coeff_tab[7];
125 static float SFTable[64];
126 static float gain_tab1[16];
127 static float gain_tab2[31];
128 static MDCTContext mdct_ctx;
129 static DSPContext dsp;
132 /* quadrature mirror synthesis filter */
135 * Quadrature mirror synthesis filter.
137 * @param inlo lower part of spectrum
138 * @param inhi higher part of spectrum
139 * @param nIn size of spectrum buffer
140 * @param pOut out buffer
141 * @param delayBuf delayBuf buffer
142 * @param temp temp buffer
146 static void iqmf (float *inlo, float *inhi, unsigned int nIn, float *pOut, float *delayBuf, float *temp)
148 int i, j;
149 float *p1, *p3;
151 memcpy(temp, delayBuf, 46*sizeof(float));
153 p3 = temp + 46;
155 /* loop1 */
156 for(i=0; i<nIn; i+=2){
157 p3[2*i+0] = inlo[i ] + inhi[i ];
158 p3[2*i+1] = inlo[i ] - inhi[i ];
159 p3[2*i+2] = inlo[i+1] + inhi[i+1];
160 p3[2*i+3] = inlo[i+1] - inhi[i+1];
163 /* loop2 */
164 p1 = temp;
165 for (j = nIn; j != 0; j--) {
166 float s1 = 0.0;
167 float s2 = 0.0;
169 for (i = 0; i < 48; i += 2) {
170 s1 += p1[i] * qmf_window[i];
171 s2 += p1[i+1] * qmf_window[i+1];
174 pOut[0] = s2;
175 pOut[1] = s1;
177 p1 += 2;
178 pOut += 2;
181 /* Update the delay buffer. */
182 memcpy(delayBuf, temp + nIn*2, 46*sizeof(float));
186 * Regular 512 points IMDCT without overlapping, with the exception of the swapping of odd bands
187 * caused by the reverse spectra of the QMF.
189 * @param pInput float input
190 * @param pOutput float output
191 * @param odd_band 1 if the band is an odd band
192 * @param mdct_tmp aligned temporary buffer for the mdct
195 static void IMLT(float *pInput, float *pOutput, int odd_band, float* mdct_tmp)
197 int i;
199 if (odd_band) {
201 * Reverse the odd bands before IMDCT, this is an effect of the QMF transform
202 * or it gives better compression to do it this way.
203 * FIXME: It should be possible to handle this in ff_imdct_calc
204 * for that to happen a modification of the prerotation step of
205 * all SIMD code and C code is needed.
206 * Or fix the functions before so they generate a pre reversed spectrum.
209 for (i=0; i<128; i++)
210 FFSWAP(float, pInput[i], pInput[255-i]);
213 mdct_ctx.fft.imdct_calc(&mdct_ctx,pOutput,pInput,mdct_tmp);
215 /* Perform windowing on the output. */
216 dsp.vector_fmul(pOutput,mdct_window,512);
222 * Atrac 3 indata descrambling, only used for data coming from the rm container
224 * @param in pointer to 8 bit array of indata
225 * @param bits amount of bits
226 * @param out pointer to 8 bit array of outdata
229 static int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){
230 int i, off;
231 uint32_t c;
232 const uint32_t* buf;
233 uint32_t* obuf = (uint32_t*) out;
235 off = (int)((long)inbuffer & 3);
236 buf = (const uint32_t*) (inbuffer - off);
237 c = be2me_32((0x537F6103 >> (off*8)) | (0x537F6103 << (32-(off*8))));
238 bytes += 3 + off;
239 for (i = 0; i < bytes/4; i++)
240 obuf[i] = c ^ buf[i];
242 if (off)
243 av_log(NULL,AV_LOG_DEBUG,"Offset of %d not handled, post sample on ffmpeg-dev.\n",off);
245 return off;
249 static void init_atrac3_transforms(ATRAC3Context *q) {
250 float enc_window[256];
251 float s;
252 int i;
254 /* Generate the mdct window, for details see
255 * http://wiki.multimedia.cx/index.php?title=RealAudio_atrc#Windows */
256 for (i=0 ; i<256; i++)
