2 * COOK compatible decoder
3 * Copyright (c) 2003 Sascha Sommer
4 * Copyright (c) 2005 Benjamin Larsson
6 * This file is part of FFmpeg.
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
25 * Cook compatible decoder. Bastardization of the G.722.1 standard.
26 * This decoder handles RealNetworks, RealAudio G2 data.
27 * Cook is identified by the codec name cook in RM files.
29 * To use this decoder, a calling application must supply the extradata
30 * bytes provided from the RM container; 8+ bytes for mono streams and
31 * 16+ for stereo streams (maybe more).
33 * Codec technicalities (all this assume a buffer length of 1024):
34 * Cook works with several different techniques to achieve its compression.
35 * In the timedomain the buffer is divided into 8 pieces and quantized. If
36 * two neighboring pieces have different quantization index a smooth
37 * quantization curve is used to get a smooth overlap between the different
39 * To get to the transformdomain Cook uses a modulated lapped transform.
40 * The transform domain has 50 subbands with 20 elements each. This
41 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
49 #include "libavutil/random.h"
51 #include "bitstream.h"
53 #include "bytestream.h"
57 /* the different Cook versions */
58 #define MONO 0x1000001
59 #define STEREO 0x1000002
60 #define JOINT_STEREO 0x1000003
61 #define MC_COOK 0x2000000 //multichannel Cook, not supported
63 #define SUBBAND_SIZE 20
73 * The following 5 functions provide the lowlevel arithmetic on
74 * the internal audio buffers.
76 void (* scalar_dequant
)(struct cook
*q
, int index
, int quant_index
,
77 int* subband_coef_index
, int* subband_coef_sign
,
80 void (* decouple
) (struct cook
*q
,
84 float *mlt_buffer1
, float *mlt_buffer2
);
86 void (* imlt_window
) (struct cook
*q
, float *buffer1
,
87 cook_gains
*gains_ptr
, float *previous_buffer
);
89 void (* interpolate
) (struct cook
*q
, float* buffer
,
90 int gain_index
, int gain_index_next
);
92 void (* saturate_output
) (struct cook
*q
, int chan
, int16_t *out
);
100 int samples_per_channel
;
101 int samples_per_frame
;
103 int log2_numvector_size
;
104 int numvector_size
; //1 << log2_numvector_size;
105 int js_subband_start
;
108 int bits_per_subpacket
;
111 AVRandomState random_state
;
114 MDCTContext mdct_ctx
;
115 DECLARE_ALIGNED_16(FFTSample
, mdct_tmp
[1024]); /* temporary storage for imlt */
128 VLC envelope_quant_index
[13];
129 VLC sqvh
[7]; //scalar quantization
130 VLC ccpl
; //channel coupling
132 /* generatable tables and related variables */
133 int gain_size_factor
;
134 float gain_table
[23];
138 uint8_t* decoded_bytes_buffer
;
139 DECLARE_ALIGNED_16(float,mono_mdct_output
[2048]);
140 float mono_previous_buffer1
[1024];
141 float mono_previous_buffer2
[1024];
142 float decode_buffer_1
[1024];
143 float decode_buffer_2
[1024];
144 float decode_buffer_0
[1060]; /* static allocation for joint decode */
146 const float *cplscales
[5];
149 static float pow2tab
[127];
150 static float rootpow2tab
[127];
152 /* debug functions */
155 static void dump_float_table(float* table
