Merge branch 'master' of http://repo.or.cz/r/FFMpeg-mirror
[FFMpeg-mirror/DVCPRO-HD.git] / libavcodec / ppc / mpegvideo_altivec.c
blob9832fb96a44890c8ebdd3363c51fdc81fff7fb93
1 /*
2 * Copyright (c) 2002 Dieter Shirley
4 * dct_unquantize_h263_altivec:
5 * Copyright (c) 2003 Romain Dolbeau <romain@dolbeau.org>
7 * This file is part of FFmpeg.
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 #include <stdlib.h>
25 #include <stdio.h>
26 #include "libavcodec/dsputil.h"
27 #include "libavcodec/mpegvideo.h"
29 #include "gcc_fixes.h"
31 #include "dsputil_ppc.h"
32 #include "util_altivec.h"
33 // Swaps two variables (used for altivec registers)
34 #define SWAP(a,b) \
35 do { \
36 __typeof__(a) swap_temp=a; \
37 a=b; \
38 b=swap_temp; \
39 } while (0)
41 // transposes a matrix consisting of four vectors with four elements each
42 #define TRANSPOSE4(a,b,c,d) \
43 do { \
44 __typeof__(a) _trans_ach = vec_mergeh(a, c); \
45 __typeof__(a) _trans_acl = vec_mergel(a, c); \
46 __typeof__(a) _trans_bdh = vec_mergeh(b, d); \
47 __typeof__(a) _trans_bdl = vec_mergel(b, d); \
49 a = vec_mergeh(_trans_ach, _trans_bdh); \
50 b = vec_mergel(_trans_ach, _trans_bdh); \
51 c = vec_mergeh(_trans_acl, _trans_bdl); \
52 d = vec_mergel(_trans_acl, _trans_bdl); \
53 } while (0)
56 // Loads a four-byte value (int or float) from the target address
57 // into every element in the target vector. Only works if the
58 // target address is four-byte aligned (which should be always).
59 #define LOAD4(vec, address) \
60 { \
61 __typeof__(vec)* _load_addr = (__typeof__(vec)*)(address); \
62 vector unsigned char _perm_vec = vec_lvsl(0,(address)); \
63 vec = vec_ld(0, _load_addr); \
64 vec = vec_perm(vec, vec, _perm_vec); \
65 vec = vec_splat(vec, 0); \
69 #define FOUROF(a) AVV(a,a,a,a)
71 int dct_quantize_altivec(MpegEncContext* s,
72 DCTELEM* data, int n,
73 int qscale, int* overflow)
75 int lastNonZero;
76 vector float row0, row1, row2, row3, row4, row5, row6, row7;
77 vector float alt0, alt1, alt2, alt3, alt4, alt5, alt6, alt7;
78 const vector float zero = (const vector float)FOUROF(0.);
79 // used after quantize step
80 int oldBaseValue = 0;
82 // Load the data into the row/alt vectors
84 vector signed short data0, data1, data2, data3, data4, data5, data6, data7;
86 data0 = vec_ld(0, data);
87 data1 = vec_ld(16, data);
88 data2 = vec_ld(32, data);
89 data3 = vec_ld(48, data);
90 data4 = vec_ld(64, data);
91 data5 = vec_ld(80, data);
92 data6 = vec_ld(96, data);
93 data7 = vec_ld(112, data);
95 // Transpose the data before we start
96 TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
98 // load the data into floating point vectors. We load
99 // the high half of each row into the main row vectors
100 // and the low half into the alt vectors.