257 enc_window[i] = (sin(((i + 0.5) / 256.0 - 0.5) * M_PI) + 1.0) * 0.5;
259 if (!mdct_window[0])
260 for (i=0 ; i<256; i++) {
261 mdct_window[i] = enc_window[i]/(enc_window[i]*enc_window[i] + enc_window[255-i]*enc_window[255-i]);
262 mdct_window[511-i] = mdct_window[i];
265 /* Generate the QMF window. */
266 for (i=0 ; i<24; i++) {
267 s = qmf_48tap_half[i] * 2.0;
268 qmf_window[i] = s;
269 qmf_window[47 - i] = s;
272 /* Initialize the MDCT transform. */
273 ff_mdct_init(&mdct_ctx, 9, 1);
277 * Atrac3 uninit, free all allocated memory
280 static int atrac3_decode_close(AVCodecContext *avctx)
282 ATRAC3Context *q = avctx->priv_data;
284 av_free(q->pUnits);
285 av_free(q->decoded_bytes_buffer);
287 return 0;
291 / * Mantissa decoding
293 * @param gb the GetBit context
294 * @param selector what table is the output values coded with
295 * @param codingFlag constant length coding or variable length coding
296 * @param mantissas mantissa output table
297 * @param numCodes amount of values to get
300 static void readQuantSpectralCoeffs (GetBitContext *gb, int selector, int codingFlag, int* mantissas, int numCodes)
302 int numBits, cnt, code, huffSymb;
304 if (selector == 1)
305 numCodes /= 2;
307 if (codingFlag != 0) {
308 /* constant length coding (CLC) */
309 //FIXME we don't have any samples coded in CLC mode
310 numBits = CLCLengthTab[selector];
312 if (selector > 1) {
313 for (cnt = 0; cnt < numCodes; cnt++) {
314 if (numBits)
315 code = get_sbits(gb, numBits);
316 else
317 code = 0;
318 mantissas[cnt] = code;
320 } else {
321 for (cnt = 0; cnt < numCodes; cnt++) {
322 if (numBits)
323 code = get_bits(gb, numBits); //numBits is always 4 in this case
324 else
325 code = 0;
326 mantissas[cnt*2] = seTab_0[code >> 2];
327 mantissas[cnt*2+1] = seTab_0[code & 3];
330 } else {
331 /* variable length coding (VLC) */
332 if (selector != 1) {
333 for (cnt = 0; cnt < numCodes; cnt++) {
334 huffSymb = get_vlc2(gb, spectral_coeff_tab[selector-1].table, spectral_coeff_tab[selector-1].bits, 3);
335 huffSymb += 1;
336 code = huffSymb >> 1;
337 if (huffSymb & 1)
338 code = -code;
339 mantissas[cnt] = code;
341 } else {
342 for (cnt = 0; cnt < numCodes; cnt++) {
343 huffSymb = get_vlc2(gb, spectral_coeff_tab[selector-1].table, spectral_coeff_tab[selector-1].bits, 3);
344 mantissas[cnt*2] = decTable1[huffSymb*2];
345 mantissas[cnt*2+1] = decTable1[huffSymb*2+1];
352 * Restore the quantized band spectrum coefficients
354 * @param gb the GetBit context
355 * @param pOut decoded band spectrum
356 * @return outSubbands subband counter, fix for broken specification/files
359 static int decodeSpectrum (GetBitContext *gb, float *pOut)
361 int numSubbands, codingMode, cnt, first, last, subbWidth, *pIn;
362 int subband_vlc_index[32], SF_idxs[32];
363 int mantissas[128];
364 float SF;
366 numSubbands = get_bits(gb, 5); // number of coded subbands
367 codingMode = get_bits1(gb); // coding Mode: 0 - VLC/ 1-CLC
369 /* Get the VLC selector table for the subbands, 0 means not coded. */
370 for (cnt = 0; cnt <= numSubbands; cnt++)
371 subband_vlc_index[cnt] = get_bits(gb, 3);
373 /* Read the scale factor indexes from the stream. */
374 for (cnt = 0; cnt <= numSubbands; cnt++) {
375 if (subband_vlc_index[cnt] != 0)
376 SF_idxs[cnt] = get_bits(gb, 6);