, int size
, int delimiter
) {
157 av_log(NULL
,AV_LOG_ERROR
,"\n[%d]: ",i
);
158 for (i
=0 ; i
<size
; i
++) {
159 av_log(NULL
, AV_LOG_ERROR
, "%5.1f, ", table
[i
]);
160 if ((i
+1)%delimiter
== 0) av_log(NULL
,AV_LOG_ERROR
,"\n[%d]: ",i
+1);
164 static void dump_int_table(int* table
, int size
, int delimiter
) {
166 av_log(NULL
,AV_LOG_ERROR
,"\n[%d]: ",i
);
167 for (i
=0 ; i
<size
; i
++) {
168 av_log(NULL
, AV_LOG_ERROR
, "%d, ", table
[i
]);
169 if ((i
+1)%delimiter
== 0) av_log(NULL
,AV_LOG_ERROR
,"\n[%d]: ",i
+1);
173 static void dump_short_table(short* table
, int size
, int delimiter
) {
175 av_log(NULL
,AV_LOG_ERROR
,"\n[%d]: ",i
);
176 for (i
=0 ; i
<size
; i
++) {
177 av_log(NULL
, AV_LOG_ERROR
, "%d, ", table
[i
]);
178 if ((i
+1)%delimiter
== 0) av_log(NULL
,AV_LOG_ERROR
,"\n[%d]: ",i
+1);
184 /*************** init functions ***************/
186 /* table generator */
187 static void init_pow2table(void){
189 for (i
=-63 ; i
<64 ; i
++){
190 pow2tab
[63+i
]= pow(2, i
);
191 rootpow2tab
[63+i
]=sqrt(pow(2, i
));
195 /* table generator */
196 static void init_gain_table(COOKContext
*q
) {
198 q
->gain_size_factor
= q
->samples_per_channel
/8;
199 for (i
=0 ; i
<23 ; i
++) {
200 q
->gain_table
[i
] = pow(pow2tab
[i
+52] ,
201 (1.0/(double)q
->gain_size_factor
));
206 static int init_cook_vlc_tables(COOKContext
*q
) {
210 for (i
=0 ; i
<13 ; i
++) {
211 result
|= init_vlc (&q
->envelope_quant_index
[i
], 9, 24,
212 envelope_quant_index_huffbits
[i
], 1, 1,
213 envelope_quant_index_huffcodes
[i
], 2, 2, 0);
215 av_log(NULL
,AV_LOG_DEBUG
,"sqvh VLC init\n");
216 for (i
=0 ; i
<7 ; i
++) {
217 result
|= init_vlc (&q
->sqvh
[i
], vhvlcsize_tab
[i
], vhsize_tab
[i
],
218 cvh_huffbits
[i
], 1, 1,
219 cvh_huffcodes
[i
], 2, 2, 0);
222 if (q
->nb_channels
==2 && q
->joint_stereo
==1){
223 result
|= init_vlc (&q
->ccpl
, 6, (1<<q
->js_vlc_bits
)-1,
224 ccpl_huffbits
[q
->js_vlc_bits
-2], 1, 1,
225 ccpl_huffcodes
[q
->js_vlc_bits
-2], 2, 2, 0);
226 av_log(NULL
,AV_LOG_DEBUG
,"Joint-stereo VLC used.\n");
229 av_log(NULL
,AV_LOG_DEBUG
,"VLC tables initialized.\n");
233 static int init_cook_mlt(COOKContext
*q
) {
235 int mlt_size
= q
->samples_per_channel
;
237 if ((q
->mlt_window
= av_malloc(sizeof(float)*mlt_size
)) == 0)
240 /* Initialize the MLT window: simple sine window. */
241 ff_sine_window_init(q
->mlt_window
, mlt_size
);
242 for(j
=0 ; j
<mlt_size
; j
++)
243 q
->mlt_window
[j
] *= sqrt(2.0 / q
->samples_per_channel
);
245 /* Initialize the MDCT. */
246 if (ff_mdct_init(&q
->mdct_ctx
, av_log2(mlt_size
)+1, 1)) {
247 av_free(q
->mlt_window
);
250 av_log(NULL
,AV_LOG_DEBUG
,"MDCT initialized, order = %d.\n",
251 av_log2(mlt_size
)+1);
256 static const float *maybe_reformat_buffer32 (COOKContext
*q
, const float *ptr
, int n
)
262 static void init_cplscales_table (COOKContext
*q
) {
265 q
->cplscales
[i
] = maybe_reformat_buffer32 (q
, cplscales
[i
], (1<<(i
+2))-1);
268 /*************** init functions end ***********/
271 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
272 * Why? No idea, some checksum/error detection method maybe.
