Rename dec2() function
[FFMpeg-mirror/DVCPRO-HD.git] / libavcodec / jfdctint.c
blobdbd7464ae909420e5ac2a4cea1b6847ed8327808
1 /*
2 * jfdctint.c
4 * This file is part of the Independent JPEG Group's software.
6 * The authors make NO WARRANTY or representation, either express or implied,
7 * with respect to this software, its quality, accuracy, merchantability, or
8 * fitness for a particular purpose. This software is provided "AS IS", and
9 * you, its user, assume the entire risk as to its quality and accuracy.
11 * This software is copyright (C) 1991-1996, Thomas G. Lane.
12 * All Rights Reserved except as specified below.
14 * Permission is hereby granted to use, copy, modify, and distribute this
15 * software (or portions thereof) for any purpose, without fee, subject to
16 * these conditions:
17 * (1) If any part of the source code for this software is distributed, then
18 * this README file must be included, with this copyright and no-warranty
19 * notice unaltered; and any additions, deletions, or changes to the original
20 * files must be clearly indicated in accompanying documentation.
21 * (2) If only executable code is distributed, then the accompanying
22 * documentation must state that "this software is based in part on the work
23 * of the Independent JPEG Group".
24 * (3) Permission for use of this software is granted only if the user accepts
25 * full responsibility for any undesirable consequences; the authors accept
26 * NO LIABILITY for damages of any kind.
28 * These conditions apply to any software derived from or based on the IJG
29 * code, not just to the unmodified library. If you use our work, you ought
30 * to acknowledge us.
32 * Permission is NOT granted for the use of any IJG author's name or company
33 * name in advertising or publicity relating to this software or products
34 * derived from it. This software may be referred to only as "the Independent
35 * JPEG Group's software".
37 * We specifically permit and encourage the use of this software as the basis
38 * of commercial products, provided that all warranty or liability claims are
39 * assumed by the product vendor.
41 * This file contains a slow-but-accurate integer implementation of the
42 * forward DCT (Discrete Cosine Transform).
44 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
45 * on each column. Direct algorithms are also available, but they are
46 * much more complex and seem not to be any faster when reduced to code.
48 * This implementation is based on an algorithm described in
49 * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
50 * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
51 * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
52 * The primary algorithm described there uses 11 multiplies and 29 adds.
53 * We use their alternate method with 12 multiplies and 32 adds.
54 * The advantage of this method is that no data path contains more than one
55 * multiplication; this allows a very simple and accurate implementation in
56 * scaled fixed-point arithmetic, with a minimal number of shifts.
59 /**
60 * @file jfdctint.c
61 * Independent JPEG Group's slow & accurate dct.
64 #include <stdlib.h>
65 #include <stdio.h>
66 #include "libavutil/common.h"
67 #include "dsputil.h"
69 #define SHIFT_TEMPS
70 #define DCTSIZE 8
71 #define BITS_IN_JSAMPLE 8
72 #define GLOBAL(x) x
73 #define RIGHT_SHIFT(x, n) ((x) >> (n))
74 #define MULTIPLY16C16(var,const) ((var)*(const))
76 #if 1 //def USE_ACCURATE_ROUNDING
77 #define DESCALE(x,n) RIGHT_SHIFT((x) + (1 << ((n) - 1)), n)
78 #else
79 #define DESCALE(x,n) RIGHT_SHIFT(x, n)
80 #endif
84 * This module is specialized to the case DCTSIZE = 8.
87 #if DCTSIZE != 8
88 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
89 #endif
93 * The poop on this scaling stuff is as follows:
95 * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
96 * larger than the true DCT outputs. The final outputs are therefore
97 * a factor of N larger than desired; since N=8 this can be cured by
98 * a simple right shift at the end of the algorithm. The advantage of
99 * this arrangement is that we save two multiplications per 1-D DCT,
100 * because the y0 and y4 outputs need not be divided by sqrt(N).
101 * In the IJG code, this factor of 8 is removed by the quantization step
102 * (in jcdctmgr.c), NOT in this module.
104 * We have to do addition and subtraction of the integer inputs, which
105 * is no problem, and multiplication by fractional constants, which is
106 * a problem to do in integer arithmetic. We multiply all the constants
107 * by CONST_SCALE and convert them to integer constants (thus retaining
108 * CONST_BITS bits of precision in the constants). After doing a
109 * multiplication we have to divide the product by CONST_SCALE, with proper
110 * rounding, to produce the correct output. This division can be done
111 * cheaply as a right shift of CONST_BITS bits. We postpone shifting
112 * as long as possible so that partial sums can be added together with
113 * full fractional precision.