379 for (cnt = 0; cnt <= numSubbands; cnt++) {
380 first = subbandTab[cnt];
381 last = subbandTab[cnt+1];
383 subbWidth = last - first;
385 if (subband_vlc_index[cnt] != 0) {
386 /* Decode spectral coefficients for this subband. */
387 /* TODO: This can be done faster is several blocks share the
388 * same VLC selector (subband_vlc_index) */
389 readQuantSpectralCoeffs (gb, subband_vlc_index[cnt], codingMode, mantissas, subbWidth);
391 /* Decode the scale factor for this subband. */
392 SF = SFTable[SF_idxs[cnt]] * iMaxQuant[subband_vlc_index[cnt]];
394 /* Inverse quantize the coefficients. */
395 for (pIn=mantissas ; first<last; first++, pIn++)
396 pOut[first] = *pIn * SF;
397 } else {
398 /* This subband was not coded, so zero the entire subband. */
399 memset(pOut+first, 0, subbWidth*sizeof(float));
403 /* Clear the subbands that were not coded. */
404 first = subbandTab[cnt];
405 memset(pOut+first, 0, (1024 - first) * sizeof(float));
406 return numSubbands;
410 * Restore the quantized tonal components
412 * @param gb the GetBit context
413 * @param pComponent tone component
414 * @param numBands amount of coded bands
417 static int decodeTonalComponents (GetBitContext *gb, tonal_component *pComponent, int numBands)
419 int i,j,k,cnt;
420 int components, coding_mode_selector, coding_mode, coded_values_per_component;
421 int sfIndx, coded_values, max_coded_values, quant_step_index, coded_components;
422 int band_flags[4], mantissa[8];
423 float *pCoef;
424 float scalefactor;
425 int component_count = 0;
427 components = get_bits(gb,5);
429 /* no tonal components */
430 if (components == 0)
431 return 0;
433 coding_mode_selector = get_bits(gb,2);
434 if (coding_mode_selector == 2)
435 return -1;
437 coding_mode = coding_mode_selector & 1;
439 for (i = 0; i < components; i++) {
440 for (cnt = 0; cnt <= numBands; cnt++)
441 band_flags[cnt] = get_bits1(gb);
443 coded_values_per_component = get_bits(gb,3);
445 quant_step_index = get_bits(gb,3);
446 if (quant_step_index <= 1)
447 return -1;
449 if (coding_mode_selector == 3)
450 coding_mode = get_bits1(gb);
452 for (j = 0; j < (numBands + 1) * 4; j++) {
453 if (band_flags[j >> 2] == 0)
454 continue;
456 coded_components = get_bits(gb,3);
458 for (k=0; k<coded_components; k++) {
459 sfIndx = get_bits(gb,6);
460 pComponent[component_count].pos = j * 64 + (get_bits(gb,6));
461 max_coded_values = 1024 - pComponent[component_count].pos;
462 coded_values = coded_values_per_component + 1;
463 coded_values = FFMIN(max_coded_values,coded_values);
465 scalefactor = SFTable[sfIndx] * iMaxQuant[quant_step_index];
467 readQuantSpectralCoeffs(gb, quant_step_index, coding_mode, mantissa, coded_values);
469 pComponent[component_count].numCoefs = coded_values;
471 /* inverse quant */
472 pCoef = pComponent[component_count].coef;
473 for (cnt = 0; cnt < coded_values; cnt++)
474 pCoef[cnt] = mantissa[cnt] * scalefactor;
476 component_count++;
481 return component_count;
485 * Decode gain parameters for the coded bands
487 * @param gb the GetBit context
488 * @param pGb the gainblock for the current band
489 * @param numBands amount of coded bands
492 static int decodeGainControl (GetBitContext *gb, gain_block *pGb, int numBands)
494 int i, cf, numData;
495 int *pLevel, *pLoc;
