Rename dec2() function
[FFMpeg-mirror/DVCPRO-HD.git] / libavcodec / dpcm.c
blobb8fecf7d54051183725251ec5118a0e6f2da4579
1 /*
2 * Assorted DPCM codecs
3 * Copyright (c) 2003 The ffmpeg Project.
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 /**
23 * @file: dpcm.c
24 * Assorted DPCM (differential pulse code modulation) audio codecs
25 * by Mike Melanson (melanson@pcisys.net)
26 * Xan DPCM decoder by Mario Brito (mbrito@student.dei.uc.pt)
27 * for more information on the specific data formats, visit:
28 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
29 * SOL DPCMs implemented by Konstantin Shishkov
31 * Note about using the Xan DPCM decoder: Xan DPCM is used in AVI files
32 * found in the Wing Commander IV computer game. These AVI files contain
33 * WAVEFORMAT headers which report the audio format as 0x01: raw PCM.
34 * Clearly incorrect. To detect Xan DPCM, you will probably have to
35 * special-case your AVI demuxer to use Xan DPCM if the file uses 'Xxan'
36 * (Xan video) for its video codec. Alternately, such AVI files also contain
37 * the fourcc 'Axan' in the 'auds' chunk of the AVI header.
40 #include "avcodec.h"
42 typedef struct DPCMContext {
43 int channels;
44 short roq_square_array[256];
45 long sample[2];//for SOL_DPCM
46 const int *sol_table;//for SOL_DPCM
47 } DPCMContext;
49 #define SE_16BIT(x) if (x & 0x8000) x -= 0x10000;
51 static int interplay_delta_table[] = {
52 0, 1, 2, 3, 4, 5, 6, 7,
53 8, 9, 10, 11, 12, 13, 14, 15,
54 16, 17, 18, 19, 20, 21, 22, 23,
55 24, 25, 26, 27, 28, 29, 30, 31,
56 32, 33, 34, 35, 36, 37, 38, 39,
57 40, 41, 42, 43, 47, 51, 56, 61,
58 66, 72, 79, 86, 94, 102, 112, 122,
59 133, 145, 158, 173, 189, 206, 225, 245,
60 267, 292, 318, 348, 379, 414, 452, 493,
61 538, 587, 640, 699, 763, 832, 908, 991,
62 1081, 1180, 1288, 1405, 1534, 1673, 1826, 1993,
63 2175, 2373, 2590, 2826, 3084, 3365, 3672, 4008,
64 4373, 4772, 5208, 5683, 6202, 6767, 7385, 8059,
65 8794, 9597, 10472, 11428, 12471, 13609, 14851, 16206,
66 17685, 19298, 21060, 22981, 25078, 27367, 29864, 32589,
67 -29973, -26728, -23186, -19322, -15105, -10503, -5481, -1,
68 1, 1, 5481, 10503, 15105, 19322, 23186, 26728,
69 29973, -32589, -29864, -27367, -25078, -22981, -21060, -19298,
70 -17685, -16206, -14851, -13609, -12471, -11428, -10472, -9597,
71 -8794, -8059, -7385, -6767, -6202, -5683, -5208, -4772,
72 -4373, -4008, -3672, -3365, -3084, -2826, -2590, -2373,
73 -2175, -1993, -1826, -1673, -1534, -1405, -1288, -1180,
74 -1081, -991, -908, -832, -763, -699, -640, -587,
75 -538, -493, -452, -414, -379, -348, -318, -292,
76 -267, -245, -225, -206, -189, -173, -158, -145,
77 -133, -122, -112, -102, -94, -86, -79, -72,
78 -66, -61, -56, -51, -47, -43, -42, -41,
79 -40, -39, -38, -37, -36, -35, -34, -33,
80 -32, -31, -30, -29, -28, -27, -26, -25,
81 -24, -23, -22, -21, -20, -19, -18, -17,
82 -16, -15, -14, -13, -12, -11, -10, -9,
83 -8, -7, -6, -5, -4, -3, -2, -1
87 static const int sol_table_old[16] =
88 { 0x0, 0x1, 0x2 , 0x3, 0x6, 0xA, 0xF, 0x15,
89 -0x15, -0xF, -0xA, -0x6, -0x3, -0x2, -0x1, 0x0};
91 static const int sol_table_new[16] =
