Rename dec2() function
[FFMpeg-mirror/DVCPRO-HD.git] / libavcodec / fdctref.c
blobc6a057b84655524d17ecddd114961ce0a3618d0b
1 /**
2 * @file fdctref.c
3 * forward discrete cosine transform, double precision.
4 */
6 /* Copyright (C) 1996, MPEG Software Simulation Group. All Rights Reserved. */
8 /*
9 * Disclaimer of Warranty
11 * These software programs are available to the user without any license fee or
12 * royalty on an "as is" basis. The MPEG Software Simulation Group disclaims
13 * any and all warranties, whether express, implied, or statuary, including any
14 * implied warranties or merchantability or of fitness for a particular
15 * purpose. In no event shall the copyright-holder be liable for any
16 * incidental, punitive, or consequential damages of any kind whatsoever
17 * arising from the use of these programs.
19 * This disclaimer of warranty extends to the user of these programs and user's
20 * customers, employees, agents, transferees, successors, and assigns.
22 * The MPEG Software Simulation Group does not represent or warrant that the
23 * programs furnished hereunder are free of infringement of any third-party
24 * patents.
26 * Commercial implementations of MPEG-1 and MPEG-2 video, including shareware,
27 * are subject to royalty fees to patent holders. Many of these patents are
28 * general enough such that they are unavoidable regardless of implementation
29 * design.
32 #include <math.h>
34 #ifndef PI
35 # ifdef M_PI
36 # define PI M_PI
37 # else
38 # define PI 3.14159265358979323846
39 # endif
40 #endif
42 /* global declarations */
43 void init_fdct (void);
44 void fdct (short *block);
46 /* private data */
47 static double c[8][8]; /* transform coefficients */
49 void init_fdct()
51 int i, j;
52 double s;
54 for (i=0; i<8; i++)
56 s = (i==0) ? sqrt(0.125) : 0.5;
58 for (j=0; j<8; j++)
59 c[i][j] = s * cos((PI/8.0)*i*(j+0.5));
63 void fdct(block)
64 short *block;
66 register int i, j;
67 double s;
68 double tmp[64];
70 for(i = 0; i < 8; i++)
71 for(j = 0; j < 8; j++)
73 s = 0.0;
76 * for(k = 0; k < 8; k++)
77 * s += c[j][k] * block[8 * i + k];
79 s += c[j][0] * block[8 * i + 0];
80 s += c[j][1] * block[8 * i + 1];
81 s += c[j][2] * block[8 * i + 2];
82 s += c[j][3] * block[8 * i + 3];
83 s += c[j][4] * block[8 * i + 4];
84 s += c[j][5] * block[8 * i + 5];
85 s += c[j][6] * block[8 * i + 6];
86 s += c[j][7] * block[8 * i + 7];
88 tmp[8 * i + j] = s;
91 for(j = 0; j < 8; j++)
92 for(i = 0; i < 8; i++)
94 s = 0.0;
97 * for(k = 0; k < 8; k++)
98 * s += c[i][k] * tmp[8 * k + j];
100 s += c[i][0] * tmp[8 * 0 + j];
101 s += c[i][1] * tmp[8 * 1 + j];
102 s += c[i][2] * tmp[8 * 2 + j];
103 s += c[i][3] * tmp[8 * 3 + j];
104 s += c[i][4] * tmp[8 * 4 + j];
105 s += c[i][5] * tmp[8 * 5 + j];
106 s += c[i][6] * tmp[8 * 6 + j];
107 s += c[i][7] * tmp[8 * 7 + j];
108 s*=8.0;
110 block[8 * i + j] = (short)floor(s + 0.499999);
112 * reason for adding 0.499999 instead of 0.5:
113 * s is quite often x.5 (at least for i and/or j = 0 or 4)
114 * and setting the rounding threshold exactly to 0.5 leads to an
115 * extremely high arithmetic implementation dependency of the result;
116 * s being between x.5 and x.500001 (which is now incorrectly rounded
117 * downwards instead of upwards) is assumed to occur less often
118 * (if at all)
123 /* perform IDCT matrix multiply for 8x8 coefficient block */
125 void idct(block)
126 short *block;
128 int i, j, k, v;
129 double partial_product;
130 double tmp[64];
132 for (i=0; i<8; i++)
133 for (j=0; j<8; j++)
135 partial_product = 0.0;
137 for (k=0; k<8; k++)
138 partial_product+= c[k][j]*block[8*i+k];
140 tmp[8*i+j] = partial_product;
143 /* Transpose operation is integrated into address mapping by switching
144 loop order of i and j */
146 for (j=0; j<8; j++)
147 for (i=0; i<8; i++)
149 partial_product = 0.0;
151 for (k=0; k<8; k++)
152 partial_product+= c[k][i]*tmp[8*k+j];
154 v = (int) floor(partial_product+0.5);
155 block[8*i+j] = v;