101 row0 = vec_ctf(vec_unpackh(data0), 0);
102 alt0 = vec_ctf(vec_unpackl(data0), 0);
103 row1 = vec_ctf(vec_unpackh(data1), 0);
104 alt1 = vec_ctf(vec_unpackl(data1), 0);
105 row2 = vec_ctf(vec_unpackh(data2), 0);
106 alt2 = vec_ctf(vec_unpackl(data2), 0);
107 row3 = vec_ctf(vec_unpackh(data3), 0);
108 alt3 = vec_ctf(vec_unpackl(data3), 0);
109 row4 = vec_ctf(vec_unpackh(data4), 0);
110 alt4 = vec_ctf(vec_unpackl(data4), 0);
111 row5 = vec_ctf(vec_unpackh(data5), 0);
112 alt5 = vec_ctf(vec_unpackl(data5), 0);
113 row6 = vec_ctf(vec_unpackh(data6), 0);
114 alt6 = vec_ctf(vec_unpackl(data6), 0);
115 row7 = vec_ctf(vec_unpackh(data7), 0);
116 alt7 = vec_ctf(vec_unpackl(data7), 0);
119 // The following block could exist as a separate an altivec dct
120 // function. However, if we put it inline, the DCT data can remain
121 // in the vector local variables, as floats, which we'll use during the
122 // quantize step...
124 const vector float vec_0_298631336 = (vector float)FOUROF(0.298631336f);
125 const vector float vec_0_390180644 = (vector float)FOUROF(-0.390180644f);
126 const vector float vec_0_541196100 = (vector float)FOUROF(0.541196100f);
127 const vector float vec_0_765366865 = (vector float)FOUROF(0.765366865f);
128 const vector float vec_0_899976223 = (vector float)FOUROF(-0.899976223f);
129 const vector float vec_1_175875602 = (vector float)FOUROF(1.175875602f);
130 const vector float vec_1_501321110 = (vector float)FOUROF(1.501321110f);
131 const vector float vec_1_847759065 = (vector float)FOUROF(-1.847759065f);
132 const vector float vec_1_961570560 = (vector float)FOUROF(-1.961570560f);
133 const vector float vec_2_053119869 = (vector float)FOUROF(2.053119869f);
134 const vector float vec_2_562915447 = (vector float)FOUROF(-2.562915447f);
135 const vector float vec_3_072711026 = (vector float)FOUROF(3.072711026f);
138 int whichPass, whichHalf;
140 for(whichPass = 1; whichPass<=2; whichPass++)
142 for(whichHalf = 1; whichHalf<=2; whichHalf++)
144 vector float tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
145 vector float tmp10, tmp11, tmp12, tmp13;
146 vector float z1, z2, z3, z4, z5;
148 tmp0 = vec_add(row0, row7); // tmp0 = dataptr[0] + dataptr[7];
149 tmp7 = vec_sub(row0, row7); // tmp7 = dataptr[0] - dataptr[7];
150 tmp3 = vec_add(row3, row4); // tmp3 = dataptr[3] + dataptr[4];
151 tmp4 = vec_sub(row3, row4); // tmp4 = dataptr[3] - dataptr[4];
152 tmp1 = vec_add(row1, row6); // tmp1 = dataptr[1] + dataptr[6];
153 tmp6 = vec_sub(row1, row6); // tmp6 = dataptr[1] - dataptr[6];
154 tmp2 = vec_add(row2, row5); // tmp2 = dataptr[2] + dataptr[5];
155 tmp5 = vec_sub(row2, row5); // tmp5 = dataptr[2] - dataptr[5];
157 tmp10 = vec_add(tmp0, tmp3); // tmp10 = tmp0 + tmp3;
158 tmp13 = vec_sub(tmp0, tmp3); // tmp13 = tmp0 - tmp3;
159 tmp11 = vec_add(tmp1, tmp2); // tmp11 = tmp1 + tmp2;
160 tmp12 = vec_sub(tmp1, tmp2); // tmp12 = tmp1 - tmp2;
163 // dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
164 row0 = vec_add(tmp10, tmp11);
166 // dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
167 row4 = vec_sub(tmp10, tmp11);
170 // z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
171 z1 = vec_madd(vec_add(tmp12, tmp13), vec_0_541196100, (vector float)zero);
173 // dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
174 // CONST_BITS-PASS1_BITS);
175 row2 = vec_madd(tmp13, vec_0_765366865, z1);
177 // dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
178 // CONST_BITS-PASS1_BITS);
179 row6 = vec_madd(tmp12, vec_1_847759065, z1);