497 gain_info *pGain = pGb->gBlock;
499 for (i=0 ; i<=numBands; i++)
501 numData = get_bits(gb,3);
502 pGain[i].num_gain_data = numData;
503 pLevel = pGain[i].levcode;
504 pLoc = pGain[i].loccode;
506 for (cf = 0; cf < numData; cf++){
507 pLevel[cf]= get_bits(gb,4);
508 pLoc [cf]= get_bits(gb,5);
509 if(cf && pLoc[cf] <= pLoc[cf-1])
510 return -1;
514 /* Clear the unused blocks. */
515 for (; i<4 ; i++)
516 pGain[i].num_gain_data = 0;
518 return 0;
522 * Apply gain parameters and perform the MDCT overlapping part
524 * @param pIn input float buffer
525 * @param pPrev previous float buffer to perform overlap against
526 * @param pOut output float buffer
527 * @param pGain1 current band gain info
528 * @param pGain2 next band gain info
531 static void gainCompensateAndOverlap (float *pIn, float *pPrev, float *pOut, gain_info *pGain1, gain_info *pGain2)
533 /* gain compensation function */
534 float gain1, gain2, gain_inc;
535 int cnt, numdata, nsample, startLoc, endLoc;
538 if (pGain2->num_gain_data == 0)
539 gain1 = 1.0;
540 else
541 gain1 = gain_tab1[pGain2->levcode[0]];
543 if (pGain1->num_gain_data == 0) {
544 for (cnt = 0; cnt < 256; cnt++)
545 pOut[cnt] = pIn[cnt] * gain1 + pPrev[cnt];
546 } else {
547 numdata = pGain1->num_gain_data;
548 pGain1->loccode[numdata] = 32;
549 pGain1->levcode[numdata] = 4;
551 nsample = 0; // current sample = 0
553 for (cnt = 0; cnt < numdata; cnt++) {
554 startLoc = pGain1->loccode[cnt] * 8;
555 endLoc = startLoc + 8;
557 gain2 = gain_tab1[pGain1->levcode[cnt]];
558 gain_inc = gain_tab2[(pGain1->levcode[cnt+1] - pGain1->levcode[cnt])+15];
560 /* interpolate */
561 for (; nsample < startLoc; nsample++)
562 pOut[nsample] = (pIn[nsample] * gain1 + pPrev[nsample]) * gain2;
564 /* interpolation is done over eight samples */
565 for (; nsample < endLoc; nsample++) {
566 pOut[nsample] = (pIn[nsample] * gain1 + pPrev[nsample]) * gain2;
567 gain2 *= gain_inc;
571 for (; nsample < 256; nsample++)
572 pOut[nsample] = (pIn[nsample] * gain1) + pPrev[nsample];
575 /* Delay for the overlapping part. */
576 memcpy(pPrev, &pIn[256], 256*sizeof(float));
580 * Combine the tonal band spectrum and regular band spectrum
581 * Return position of the last tonal coefficient
583 * @param pSpectrum output spectrum buffer
584 * @param numComponents amount of tonal components
585 * @param pComponent tonal components for this band
588 static int addTonalComponents (float *pSpectrum, int numComponents, tonal_component *pComponent)
590 int cnt, i, lastPos = -1;
591 float *pIn, *pOut;
593 for (cnt = 0; cnt < numComponents; cnt++){
594 lastPos = FFMAX(pComponent[cnt].pos + pComponent[cnt].numCoefs, lastPos);
595 pIn = pComponent[cnt].coef;
596 pOut = &(pSpectrum[pComponent[cnt].pos]);
598 for (i=0 ; i<pComponent[cnt].numCoefs ; i++)
599 pOut[i] += pIn[i];
602 return lastPos;
606 #define INTERPOLATE(old,new,nsample) ((old) + (nsample)*0.125*((new)-(old)))
608 static void reverseMatrixing(float *su1, float *su2, int *pPrevCode, int *pCurrCode)
610 int i, band, nsample, s1, s2;
611 float c1, c2;
612 float mc1_l, mc1_r, mc2_l, mc2_r;
614 for (i=0,band = 0; band < 4*256; band+=256,i++) {
615 s1 = pPrevCode[i];
616 s2 = pCurrCode[i];
617 nsample = 0;
619 if (s1 != s2) {
620 /* Selector value changed, interpolation needed. */
621 mc1_l = matrixCoeffs[s1*2];