274 * Out buffer size: extra bytes are needed to cope with
275 * padding/misalignment.
276 * Subpackets passed to the decoder can contain two, consecutive
277 * half-subpackets, of identical but arbitrary size.
278 * 1234 1234 1234 1234 extraA extraB
279 * Case 1: AAAA BBBB 0 0
280 * Case 2: AAAA ABBB BB-- 3 3
281 * Case 3: AAAA AABB BBBB 2 2
282 * Case 4: AAAA AAAB BBBB BB-- 1 5
284 * Nice way to waste CPU cycles.
286 * @param inbuffer pointer to byte array of indata
287 * @param out pointer to byte array of outdata
288 * @param bytes number of bytes
290 #define DECODE_BYTES_PAD1(bytes) (3 - ((bytes)+3) % 4)
291 #define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
293 static inline int decode_bytes(const uint8_t* inbuffer
, uint8_t* out
, int bytes
){
297 uint32_t* obuf
= (uint32_t*) out
;
298 /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
299 * I'm too lazy though, should be something like
300 * for(i=0 ; i<bitamount/64 ; i++)
301 * (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]);
302 * Buffer alignment needs to be checked. */
304 off
= (int)((long)inbuffer
& 3);
305 buf
= (const uint32_t*) (inbuffer
- off
);
306 c
= be2me_32((0x37c511f2 >> (off
*8)) | (0x37c511f2 << (32-(off
*8))));
308 for (i
= 0; i
< bytes
/4; i
++)
309 obuf
[i
] = c
^ buf
[i
];
318 static int cook_decode_close(AVCodecContext
*avctx
)
321 COOKContext
*q
= avctx
->priv_data
;
322 av_log(avctx
,AV_LOG_DEBUG
, "Deallocating memory.\n");
324 /* Free allocated memory buffers. */
325 av_free(q
->mlt_window
);
326 av_free(q
->decoded_bytes_buffer
);
328 /* Free the transform. */
329 ff_mdct_end(&q
->mdct_ctx
);
331 /* Free the VLC tables. */
332 for (i
=0 ; i
<13 ; i
++) {
333 free_vlc(&q
->envelope_quant_index
[i
]);
335 for (i
=0 ; i
<7 ; i
++) {
336 free_vlc(&q
->sqvh
[i
]);
338 if(q
->nb_channels
==2 && q
->joint_stereo
==1 ){
342 av_log(NULL
,AV_LOG_DEBUG
,"Memory deallocated.\n");
348 * Fill the gain array for the timedomain quantization.
350 * @param q pointer to the COOKContext
351 * @param gaininfo[9] array of gain indexes
354 static void decode_gain_info(GetBitContext
*gb
, int *gaininfo
)
358 while (get_bits1(gb
)) {}
359 n
= get_bits_count(gb
) - 1; //amount of elements*2 to update
363 int index
= get_bits(gb
, 3);
364 int gain
= get_bits1(gb
) ? get_bits(gb
, 4) - 7 : -1;
366 while (i
<= index
) gaininfo
[i
++] = gain
;
368 while (i
<= 8) gaininfo
[i
++] = 0;
372 * Create the quant index table needed for the envelope.
374 * @param q pointer to the COOKContext
375 * @param quant_index_table pointer to the array
378 static void decode_envelope(COOKContext
*q
, int* quant_index_table
) {
381 quant_index_table
[0]= get_bits(&q
->gb
,6) - 6; //This is used later in categorize
383 for (i
=1 ; i
< q
->total_subbands
; i
++){
385 if (i
>= q
->js_subband_start
* 2) {
386 vlc_index
-=q
->js_subband_start
;
389 if(vlc_index
< 1) vlc_index
= 1;
391 if (vlc_index
>13) vlc_index
= 13; //the VLC tables >13 are identical to No. 13
393 j
= get_vlc2(&q
->gb
, q
->envelope_quant_index
[vlc_index
-1].table
,
394 q
->envelope_quant_index
[vlc_index
-1].bits
,2);
395 quant_index_table
[i
] = quant_index_table
[i
-1] + j
- 12; //differential encoding
400 * Calculate the category and category_index vector.