181 z1 = vec_add(tmp4, tmp7); // z1 = tmp4 + tmp7;
182 z2 = vec_add(tmp5, tmp6); // z2 = tmp5 + tmp6;
183 z3 = vec_add(tmp4, tmp6); // z3 = tmp4 + tmp6;
184 z4 = vec_add(tmp5, tmp7); // z4 = tmp5 + tmp7;
186 // z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
187 z5 = vec_madd(vec_add(z3, z4), vec_1_175875602, (vector float)zero);
189 // z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
190 z3 = vec_madd(z3, vec_1_961570560, z5);
192 // z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
193 z4 = vec_madd(z4, vec_0_390180644, z5);
195 // The following adds are rolled into the multiplies above
196 // z3 = vec_add(z3, z5); // z3 += z5;
197 // z4 = vec_add(z4, z5); // z4 += z5;
199 // z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
200 // Wow! It's actually more efficient to roll this multiply
201 // into the adds below, even thought the multiply gets done twice!
202 // z2 = vec_madd(z2, vec_2_562915447, (vector float)zero);
204 // z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
205 // Same with this one...
206 // z1 = vec_madd(z1, vec_0_899976223, (vector float)zero);
208 // tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
209 // dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
210 row7 = vec_madd(tmp4, vec_0_298631336, vec_madd(z1, vec_0_899976223, z3));
212 // tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
213 // dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
214 row5 = vec_madd(tmp5, vec_2_053119869, vec_madd(z2, vec_2_562915447, z4));
216 // tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
217 // dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
218 row3 = vec_madd(tmp6, vec_3_072711026, vec_madd(z2, vec_2_562915447, z3));
220 // tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
221 // dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
222 row1 = vec_madd(z1, vec_0_899976223, vec_madd(tmp7, vec_1_501321110, z4));
224 // Swap the row values with the alts. If this is the first half,
225 // this sets up the low values to be acted on in the second half.
226 // If this is the second half, it puts the high values back in
227 // the row values where they are expected to be when we're done.
228 SWAP(row0, alt0);
229 SWAP(row1, alt1);
230 SWAP(row2, alt2);
231 SWAP(row3, alt3);
232 SWAP(row4, alt4);
233 SWAP(row5, alt5);
234 SWAP(row6, alt6);
235 SWAP(row7, alt7);
238 if (whichPass == 1)
240 // transpose the data for the second pass
242 // First, block transpose the upper right with lower left.
243 SWAP(row4, alt0);
244 SWAP(row5, alt1);
245 SWAP(row6, alt2);
246 SWAP(row7, alt3);
248 // Now, transpose each block of four
249 TRANSPOSE4(row0, row1, row2, row3);
250 TRANSPOSE4(row4, row5, row6, row7);
251 TRANSPOSE4(alt0, alt1, alt2, alt3);
252 TRANSPOSE4(alt4, alt5, alt6, alt7);
257 // perform the quantize step, using the floating point data
258 // still in the row/alt registers
260 const int* biasAddr;
261 const vector signed int* qmat;
262 vector float bias, negBias;
264 if (s->mb_intra)
266 vector signed int baseVector;
268 // We must cache element 0 in the intra case
269 // (it needs special handling).
270 baseVector = vec_cts(vec_splat(row0, 0), 0);
271 vec_ste(baseVector, 0, &oldBaseValue);
273 qmat = (vector signed int*)s->q_intra_matrix[qscale];
274 biasAddr = &(s->intra_quant_bias);
276 else
278 qmat = (vector signed int*)s->q_inter_matrix[qscale];
279 biasAddr = &(s->inter_quant_bias);
282 // Load the bias vector (We add 0.5 to the bias so that we're
283 // rounding when we convert to int, instead of flooring.)