622 mc1_r = matrixCoeffs[s1*2+1];
623 mc2_l = matrixCoeffs[s2*2];
624 mc2_r = matrixCoeffs[s2*2+1];
626 /* Interpolation is done over the first eight samples. */
627 for(; nsample < 8; nsample++) {
628 c1 = su1[band+nsample];
629 c2 = su2[band+nsample];
630 c2 = c1 * INTERPOLATE(mc1_l,mc2_l,nsample) + c2 * INTERPOLATE(mc1_r,mc2_r,nsample);
631 su1[band+nsample] = c2;
632 su2[band+nsample] = c1 * 2.0 - c2;
636 /* Apply the matrix without interpolation. */
637 switch (s2) {
638 case 0: /* M/S decoding */
639 for (; nsample < 256; nsample++) {
640 c1 = su1[band+nsample];
641 c2 = su2[band+nsample];
642 su1[band+nsample] = c2 * 2.0;
643 su2[band+nsample] = (c1 - c2) * 2.0;
645 break;
647 case 1:
648 for (; nsample < 256; nsample++) {
649 c1 = su1[band+nsample];
650 c2 = su2[band+nsample];
651 su1[band+nsample] = (c1 + c2) * 2.0;
652 su2[band+nsample] = c2 * -2.0;
654 break;
655 case 2:
656 case 3:
657 for (; nsample < 256; nsample++) {
658 c1 = su1[band+nsample];
659 c2 = su2[band+nsample];
660 su1[band+nsample] = c1 + c2;
661 su2[band+nsample] = c1 - c2;
663 break;
664 default:
665 assert(0);
670 static void getChannelWeights (int indx, int flag, float ch[2]){
672 if (indx == 7) {
673 ch[0] = 1.0;
674 ch[1] = 1.0;
675 } else {
676 ch[0] = (float)(indx & 7) / 7.0;
677 ch[1] = sqrt(2 - ch[0]*ch[0]);
678 if(flag)
679 FFSWAP(float, ch[0], ch[1]);
683 static void channelWeighting (float *su1, float *su2, int *p3)
685 int band, nsample;
686 /* w[x][y] y=0 is left y=1 is right */
687 float w[2][2];
689 if (p3[1] != 7 || p3[3] != 7){
690 getChannelWeights(p3[1], p3[0], w[0]);
691 getChannelWeights(p3[3], p3[2], w[1]);
693 for(band = 1; band < 4; band++) {
694 /* scale the channels by the weights */
695 for(nsample = 0; nsample < 8; nsample++) {
696 su1[band*256+nsample] *= INTERPOLATE(w[0][0], w[0][1], nsample);
697 su2[band*256+nsample] *= INTERPOLATE(w[1][0], w[1][1], nsample);
700 for(; nsample < 256; nsample++) {
701 su1[band*256+nsample] *= w[1][0];
702 su2[band*256+nsample] *= w[1][1];
710 * Decode a Sound Unit
712 * @param gb the GetBit context
713 * @param pSnd the channel unit to be used
714 * @param pOut the decoded samples before IQMF in float representation
715 * @param channelNum channel number
716 * @param codingMode the coding mode (JOINT_STEREO or regular stereo/mono)
720 static int decodeChannelSoundUnit (ATRAC3Context *q, GetBitContext *gb, channel_unit *pSnd, float *pOut, int channelNum, int codingMode)
722 int band, result=0, numSubbands, lastTonal, numBands;
724 if (codingMode == JOINT_STEREO && channelNum == 1) {
725 if (get_bits(gb,2) != 3) {
726 av_log(NULL,AV_LOG_ERROR,"JS mono Sound Unit id != 3.\n");
727 return -1;
729 } else {
730 if (get_bits(gb,6) != 0x28) {
731 av_log(NULL,AV_LOG_ERROR,"Sound Unit id != 0x28.\n");
732 return -1;
736 /* number of coded QMF bands */
737 pSnd->bandsCoded = get_bits(gb,2);
739 result = decodeGainControl (gb, &(pSnd->gainBlock[pSnd->gcBlkSwitch]), pSnd->bandsCoded);
740 if (result) return result;
742 pSnd->numComponents = decodeTonalComponents (gb, pSnd->components, pSnd->bandsCoded);
743 if (pSnd->numComponents == -1) return -1;
745 numSubbands = decodeSpectrum (gb, pSnd->spectrum);
747 /* Merge the decoded spectrum and tonal components. */