115 * The outputs of the first pass are scaled up by PASS1_BITS bits so that
116 * they are represented to better-than-integral precision. These outputs
117 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
118 * with the recommended scaling. (For 12-bit sample data, the intermediate
119 * array is int32_t anyway.)
121 * To avoid overflow of the 32-bit intermediate results in pass 2, we must
122 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
123 * shows that the values given below are the most effective.
126 #if BITS_IN_JSAMPLE == 8
127 #define CONST_BITS 13
128 #define PASS1_BITS 4 /* set this to 2 if 16x16 multiplies are faster */
129 #else
130 #define CONST_BITS 13
131 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */
132 #endif
134 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
135 * causing a lot of useless floating-point operations at run time.
136 * To get around this we use the following pre-calculated constants.
137 * If you change CONST_BITS you may want to add appropriate values.
138 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
141 #if CONST_BITS == 13
142 #define FIX_0_298631336 ((int32_t) 2446) /* FIX(0.298631336) */
143 #define FIX_0_390180644 ((int32_t) 3196) /* FIX(0.390180644) */
144 #define FIX_0_541196100 ((int32_t) 4433) /* FIX(0.541196100) */
145 #define FIX_0_765366865 ((int32_t) 6270) /* FIX(0.765366865) */
146 #define FIX_0_899976223 ((int32_t) 7373) /* FIX(0.899976223) */
147 #define FIX_1_175875602 ((int32_t) 9633) /* FIX(1.175875602) */
148 #define FIX_1_501321110 ((int32_t) 12299) /* FIX(1.501321110) */
149 #define FIX_1_847759065 ((int32_t) 15137) /* FIX(1.847759065) */
150 #define FIX_1_961570560 ((int32_t) 16069) /* FIX(1.961570560) */
151 #define FIX_2_053119869 ((int32_t) 16819) /* FIX(2.053119869) */
152 #define FIX_2_562915447 ((int32_t) 20995) /* FIX(2.562915447) */
153 #define FIX_3_072711026 ((int32_t) 25172) /* FIX(3.072711026) */
154 #else
155 #define FIX_0_298631336 FIX(0.298631336)
156 #define FIX_0_390180644 FIX(0.390180644)
157 #define FIX_0_541196100 FIX(0.541196100)
158 #define FIX_0_765366865 FIX(0.765366865)
159 #define FIX_0_899976223 FIX(0.899976223)
160 #define FIX_1_175875602 FIX(1.175875602)
161 #define FIX_1_501321110 FIX(1.501321110)
162 #define FIX_1_847759065 FIX(1.847759065)
163 #define FIX_1_961570560 FIX(1.961570560)
164 #define FIX_2_053119869 FIX(2.053119869)
165 #define FIX_2_562915447 FIX(2.562915447)
166 #define FIX_3_072711026 FIX(3.072711026)
167 #endif
170 /* Multiply an int32_t variable by an int32_t constant to yield an int32_t result.
171 * For 8-bit samples with the recommended scaling, all the variable
172 * and constant values involved are no more than 16 bits wide, so a
173 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
174 * For 12-bit samples, a full 32-bit multiplication will be needed.
177 #if BITS_IN_JSAMPLE == 8 && CONST_BITS<=13 && PASS1_BITS<=2
178 #define MULTIPLY(var,const) MULTIPLY16C16(var,const)
179 #else
180 #define MULTIPLY(var,const) ((var) * (const))
181 #endif
184 static av_always_inline void row_fdct(DCTELEM * data){
185 int_fast32_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
186 int_fast32_t tmp10, tmp11, tmp12, tmp13;
187 int_fast32_t z1, z2, z3, z4, z5;
188 DCTELEM *dataptr;
189 int ctr;
190 SHIFT_TEMPS
192 /* Pass 1: process rows. */
193 /* Note results are scaled up by sqrt(8) compared to a true DCT; */
194 /* furthermore, we scale the results by 2**PASS1_BITS. */
196 dataptr = data;
197 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
198 tmp0 = dataptr[0] + dataptr[7];
199 tmp7 = dataptr[0] - dataptr[7];
200 tmp1 = dataptr[1] + dataptr[6];
201 tmp6 = dataptr[1] - dataptr[6];
202 tmp2 = dataptr[2] + dataptr[5];
203 tmp5 = dataptr[2] - dataptr[5];
204 tmp3 = dataptr[3] + dataptr[4];
205 tmp4 = dataptr[3] - dataptr[4];
207 /* Even part per LL&M figure 1 --- note that published figure is faulty;
208 * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
211 tmp10 = tmp0 + tmp3;
212 tmp13 = tmp0 - tmp3;
213 tmp11 = tmp1 + tmp2;
214 tmp12 = tmp1 - tmp2;
216 dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
217 dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
219 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
220 dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
221 CONST_BITS-PASS1_BITS);
222 dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
223 CONST_BITS-PASS1_BITS);
225 /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
226 * cK represents cos(K*pi/16).