285 vector signed int biasInt;
286 const vector float negOneFloat = (vector float)FOUROF(-1.0f);
287 LOAD4(biasInt, biasAddr);
288 bias = vec_ctf(biasInt, QUANT_BIAS_SHIFT);
289 negBias = vec_madd(bias, negOneFloat, zero);
293 vector float q0, q1, q2, q3, q4, q5, q6, q7;
295 q0 = vec_ctf(qmat[0], QMAT_SHIFT);
296 q1 = vec_ctf(qmat[2], QMAT_SHIFT);
297 q2 = vec_ctf(qmat[4], QMAT_SHIFT);
298 q3 = vec_ctf(qmat[6], QMAT_SHIFT);
299 q4 = vec_ctf(qmat[8], QMAT_SHIFT);
300 q5 = vec_ctf(qmat[10], QMAT_SHIFT);
301 q6 = vec_ctf(qmat[12], QMAT_SHIFT);
302 q7 = vec_ctf(qmat[14], QMAT_SHIFT);
304 row0 = vec_sel(vec_madd(row0, q0, negBias), vec_madd(row0, q0, bias),
305 vec_cmpgt(row0, zero));
306 row1 = vec_sel(vec_madd(row1, q1, negBias), vec_madd(row1, q1, bias),
307 vec_cmpgt(row1, zero));
308 row2 = vec_sel(vec_madd(row2, q2, negBias), vec_madd(row2, q2, bias),
309 vec_cmpgt(row2, zero));
310 row3 = vec_sel(vec_madd(row3, q3, negBias), vec_madd(row3, q3, bias),
311 vec_cmpgt(row3, zero));
312 row4 = vec_sel(vec_madd(row4, q4, negBias), vec_madd(row4, q4, bias),
313 vec_cmpgt(row4, zero));
314 row5 = vec_sel(vec_madd(row5, q5, negBias), vec_madd(row5, q5, bias),
315 vec_cmpgt(row5, zero));
316 row6 = vec_sel(vec_madd(row6, q6, negBias), vec_madd(row6, q6, bias),
317 vec_cmpgt(row6, zero));
318 row7 = vec_sel(vec_madd(row7, q7, negBias), vec_madd(row7, q7, bias),
319 vec_cmpgt(row7, zero));
321 q0 = vec_ctf(qmat[1], QMAT_SHIFT);
322 q1 = vec_ctf(qmat[3], QMAT_SHIFT);
323 q2 = vec_ctf(qmat[5], QMAT_SHIFT);
324 q3 = vec_ctf(qmat[7], QMAT_SHIFT);
325 q4 = vec_ctf(qmat[9], QMAT_SHIFT);
326 q5 = vec_ctf(qmat[11], QMAT_SHIFT);
327 q6 = vec_ctf(qmat[13], QMAT_SHIFT);
328 q7 = vec_ctf(qmat[15], QMAT_SHIFT);
330 alt0 = vec_sel(vec_madd(alt0, q0, negBias), vec_madd(alt0, q0, bias),
331 vec_cmpgt(alt0, zero));
332 alt1 = vec_sel(vec_madd(alt1, q1, negBias), vec_madd(alt1, q1, bias),
333 vec_cmpgt(alt1, zero));
334 alt2 = vec_sel(vec_madd(alt2, q2, negBias), vec_madd(alt2, q2, bias),
335 vec_cmpgt(alt2, zero));
336 alt3 = vec_sel(vec_madd(alt3, q3, negBias), vec_madd(alt3, q3, bias),
337 vec_cmpgt(alt3, zero));
338 alt4 = vec_sel(vec_madd(alt4, q4, negBias), vec_madd(alt4, q4, bias),
339 vec_cmpgt(alt4, zero));
340 alt5 = vec_sel(vec_madd(alt5, q5, negBias), vec_madd(alt5, q5, bias),
341 vec_cmpgt(alt5, zero));
342 alt6 = vec_sel(vec_madd(alt6, q6, negBias), vec_madd(alt6, q6, bias),
343 vec_cmpgt(alt6, zero));
344 alt7 = vec_sel(vec_madd(alt7, q7, negBias), vec_madd(alt7, q7, bias),
345 vec_cmpgt(alt7, zero));
351 // Store the data back into the original block
353 vector signed short data0, data1, data2, data3, data4, data5, data6, data7;
355 data0 = vec_pack(vec_cts(row0, 0), vec_cts(alt0, 0));
356 data1 = vec_pack(vec_cts(row1, 0), vec_cts(alt1, 0));
357 data2 = vec_pack(vec_cts(row2, 0), vec_cts(alt2, 0));
358 data3 = vec_pack(vec_cts(row3, 0), vec_cts(alt3, 0));
359 data4 = vec_pack(vec_cts(row4, 0), vec_cts(alt4, 0));