402 * @param q pointer to the COOKContext
403 * @param quant_index_table pointer to the array
404 * @param category pointer to the category array
405 * @param category_index pointer to the category_index array
408 static void categorize(COOKContext
*q
, int* quant_index_table
,
409 int* category
, int* category_index
){
410 int exp_idx
, bias
, tmpbias1
, tmpbias2
, bits_left
, num_bits
, index
, v
, i
, j
;
414 int tmp_categorize_array
[128*2];
415 int tmp_categorize_array1_idx
=q
->numvector_size
;
416 int tmp_categorize_array2_idx
=q
->numvector_size
;
418 bits_left
= q
->bits_per_subpacket
- get_bits_count(&q
->gb
);
420 if(bits_left
> q
->samples_per_channel
) {
421 bits_left
= q
->samples_per_channel
+
422 ((bits_left
- q
->samples_per_channel
)*5)/8;
423 //av_log(NULL, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
426 memset(&exp_index1
,0,102*sizeof(int));
427 memset(&exp_index2
,0,102*sizeof(int));
428 memset(&tmp_categorize_array
,0,128*2*sizeof(int));
433 for (i
=32 ; i
>0 ; i
=i
/2){
436 for (j
=q
->total_subbands
; j
>0 ; j
--){
437 exp_idx
= av_clip((i
- quant_index_table
[index
] + bias
) / 2, 0, 7);
439 num_bits
+=expbits_tab
[exp_idx
];
441 if(num_bits
>= bits_left
- 32){
446 /* Calculate total number of bits. */
448 for (i
=0 ; i
<q
->total_subbands
; i
++) {
449 exp_idx
= av_clip((bias
- quant_index_table
[i
]) / 2, 0, 7);
450 num_bits
+= expbits_tab
[exp_idx
];
451 exp_index1
[i
] = exp_idx
;
452 exp_index2
[i
] = exp_idx
;
454 tmpbias1
= tmpbias2
= num_bits
;
456 for (j
= 1 ; j
< q
->numvector_size
; j
++) {
457 if (tmpbias1
+ tmpbias2
> 2*bits_left
) { /* ---> */
460 for (i
=0 ; i
<q
->total_subbands
; i
++){
461 if (exp_index1
[i
] < 7) {
462 v
= (-2*exp_index1
[i
]) - quant_index_table
[i
] + bias
;
470 tmp_categorize_array
[tmp_categorize_array1_idx
++] = index
;
471 tmpbias1
-= expbits_tab
[exp_index1
[index
]] -
472 expbits_tab
[exp_index1
[index
]+1];
477 for (i
=0 ; i
<q
->total_subbands
; i
++){
478 if(exp_index2
[i
] > 0){
479 v
= (-2*exp_index2
[i
])-quant_index_table
[i
]+bias
;
486 if(index
== -1)break;
487 tmp_categorize_array
[--tmp_categorize_array2_idx
] = index
;
488 tmpbias2
-= expbits_tab
[exp_index2
[index
]] -
489 expbits_tab
[exp_index2
[index
]-1];
494 for(i
=0 ; i
<q
->total_subbands
; i
++)
495 category
[i
] = exp_index2
[i
];
497 for(i
=0 ; i
<q
->numvector_size
-1 ; i
++)
498 category_index
[i
] = tmp_categorize_array
[tmp_categorize_array2_idx
++];
504 * Expand the category vector.