92 { 0x0, 0x1, 0x2, 0x3, 0x6, 0xA, 0xF, 0x15,
93 0x0, -0x1, -0x2, -0x3, -0x6, -0xA, -0xF, -0x15};
95 static const int sol_table_16[128] = {
96 0x000, 0x008, 0x010, 0x020, 0x030, 0x040, 0x050, 0x060, 0x070, 0x080,
97 0x090, 0x0A0, 0x0B0, 0x0C0, 0x0D0, 0x0E0, 0x0F0, 0x100, 0x110, 0x120,
98 0x130, 0x140, 0x150, 0x160, 0x170, 0x180, 0x190, 0x1A0, 0x1B0, 0x1C0,
99 0x1D0, 0x1E0, 0x1F0, 0x200, 0x208, 0x210, 0x218, 0x220, 0x228, 0x230,
100 0x238, 0x240, 0x248, 0x250, 0x258, 0x260, 0x268, 0x270, 0x278, 0x280,
101 0x288, 0x290, 0x298, 0x2A0, 0x2A8, 0x2B0, 0x2B8, 0x2C0, 0x2C8, 0x2D0,
102 0x2D8, 0x2E0, 0x2E8, 0x2F0, 0x2F8, 0x300, 0x308, 0x310, 0x318, 0x320,
103 0x328, 0x330, 0x338, 0x340, 0x348, 0x350, 0x358, 0x360, 0x368, 0x370,
104 0x378, 0x380, 0x388, 0x390, 0x398, 0x3A0, 0x3A8, 0x3B0, 0x3B8, 0x3C0,
105 0x3C8, 0x3D0, 0x3D8, 0x3E0, 0x3E8, 0x3F0, 0x3F8, 0x400, 0x440, 0x480,
106 0x4C0, 0x500, 0x540, 0x580, 0x5C0, 0x600, 0x640, 0x680, 0x6C0, 0x700,
107 0x740, 0x780, 0x7C0, 0x800, 0x900, 0xA00, 0xB00, 0xC00, 0xD00, 0xE00,
108 0xF00, 0x1000, 0x1400, 0x1800, 0x1C00, 0x2000, 0x3000, 0x4000
113 static av_cold int dpcm_decode_init(AVCodecContext *avctx)
115 DPCMContext *s = avctx->priv_data;
116 int i;
117 short square;
119 s->channels = avctx->channels;
120 s->sample[0] = s->sample[1] = 0;
122 switch(avctx->codec->id) {
124 case CODEC_ID_ROQ_DPCM:
125 /* initialize square table */
126 for (i = 0; i < 128; i++) {
127 square = i * i;
128 s->roq_square_array[i] = square;
129 s->roq_square_array[i + 128] = -square;
131 break;
134 case CODEC_ID_SOL_DPCM:
135 switch(avctx->codec_tag){
136 case 1:
137 s->sol_table=sol_table_old;
138 s->sample[0] = s->sample[1] = 0x80;
139 break;
140 case 2:
141 s->sol_table=sol_table_new;
142 s->sample[0] = s->sample[1] = 0x80;
143 break;
144 case 3:
145 s->sol_table=sol_table_16;
146 break;
147 default:
148 av_log(avctx, AV_LOG_ERROR, "Unknown SOL subcodec\n");
149 return -1;
151 break;
153 default:
154 break;
157 return 0;
160 static int dpcm_decode_frame(AVCodecContext *avctx,
161 void *data, int *data_size,
162 const uint8_t *buf, int buf_size)
164 DPCMContext *s = avctx->priv_data;
165 int in, out = 0;
166 int predictor[2];
167 int channel_number = 0;
168 short *output_samples = data;
169 int shift[2];
170 unsigned char byte;
171 short diff;
173 if (!buf_size)
174 return 0;
176 // almost every DPCM variant expands one byte of data into two
177 if(*data_size/2 < buf_size)
178 return -1;
180 switch(avctx->codec->id) {
182 case CODEC_ID_ROQ_DPCM:
183 if (s->channels == 1)
184 predictor[0] = AV_RL16(&buf[6]);
185 else {
186 predictor[0] = buf[7] << 8;
187 predictor[1] = buf[6] << 8;
189 SE_16BIT(predictor[0]);
190 SE_16BIT(predictor[1]);
192 /* decode the samples */
193 for (in = 8, out = 0; in < buf_size; in++, out++) {
194 predictor[channel_number] += s->roq_square_array[buf[in]];
195 predictor[channel_number] = av_clip_int16(predictor[channel_number]);
196 output_samples[out] = predictor[channel_number];
198 /* toggle channel */
199 channel_number ^= s->channels - 1;
201 break;
203 case CODEC_ID_INTERPLAY_DPCM:
204 in = 6; /* skip over the stream mask and stream length */
205 predictor[0] = AV_RL16(&buf[in]);
206 in += 2;
207 SE_16BIT(predictor[0])
208 output_samples[out++] = predictor[0];
209 if (s->channels == 2) {
210 predictor[1] = AV_RL16(&buf[in]);
211 in += 2;
212 SE_16BIT(predictor[1])
213 output_samples[out++] = predictor[1];
216 while (in < buf_size) {
217 predictor[channel_number] += interplay_delta_table[buf[in++]];
218 predictor[channel_number] = av_clip_int16(predictor[channel_number]);
219 output_samples[out++] = predictor[channel_number];
221 /* toggle channel */
222 channel_number ^= s->channels - 1;
225 break;
227 case CODEC_ID_XAN_DPCM:
228 in = 0;
229 shift[0] = shift[1] = 4;
230 predictor[0] = AV_RL16(&buf[in]);
231 in += 2;
232 SE_16BIT(predictor[0]);
233 if (s->channels == 2) {
234 predictor[1] = AV_RL16(&buf[in]);
235 in += 2;
236 SE_16BIT(predictor[1]);
239 while (in < buf_size) {
240 byte = buf[in++];
241 diff = (byte & 0xFC) << 8;
242 if ((byte & 0x03) == 3)
243 shift[channel_number]++;
244 else
245 shift[channel_number] -= (2 * (byte & 3));
246 /* saturate the shifter to a lower limit of 0 */
247 if (shift[channel_number] < 0)
248 shift[channel_number] = 0;
250 diff >>= shift[channel_number];
251 predictor[channel_number] += diff;
253 predictor[channel_number] = av_clip_int16(predictor[channel_number]);
254 output_samples[out++] = predictor[channel_number];
256 /* toggle channel */
257 channel_number ^= s->channels - 1;
259 break;
260 case CODEC_ID_SOL_DPCM:
261 in = 0;
262 if (avctx->codec_tag != 3) {
263 if(*data_size/4 < buf_size)
264 return -1;
265 while (in < buf_size) {
266 int n1, n2;
267 n1 = (buf[in] >> 4) & 0xF;
268 n2 = buf[in++] & 0xF;
269 s->sample[0] += s->sol_table[n1];
270 if (s->sample[0] < 0) s->sample[0] = 0;
271 if (s->sample[0] > 255) s->sample[0] = 255;
272 output_samples[out++] = (s->sample[0] - 128) << 8;
273 s->sample[s->channels - 1] += s->sol_table[n2];
274 if (s->sample[s->channels - 1] < 0) s->sample[s->channels - 1] = 0;
275 if (s->sample[s->channels - 1] > 255) s->sample[s->channels - 1] = 255;
276 output_samples[out++] = (s->sample[s->channels - 1] - 128) << 8;
278 } else {
279 while (in < buf_size) {
280 int n;
281 n = buf[in++];
282 if (n & 0x80) s->sample[channel_number] -= s->sol_table[n & 0x7F];
283 else s->sample[channel_number] += s->sol_table[n & 0x7F];
284 s->sample[channel_number] = av_clip_int16(s->sample[channel_number]);
285 output_samples[out++] = s->sample[channel_number];
286 /* toggle channel */
287 channel_number ^= s->channels - 1;
290 break;
293 *data_size = out * sizeof(short);
294 return buf_size;
297 #define DPCM_DECODER(id, name, long_name_) \
298 AVCodec name ## _decoder = { \
299 #name, \
300 CODEC_TYPE_AUDIO, \
301 id, \
302 sizeof(DPCMContext), \
303 dpcm_decode_init, \
304 NULL, \
305 NULL, \
306 dpcm_decode_frame, \
307 .long_name = long_name_, \
310 DPCM_DECODER(CODEC_ID_INTERPLAY_DPCM, interplay_dpcm, "Interplay DPCM");
311 DPCM_DECODER(CODEC_ID_ROQ_DPCM, roq_dpcm, "id RoQ DPCM");
312 DPCM_DECODER(CODEC_ID_SOL_DPCM, sol_dpcm, "Sol DPCM");
313 DPCM_DECODER(CODEC_ID_XAN_DPCM, xan_dpcm, "Xan DPCM");