360 data5 = vec_pack(vec_cts(row5, 0), vec_cts(alt5, 0));
361 data6 = vec_pack(vec_cts(row6, 0), vec_cts(alt6, 0));
362 data7 = vec_pack(vec_cts(row7, 0), vec_cts(alt7, 0));
365 // Clamp for overflow
366 vector signed int max_q_int, min_q_int;
367 vector signed short max_q, min_q;
369 LOAD4(max_q_int, &(s->max_qcoeff));
370 LOAD4(min_q_int, &(s->min_qcoeff));
372 max_q = vec_pack(max_q_int, max_q_int);
373 min_q = vec_pack(min_q_int, min_q_int);
375 data0 = vec_max(vec_min(data0, max_q), min_q);
376 data1 = vec_max(vec_min(data1, max_q), min_q);
377 data2 = vec_max(vec_min(data2, max_q), min_q);
378 data4 = vec_max(vec_min(data4, max_q), min_q);
379 data5 = vec_max(vec_min(data5, max_q), min_q);
380 data6 = vec_max(vec_min(data6, max_q), min_q);
381 data7 = vec_max(vec_min(data7, max_q), min_q);
385 vector bool char zero_01, zero_23, zero_45, zero_67;
386 vector signed char scanIndexes_01, scanIndexes_23, scanIndexes_45, scanIndexes_67;
387 vector signed char negOne = vec_splat_s8(-1);
388 vector signed char* scanPtr =
389 (vector signed char*)(s->intra_scantable.inverse);
390 signed char lastNonZeroChar;
392 // Determine the largest non-zero index.
393 zero_01 = vec_pack(vec_cmpeq(data0, (vector signed short)zero),
394 vec_cmpeq(data1, (vector signed short)zero));
395 zero_23 = vec_pack(vec_cmpeq(data2, (vector signed short)zero),
396 vec_cmpeq(data3, (vector signed short)zero));
397 zero_45 = vec_pack(vec_cmpeq(data4, (vector signed short)zero),
398 vec_cmpeq(data5, (vector signed short)zero));
399 zero_67 = vec_pack(vec_cmpeq(data6, (vector signed short)zero),
400 vec_cmpeq(data7, (vector signed short)zero));
402 // 64 biggest values
403 scanIndexes_01 = vec_sel(scanPtr[0], negOne, zero_01);
404 scanIndexes_23 = vec_sel(scanPtr[1], negOne, zero_23);
405 scanIndexes_45 = vec_sel(scanPtr[2], negOne, zero_45);
406 scanIndexes_67 = vec_sel(scanPtr[3], negOne, zero_67);
408 // 32 largest values
409 scanIndexes_01 = vec_max(scanIndexes_01, scanIndexes_23);
410 scanIndexes_45 = vec_max(scanIndexes_45, scanIndexes_67);
412 // 16 largest values
413 scanIndexes_01 = vec_max(scanIndexes_01, scanIndexes_45);
415 // 8 largest values
416 scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
417 vec_mergel(scanIndexes_01, negOne));
419 // 4 largest values
420 scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
421 vec_mergel(scanIndexes_01, negOne));
423 // 2 largest values
424 scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
425 vec_mergel(scanIndexes_01, negOne));
427 // largest value
428 scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
429 vec_mergel(scanIndexes_01, negOne));
431 scanIndexes_01 = vec_splat(scanIndexes_01, 0);
434 vec_ste(scanIndexes_01, 0, &lastNonZeroChar);
436 lastNonZero = lastNonZeroChar;
438 // While the data is still in vectors we check for the transpose IDCT permute
439 // and handle it using the vector unit if we can. This is the permute used
440 // by the altivec idct, so it is common when using the altivec dct.