506 * @param q pointer to the COOKContext
507 * @param category pointer to the category array
508 * @param category_index pointer to the category_index array
511 static inline void expand_category(COOKContext
*q
, int* category
,
512 int* category_index
){
514 for(i
=0 ; i
<q
->num_vectors
; i
++){
515 ++category
[category_index
[i
]];
520 * The real requantization of the mltcoefs
522 * @param q pointer to the COOKContext
524 * @param quant_index quantisation index
525 * @param subband_coef_index array of indexes to quant_centroid_tab
526 * @param subband_coef_sign signs of coefficients
527 * @param mlt_p pointer into the mlt buffer
530 static void scalar_dequant_float(COOKContext
*q
, int index
, int quant_index
,
531 int* subband_coef_index
, int* subband_coef_sign
,
536 for(i
=0 ; i
<SUBBAND_SIZE
; i
++) {
537 if (subband_coef_index
[i
]) {
538 f1
= quant_centroid_tab
[index
][subband_coef_index
[i
]];
539 if (subband_coef_sign
[i
]) f1
= -f1
;
541 /* noise coding if subband_coef_index[i] == 0 */
542 f1
= dither_tab
[index
];
543 if (av_random(&q
->random_state
) < 0x80000000) f1
= -f1
;
545 mlt_p
[i
] = f1
* rootpow2tab
[quant_index
+63];
549 * Unpack the subband_coef_index and subband_coef_sign vectors.
551 * @param q pointer to the COOKContext
552 * @param category pointer to the category array
553 * @param subband_coef_index array of indexes to quant_centroid_tab
554 * @param subband_coef_sign signs of coefficients
557 static int unpack_SQVH(COOKContext
*q
, int category
, int* subband_coef_index
,
558 int* subband_coef_sign
) {
560 int vlc
, vd
,tmp
, result
;
562 vd
= vd_tab
[category
];
564 for(i
=0 ; i
<vpr_tab
[category
] ; i
++){
565 vlc
= get_vlc2(&q
->gb
, q
->sqvh
[category
].table
, q
->sqvh
[category
].bits
, 3);
566 if (q
->bits_per_subpacket
< get_bits_count(&q
->gb
)){
570 for(j
=vd
-1 ; j
>=0 ; j
--){
571 tmp
= (vlc
* invradix_tab
[category
])/0x100000;
572 subband_coef_index
[vd
*i
+j
] = vlc
- tmp
* (kmax_tab
[category
]+1);
575 for(j
=0 ; j
<vd
; j
++){
576 if (subband_coef_index
[i
*vd
+ j
]) {
577 if(get_bits_count(&q
->gb
) < q
->bits_per_subpacket
){
578 subband_coef_sign
[i
*vd
+j
] = get_bits1(&q
->gb
);
581 subband_coef_sign
[i
*vd
+j
]=0;
584 subband_coef_sign
[i
*vd
+j
]=0;
593 * Fill the mlt_buffer with mlt coefficients.
595 * @param q pointer to the COOKContext
596 * @param category pointer to the category array
597 * @param quant_index_table pointer to the array
598 * @param mlt_buffer pointer to mlt coefficients
602 static void decode_vectors(COOKContext
* q
, int* category
,
603 int *quant_index_table
, float* mlt_buffer
){
604 /* A zero in this table means that the subband coefficient is
605 random noise coded. */
606 int subband_coef_index
[SUBBAND_SIZE
];
607 /* A zero in this table means that the subband coefficient is a
608 positive multiplicator. */
609 int subband_coef_sign
[SUBBAND_SIZE
];
613 for(band
=0 ; band
<q
->total_subbands
; band
++){
614 index
= category
[band
];
615 if(category
[band
] < 7){
616 if(unpack_SQVH(q
, category
[band
], subband_coef_index
, subband_coef_sign
)){
618 for(j
=0 ; j
<q
->total_subbands
; j
++) category
[band
+j
]=7;
622 memset(subband_coef_index
, 0, sizeof(subband_coef_index
));
623 memset(subband_coef_sign
, 0, sizeof(subband_coef_sign
));
625 q
->scalar_dequant(q
, index
, quant_index_table
[band
],