748 lastTonal = addTonalComponents (pSnd->spectrum, pSnd->numComponents, pSnd->components);
751 /* calculate number of used MLT/QMF bands according to the amount of coded spectral lines */
752 numBands = (subbandTab[numSubbands] - 1) >> 8;
753 if (lastTonal >= 0)
754 numBands = FFMAX((lastTonal + 256) >> 8, numBands);
757 /* Reconstruct time domain samples. */
758 for (band=0; band<4; band++) {
759 /* Perform the IMDCT step without overlapping. */
760 if (band <= numBands) {
761 IMLT(&(pSnd->spectrum[band*256]), pSnd->IMDCT_buf, band&1,q->mdct_tmp);
762 } else
763 memset(pSnd->IMDCT_buf, 0, 512 * sizeof(float));
765 /* gain compensation and overlapping */
766 gainCompensateAndOverlap (pSnd->IMDCT_buf, &(pSnd->prevFrame[band*256]), &(pOut[band*256]),
767 &((pSnd->gainBlock[1 - (pSnd->gcBlkSwitch)]).gBlock[band]),
768 &((pSnd->gainBlock[pSnd->gcBlkSwitch]).gBlock[band]));
771 /* Swap the gain control buffers for the next frame. */
772 pSnd->gcBlkSwitch ^= 1;
774 return 0;
778 * Frame handling
780 * @param q Atrac3 private context
781 * @param databuf the input data
784 static int decodeFrame(ATRAC3Context *q, uint8_t* databuf)
786 int result, i;
787 float *p1, *p2, *p3, *p4;
788 uint8_t *ptr1, *ptr2;
790 if (q->codingMode == JOINT_STEREO) {
792 /* channel coupling mode */
793 /* decode Sound Unit 1 */
794 init_get_bits(&q->gb,databuf,q->bits_per_frame);
796 result = decodeChannelSoundUnit(q,&q->gb, q->pUnits, q->outSamples, 0, JOINT_STEREO);
797 if (result != 0)
798 return (result);
800 /* Framedata of the su2 in the joint-stereo mode is encoded in
801 * reverse byte order so we need to swap it first. */
802 ptr1 = databuf;
803 ptr2 = databuf+q->bytes_per_frame-1;
804 for (i = 0; i < (q->bytes_per_frame/2); i++, ptr1++, ptr2--) {
805 FFSWAP(uint8_t,*ptr1,*ptr2);
808 /* Skip the sync codes (0xF8). */
809 ptr1 = databuf;
810 for (i = 4; *ptr1 == 0xF8; i++, ptr1++) {
811 if (i >= q->bytes_per_frame)
812 return -1;
816 /* set the bitstream reader at the start of the second Sound Unit*/
817 init_get_bits(&q->gb,ptr1,q->bits_per_frame);
819 /* Fill the Weighting coeffs delay buffer */
820 memmove(q->weighting_delay,&(q->weighting_delay[2]),4*sizeof(int));
821 q->weighting_delay[4] = get_bits1(&q->gb);
822 q->weighting_delay[5] = get_bits(&q->gb,3);
824 for (i = 0; i < 4; i++) {
825 q->matrix_coeff_index_prev[i] = q->matrix_coeff_index_now[i];
826 q->matrix_coeff_index_now[i] = q->matrix_coeff_index_next[i];
827 q->matrix_coeff_index_next[i] = get_bits(&q->gb,2);
830 /* Decode Sound Unit 2. */
831 result = decodeChannelSoundUnit(q,&q->gb, &q->pUnits[1], &q->outSamples[1024], 1, JOINT_STEREO);
832 if (result != 0)
833 return (result);
835 /* Reconstruct the channel coefficients. */
836 reverseMatrixing(q->outSamples, &q->outSamples[1024], q->matrix_coeff_index_prev, q->matrix_coeff_index_now);
838 channelWeighting(q->outSamples, &q->outSamples[1024], q->weighting_delay);
840 } else {
841 /* normal stereo mode or mono */
842 /* Decode the channel sound units. */
843 for (i=0 ; i<q->channels ; i++) {
845 /* Set the bitstream reader at the start of a channel sound unit. */
846 init_get_bits(&q->gb, databuf+((i*q->bytes_per_frame)/q->channels), (q->bits_per_frame)/q->channels);
848 result = decodeChannelSoundUnit(q,&q->gb, &q->pUnits[i], &q->outSamples[i*1024], i, q->codingMode);