442 if ((lastNonZero > 0) && (s->dsp.idct_permutation_type == FF_TRANSPOSE_IDCT_PERM))
444 TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
447 vec_st(data0, 0, data);
448 vec_st(data1, 16, data);
449 vec_st(data2, 32, data);
450 vec_st(data3, 48, data);
451 vec_st(data4, 64, data);
452 vec_st(data5, 80, data);
453 vec_st(data6, 96, data);
454 vec_st(data7, 112, data);
458 // special handling of block[0]
459 if (s->mb_intra)
461 if (!s->h263_aic)
463 if (n < 4)
464 oldBaseValue /= s->y_dc_scale;
465 else
466 oldBaseValue /= s->c_dc_scale;
469 // Divide by 8, rounding the result
470 data[0] = (oldBaseValue + 4) >> 3;
473 // We handled the transpose permutation above and we don't
474 // need to permute the "no" permutation case.
475 if ((lastNonZero > 0) &&
476 (s->dsp.idct_permutation_type != FF_TRANSPOSE_IDCT_PERM) &&
477 (s->dsp.idct_permutation_type != FF_NO_IDCT_PERM))
479 ff_block_permute(data, s->dsp.idct_permutation,
480 s->intra_scantable.scantable, lastNonZero);
483 return lastNonZero;
487 AltiVec version of dct_unquantize_h263
488 this code assumes `block' is 16 bytes-aligned
490 void dct_unquantize_h263_altivec(MpegEncContext *s,
491 DCTELEM *block, int n, int qscale)
493 POWERPC_PERF_DECLARE(altivec_dct_unquantize_h263_num, 1);
494 int i, level, qmul, qadd;
495 int nCoeffs;
497 assert(s->block_last_index[n]>=0);
499 POWERPC_PERF_START_COUNT(altivec_dct_unquantize_h263_num, 1);
501 qadd = (qscale - 1) | 1;
502 qmul = qscale << 1;
504 if (s->mb_intra) {
505 if (!s->h263_aic) {
506 if (n < 4)
507 block[0] = block[0] * s->y_dc_scale;
508 else
509 block[0] = block[0] * s->c_dc_scale;
510 }else
511 qadd = 0;
512 i = 1;
513 nCoeffs= 63; //does not always use zigzag table
514 } else {
515 i = 0;
516 nCoeffs= s->intra_scantable.raster_end[ s->block_last_index[n] ];
520 register const vector signed short vczero = (const vector signed short)vec_splat_s16(0);
521 DECLARE_ALIGNED_16(short, qmul8[]) =
523 qmul, qmul, qmul, qmul,
524 qmul, qmul, qmul, qmul
526 DECLARE_ALIGNED_16(short, qadd8[]) =
528 qadd, qadd, qadd, qadd,
529 qadd, qadd, qadd, qadd
531 DECLARE_ALIGNED_16(short, nqadd8[]) =
533 -qadd, -qadd, -qadd, -qadd,
534 -qadd, -qadd, -qadd, -qadd
536 register vector signed short blockv, qmulv, qaddv, nqaddv, temp1;
537 register vector bool short blockv_null, blockv_neg;
538 register short backup_0 = block[0];
539 register int j = 0;
541 qmulv = vec_ld(0, qmul8);
542 qaddv = vec_ld(0, qadd8);
543 nqaddv = vec_ld(0, nqadd8);
545 #if 0 // block *is* 16 bytes-aligned, it seems.