626 subband_coef_index
, subband_coef_sign
,
627 &mlt_buffer
[band
* SUBBAND_SIZE
]);
630 if(q
->total_subbands
*SUBBAND_SIZE
>= q
->samples_per_channel
){
632 } /* FIXME: should this be removed, or moved into loop above? */
637 * function for decoding mono data
639 * @param q pointer to the COOKContext
640 * @param mlt_buffer pointer to mlt coefficients
643 static void mono_decode(COOKContext
*q
, float* mlt_buffer
) {
645 int category_index
[128];
646 int quant_index_table
[102];
649 memset(&category
, 0, 128*sizeof(int));
650 memset(&category_index
, 0, 128*sizeof(int));
652 decode_envelope(q
, quant_index_table
);
653 q
->num_vectors
= get_bits(&q
->gb
,q
->log2_numvector_size
);
654 categorize(q
, quant_index_table
, category
, category_index
);
655 expand_category(q
, category
, category_index
);
656 decode_vectors(q
, category
, quant_index_table
, mlt_buffer
);
661 * the actual requantization of the timedomain samples
663 * @param q pointer to the COOKContext
664 * @param buffer pointer to the timedomain buffer
665 * @param gain_index index for the block multiplier
666 * @param gain_index_next index for the next block multiplier
669 static void interpolate_float(COOKContext
*q
, float* buffer
,
670 int gain_index
, int gain_index_next
){
673 fc1
= pow2tab
[gain_index
+63];
675 if(gain_index
== gain_index_next
){ //static gain
676 for(i
=0 ; i
<q
->gain_size_factor
; i
++){
680 } else { //smooth gain
681 fc2
= q
->gain_table
[11 + (gain_index_next
-gain_index
)];
682 for(i
=0 ; i
<q
->gain_size_factor
; i
++){
691 * Apply transform window, overlap buffers.
693 * @param q pointer to the COOKContext
694 * @param inbuffer pointer to the mltcoefficients
695 * @param gains_ptr current and previous gains
696 * @param previous_buffer pointer to the previous buffer to be used for overlapping
699 static void imlt_window_float (COOKContext
*q
, float *buffer1
,
700 cook_gains
*gains_ptr
, float *previous_buffer
)
702 const float fc
= pow2tab
[gains_ptr
->previous
[0] + 63];
704 /* The weird thing here, is that the two halves of the time domain
705 * buffer are swapped. Also, the newest data, that we save away for
706 * next frame, has the wrong sign. Hence the subtraction below.
707 * Almost sounds like a complex conjugate/reverse data/FFT effect.
710 /* Apply window and overlap */
711 for(i
= 0; i
< q
->samples_per_channel
; i
++){
712 buffer1
[i
] = buffer1
[i
] * fc
* q
->mlt_window
[i
] -
713 previous_buffer
[i
] * q
->mlt_window
[q
->samples_per_channel
- 1 - i
];
718 * The modulated lapped transform, this takes transform coefficients
719 * and transforms them into timedomain samples.
720 * Apply transform window, overlap buffers, apply gain profile
721 * and buffer management.
723 * @param q pointer to the COOKContext
724 * @param inbuffer pointer to the mltcoefficients
725 * @param gains_ptr current and previous gains
726 * @param previous_buffer pointer to the previous buffer to be used for overlapping
729 static void imlt_gain(COOKContext
*q
, float *inbuffer
,
730 cook_gains
*gains_ptr
, float* previous_buffer
)
732 float *buffer0
= q
->mono_mdct_output
;
733 float *buffer1
= q
->mono_mdct_output
+ q
->samples_per_channel
;
736 /* Inverse modified discrete cosine transform */
737 q
->mdct_ctx
.fft
.imdct_calc(&q
->mdct_ctx
, q
->mono_mdct_output
,
738 inbuffer
, q
->mdct_tmp
);
740 q
->imlt_window (q