849 if (result != 0)
850 return (result);
854 /* Apply the iQMF synthesis filter. */
855 p1= q->outSamples;
856 for (i=0 ; i<q->channels ; i++) {
857 p2= p1+256;
858 p3= p2+256;
859 p4= p3+256;
860 iqmf (p1, p2, 256, p1, q->pUnits[i].delayBuf1, q->tempBuf);
861 iqmf (p4, p3, 256, p3, q->pUnits[i].delayBuf2, q->tempBuf);
862 iqmf (p1, p3, 512, p1, q->pUnits[i].delayBuf3, q->tempBuf);
863 p1 +=1024;
866 return 0;
871 * Atrac frame decoding
873 * @param avctx pointer to the AVCodecContext
876 static int atrac3_decode_frame(AVCodecContext *avctx,
877 void *data, int *data_size,
878 const uint8_t *buf, int buf_size) {
879 ATRAC3Context *q = avctx->priv_data;
880 int result = 0, i;
881 uint8_t* databuf;
882 int16_t* samples = data;
884 if (buf_size < avctx->block_align)
885 return buf_size;
887 /* Check if we need to descramble and what buffer to pass on. */
888 if (q->scrambled_stream) {
889 decode_bytes(buf, q->decoded_bytes_buffer, avctx->block_align);
890 databuf = q->decoded_bytes_buffer;
891 } else {
892 databuf = buf;
895 result = decodeFrame(q, databuf);
897 if (result != 0) {
898 av_log(NULL,AV_LOG_ERROR,"Frame decoding error!\n");
899 return -1;
902 if (q->channels == 1) {
903 /* mono */
904 for (i = 0; i<1024; i++)
905 samples[i] = av_clip_int16(round(q->outSamples[i]));
906 *data_size = 1024 * sizeof(int16_t);
907 } else {
908 /* stereo */
909 for (i = 0; i < 1024; i++) {
910 samples[i*2] = av_clip_int16(round(q->outSamples[i]));
911 samples[i*2+1] = av_clip_int16(round(q->outSamples[1024+i]));
913 *data_size = 2048 * sizeof(int16_t);
916 return avctx->block_align;
921 * Atrac3 initialization
923 * @param avctx pointer to the AVCodecContext
926 static int atrac3_decode_init(AVCodecContext *avctx)
928 int i;
929 const uint8_t *edata_ptr = avctx->extradata;
930 ATRAC3Context *q = avctx->priv_data;
932 /* Take data from the AVCodecContext (RM container). */
933 q->sample_rate = avctx->sample_rate;
934 q->channels = avctx->channels;
935 q->bit_rate = avctx->bit_rate;
936 q->bits_per_frame = avctx->block_align * 8;
937 q->bytes_per_frame = avctx->block_align;
939 /* Take care of the codec-specific extradata. */
940 if (avctx->extradata_size == 14) {
941 /* Parse the extradata, WAV format */
942 av_log(avctx,AV_LOG_DEBUG,"[0-1] %d\n",bytestream_get_le16(&edata_ptr)); //Unknown value always 1
943 q->samples_per_channel = bytestream_get_le32(&edata_ptr);
944 q->codingMode = bytestream_get_le16(&edata_ptr);
945 av_log(avctx,AV_LOG_DEBUG,"[8-9] %d\n",bytestream_get_le16(&edata_ptr)); //Dupe of coding mode
946 q->frame_factor = bytestream_get_le16(&edata_ptr); //Unknown always 1
947 av_log(avctx,AV_LOG_DEBUG,"[12-13] %d\n",bytestream_get_le16(&edata_ptr)); //Unknown always 0
949 /* setup */
950 q->samples_per_frame = 1024 * q->channels;
951 q->atrac3version = 4;
952 q->delay = 0x88E;
953 if (q->codingMode)
954 q->codingMode = JOINT_STEREO;
955 else
956 q->codingMode = STEREO;
958 q->scrambled_stream = 0;
960 if ((q->bytes_per_frame == 96*q->channels*q->frame_factor) || (q->bytes_per_frame == 152*q->channels*q->frame_factor) || (q->bytes_per_frame == 192*q->channels*q->frame_factor)) {
961 } else {
962 av_log(avctx,AV_LOG_ERROR,"Unknown frame/channel/frame_factor configuration %d/%d/%d\n", q->bytes_per_frame, q->channels, q->frame_factor);