227 * i0..i3 in the paper are tmp4..tmp7 here.
230 z1 = tmp4 + tmp7;
231 z2 = tmp5 + tmp6;
232 z3 = tmp4 + tmp6;
233 z4 = tmp5 + tmp7;
234 z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
236 tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
237 tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
238 tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
239 tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
240 z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
241 z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
242 z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
243 z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
245 z3 += z5;
246 z4 += z5;
248 dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
249 dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
250 dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
251 dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
253 dataptr += DCTSIZE; /* advance pointer to next row */
258 * Perform the forward DCT on one block of samples.
261 GLOBAL(void)
262 ff_jpeg_fdct_islow (DCTELEM * data)
264 int_fast32_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
265 int_fast32_t tmp10, tmp11, tmp12, tmp13;
266 int_fast32_t z1, z2, z3, z4, z5;
267 DCTELEM *dataptr;
268 int ctr;
269 SHIFT_TEMPS
271 row_fdct(data);
273 /* Pass 2: process columns.
274 * We remove the PASS1_BITS scaling, but leave the results scaled up
275 * by an overall factor of 8.
278 dataptr = data;
279 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
280 tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
281 tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
282 tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
283 tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
284 tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
285 tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
286 tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
287 tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
289 /* Even part per LL&M figure 1 --- note that published figure is faulty;
290 * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
293 tmp10 = tmp0 + tmp3;
294 tmp13 = tmp0 - tmp3;
295 tmp11 = tmp1 + tmp2;
296 tmp12 = tmp1 - tmp2;
298 dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
299 dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
301 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
302 dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
303 CONST_BITS+PASS1_BITS);
304 dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
305 CONST_BITS+PASS1_BITS);
307 /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
308 * cK represents cos(K*pi/16).
309 * i0..i3 in the paper are tmp4..tmp7 here.
312 z1 = tmp4 + tmp7;
313 z2 = tmp5 + tmp6;
314 z3 = tmp4 + tmp6;
315 z4 = tmp5 + tmp7;
316 z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
318 tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
319 tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
320 tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
321 tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
322 z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
323 z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
324 z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
325 z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
327 z3 += z5;
328 z4 += z5;
330 dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,
331 CONST_BITS+PASS1_BITS);
332 dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,
333 CONST_BITS+PASS1_BITS);
334 dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,
335 CONST_BITS+PASS1_BITS);
336 dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,
337 CONST_BITS+PASS1_BITS);
339 dataptr++; /* advance pointer to next column */
344 * The secret of DCT2-4-8 is really simple -- you do the usual 1-DCT
345 * on the rows and then, instead of doing even and odd, part on the colums
346 * you do even part two times.
348 GLOBAL(void)
349 ff_fdct248_islow (DCTELEM * data)
351 int_fast32_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
352 int_fast32_t tmp10, tmp11, tmp12, tmp13;
353 int_fast32_t z1;
354 DCTELEM *dataptr;
355 int ctr;
356 SHIFT_TEMPS
358 row_fdct(data);
360 /* Pass 2: process columns.
361 * We remove the PASS1_BITS scaling, but leave the results scaled up
362 * by an overall factor of 8.
365 dataptr = data;
366 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
367 tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*1];
368 tmp1 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3];
369 tmp2 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5];
370 tmp3 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7];
371 tmp4 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*1];
372 tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3];
373 tmp6 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5];
374 tmp7 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7];
376 tmp10 = tmp0 + tmp3;
377 tmp11 = tmp1 + tmp2;
378 tmp12 = tmp1 - tmp2;
379 tmp13 = tmp0 - tmp3;
381 dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
382 dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
384 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
385 dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
386 CONST_BITS+PASS1_BITS);
387 dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
388 CONST_BITS+PASS1_BITS);
390 tmp10 = tmp4 + tmp7;
391 tmp11 = tmp5 + tmp6;
392 tmp12 = tmp5 - tmp6;
393 tmp13 = tmp4 - tmp7;
395 dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
396 dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
398 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
399 dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
400 CONST_BITS+PASS1_BITS);
401 dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
402 CONST_BITS+PASS1_BITS);
404 dataptr++; /* advance pointer to next column */