546 // first make sure block[j] is 16 bytes-aligned
547 for(j = 0; (j <= nCoeffs) && ((((unsigned long)block) + (j << 1)) & 0x0000000F) ; j++) {
548 level = block[j];
549 if (level) {
550 if (level < 0) {
551 level = level * qmul - qadd;
552 } else {
553 level = level * qmul + qadd;
555 block[j] = level;
558 #endif
560 // vectorize all the 16 bytes-aligned blocks
561 // of 8 elements
562 for(; (j + 7) <= nCoeffs ; j+=8)
564 blockv = vec_ld(j << 1, block);
565 blockv_neg = vec_cmplt(blockv, vczero);
566 blockv_null = vec_cmpeq(blockv, vczero);
567 // choose between +qadd or -qadd as the third operand
568 temp1 = vec_sel(qaddv, nqaddv, blockv_neg);
569 // multiply & add (block{i,i+7} * qmul [+-] qadd)
570 temp1 = vec_mladd(blockv, qmulv, temp1);
571 // put 0 where block[{i,i+7} used to have 0
572 blockv = vec_sel(temp1, blockv, blockv_null);
573 vec_st(blockv, j << 1, block);
576 // if nCoeffs isn't a multiple of 8, finish the job
577 // using good old scalar units.
578 // (we could do it using a truncated vector,
579 // but I'm not sure it's worth the hassle)
580 for(; j <= nCoeffs ; j++) {
581 level = block[j];
582 if (level) {
583 if (level < 0) {
584 level = level * qmul - qadd;
585 } else {
586 level = level * qmul + qadd;
588 block[j] = level;
592 if (i == 1)
593 { // cheat. this avoid special-casing the first iteration
594 block[0] = backup_0;
597 POWERPC_PERF_STOP_COUNT(altivec_dct_unquantize_h263_num, nCoeffs == 63);
601 extern void idct_put_altivec(uint8_t *dest, int line_size, int16_t *block);
602 extern void idct_add_altivec(uint8_t *dest, int line_size, int16_t *block);
604 void MPV_common_init_altivec(MpegEncContext *s)
606 if ((mm_flags & MM_ALTIVEC) == 0) return;
608 if (s->avctx->lowres==0)
610 if ((s->avctx->idct_algo == FF_IDCT_AUTO) ||
611 (s->avctx->idct_algo == FF_IDCT_ALTIVEC))
613 s->dsp.idct_put = idct_put_altivec;
614 s->dsp.idct_add = idct_add_altivec;
615 s->dsp.idct_permutation_type = FF_TRANSPOSE_IDCT_PERM;
619 // Test to make sure that the dct required alignments are met.
620 if ((((long)(s->q_intra_matrix) & 0x0f) != 0) ||
621 (((long)(s->q_inter_matrix) & 0x0f) != 0))
623 av_log(s->avctx, AV_LOG_INFO, "Internal Error: q-matrix blocks must be 16-byte aligned "
624 "to use AltiVec DCT. Reverting to non-AltiVec version.\n");
625 return;
628 if (((long)(s->intra_scantable.inverse) & 0x0f) != 0)
630 av_log(s->avctx, AV_LOG_INFO, "Internal Error: scan table blocks must be 16-byte aligned "
631 "to use AltiVec DCT. Reverting to non-AltiVec version.\n");
632 return;
636 if ((s->avctx->dct_algo == FF_DCT_AUTO) ||
637 (s->avctx->dct_algo == FF_DCT_ALTIVEC))
639 #if 0 /* seems to cause trouble under some circumstances */
640 s->dct_quantize = dct_quantize_altivec;
641 #endif
642 s->dct_unquantize_h263_intra = dct_unquantize_h263_altivec;
643 s->dct_unquantize_h263_inter = dct_unquantize_h263_altivec;