963 return -1;
966 } else if (avctx->extradata_size == 10) {
967 /* Parse the extradata, RM format. */
968 q->atrac3version = bytestream_get_be32(&edata_ptr);
969 q->samples_per_frame = bytestream_get_be16(&edata_ptr);
970 q->delay = bytestream_get_be16(&edata_ptr);
971 q->codingMode = bytestream_get_be16(&edata_ptr);
973 q->samples_per_channel = q->samples_per_frame / q->channels;
974 q->scrambled_stream = 1;
976 } else {
977 av_log(NULL,AV_LOG_ERROR,"Unknown extradata size %d.\n",avctx->extradata_size);
979 /* Check the extradata. */
981 if (q->atrac3version != 4) {
982 av_log(avctx,AV_LOG_ERROR,"Version %d != 4.\n",q->atrac3version);
983 return -1;
986 if (q->samples_per_frame != 1024 && q->samples_per_frame != 2048) {
987 av_log(avctx,AV_LOG_ERROR,"Unknown amount of samples per frame %d.\n",q->samples_per_frame);
988 return -1;
991 if (q->delay != 0x88E) {
992 av_log(avctx,AV_LOG_ERROR,"Unknown amount of delay %x != 0x88E.\n",q->delay);
993 return -1;
996 if (q->codingMode == STEREO) {
997 av_log(avctx,AV_LOG_DEBUG,"Normal stereo detected.\n");
998 } else if (q->codingMode == JOINT_STEREO) {
999 av_log(avctx,AV_LOG_DEBUG,"Joint stereo detected.\n");
1000 } else {
1001 av_log(avctx,AV_LOG_ERROR,"Unknown channel coding mode %x!\n",q->codingMode);
1002 return -1;
1005 if (avctx->channels <= 0 || avctx->channels > 2 /*|| ((avctx->channels * 1024) != q->samples_per_frame)*/) {
1006 av_log(avctx,AV_LOG_ERROR,"Channel configuration error!\n");
1007 return -1;
1011 if(avctx->block_align >= UINT_MAX/2)
1012 return -1;
1014 /* Pad the data buffer with FF_INPUT_BUFFER_PADDING_SIZE,
1015 * this is for the bitstream reader. */
1016 if ((q->decoded_bytes_buffer = av_mallocz((avctx->block_align+(4-avctx->block_align%4) + FF_INPUT_BUFFER_PADDING_SIZE))) == NULL)
1017 return AVERROR(ENOMEM);
1020 /* Initialize the VLC tables. */
1021 for (i=0 ; i<7 ; i++) {
1022 init_vlc (&spectral_coeff_tab[i], 9, huff_tab_sizes[i],
1023 huff_bits[i], 1, 1,
1024 huff_codes[i], 1, 1, INIT_VLC_USE_STATIC);
1027 init_atrac3_transforms(q);
1029 /* Generate the scale factors. */
1030 for (i=0 ; i<64 ; i++)
1031 SFTable[i] = pow(2.0, (i - 15) / 3.0);
1033 /* Generate gain tables. */
1034 for (i=0 ; i<16 ; i++)
1035 gain_tab1[i] = powf (2.0, (4 - i));
1037 for (i=-15 ; i<16 ; i++)
1038 gain_tab2[i+15] = powf (2.0, i * -0.125);
1040 /* init the joint-stereo decoding data */
1041 q->weighting_delay[0] = 0;
1042 q->weighting_delay[1] = 7;
1043 q->weighting_delay[2] = 0;
1044 q->weighting_delay[3] = 7;
1045 q->weighting_delay[4] = 0;
1046 q->weighting_delay[5] = 7;
1048 for (i=0; i<4; i++) {
1049 q->matrix_coeff_index_prev[i] = 3;
1050 q->matrix_coeff_index_now[i] = 3;
1051 q->matrix_coeff_index_next[i] = 3;
1054 dsputil_init(&dsp, avctx);
1056 q->pUnits = av_mallocz(sizeof(channel_unit)*q->channels);
1057 if (!q->pUnits) {
1058 av_free(q->decoded_bytes_buffer);
1059 return AVERROR(ENOMEM);
1062 return 0;
1066 AVCodec atrac3_decoder =
1068 .name = "atrac3",
1069 .type = CODEC_TYPE_AUDIO,
1070 .id = CODEC_ID_ATRAC3,
1071 .priv_data_size = sizeof(ATRAC3Context),
1072 .init = atrac3_decode_init,
1073 .close = atrac3_decode_close,
1074 .decode = atrac3_decode_frame,
1075 .long_name = "Atrac 3 (Adaptive TRansform Acoustic Coding 3)",