, buffer1
, gains_ptr
, previous_buffer
);
742 /* Apply gain profile */
743 for (i
= 0; i
< 8; i
++) {
744 if (gains_ptr
->now
[i
] || gains_ptr
->now
[i
+ 1])
745 q
->interpolate(q
, &buffer1
[q
->gain_size_factor
* i
],
746 gains_ptr
->now
[i
], gains_ptr
->now
[i
+ 1]);
749 /* Save away the current to be previous block. */
750 memcpy(previous_buffer
, buffer0
, sizeof(float)*q
->samples_per_channel
);
755 * function for getting the jointstereo coupling information
757 * @param q pointer to the COOKContext
758 * @param decouple_tab decoupling array
762 static void decouple_info(COOKContext
*q
, int* decouple_tab
){
765 if(get_bits1(&q
->gb
)) {
766 if(cplband
[q
->js_subband_start
] > cplband
[q
->subbands
-1]) return;
768 length
= cplband
[q
->subbands
-1] - cplband
[q
->js_subband_start
] + 1;
769 for (i
=0 ; i
<length
; i
++) {
770 decouple_tab
[cplband
[q
->js_subband_start
] + i
] = get_vlc2(&q
->gb
, q
->ccpl
.table
, q
->ccpl
.bits
, 2);
775 if(cplband
[q
->js_subband_start
] > cplband
[q
->subbands
-1]) return;
777 length
= cplband
[q
->subbands
-1] - cplband
[q
->js_subband_start
] + 1;
778 for (i
=0 ; i
<length
; i
++) {
779 decouple_tab
[cplband
[q
->js_subband_start
] + i
] = get_bits(&q
->gb
, q
->js_vlc_bits
);
785 * function decouples a pair of signals from a single signal via multiplication.
787 * @param q pointer to the COOKContext
788 * @param subband index of the current subband
789 * @param f1 multiplier for channel 1 extraction
790 * @param f2 multiplier for channel 2 extraction
791 * @param decode_buffer input buffer
792 * @param mlt_buffer1 pointer to left channel mlt coefficients
793 * @param mlt_buffer2 pointer to right channel mlt coefficients
795 static void decouple_float (COOKContext
*q
,
798 float *decode_buffer
,
799 float *mlt_buffer1
, float *mlt_buffer2
)
802 for (j
=0 ; j
<SUBBAND_SIZE
; j
++) {
803 tmp_idx
= ((q
->js_subband_start
+ subband
)*SUBBAND_SIZE
)+j
;
804 mlt_buffer1
[SUBBAND_SIZE
*subband
+ j
] = f1
* decode_buffer
[tmp_idx
];
805 mlt_buffer2
[SUBBAND_SIZE
*subband
+ j
] = f2
* decode_buffer
[tmp_idx
];
810 * function for decoding joint stereo data
812 * @param q pointer to the COOKContext
813 * @param mlt_buffer1 pointer to left channel mlt coefficients
814 * @param mlt_buffer2 pointer to right channel mlt coefficients
817 static void joint_decode(COOKContext
*q
, float* mlt_buffer1
,
818 float* mlt_buffer2
) {
820 int decouple_tab
[SUBBAND_SIZE
];
821 float *decode_buffer
= q
->decode_buffer_0
;
824 const float* cplscale
;
826 memset(decouple_tab
, 0, sizeof(decouple_tab
));
827 memset(decode_buffer
, 0, sizeof(decode_buffer
));
829 /* Make sure the buffers are zeroed out. */
830 memset(mlt_buffer1
,0, 1024*sizeof(float));
831 memset(mlt_buffer2
,0, 1024*sizeof(float));
832 decouple_info(q
, decouple_tab
);
833 mono_decode(q
, decode_buffer
);
835 /* The two channels are stored interleaved in decode_buffer. */
836 for (i
=0 ; i
<q
->js_subband_start
; i
++) {
837 for (j
=0 ; j
<SUBBAND_SIZE
; j
++) {
838 mlt_buffer1
[i
*20+j
] = decode_buffer
[i
*40+j
];
839 mlt_buffer2
[i
*20+j
] = decode_buffer
[i
*40+20+j
];
843 /* When we reach js_subband_start (the higher frequencies)
844 the coefficients are stored in a coupling scheme. */
845 idx
= (1 << q
->js_vlc_bits
) - 1;
846 for (i
=q
->js_subband_start
; i
<q
->subbands
; i
++) {
847 cpl_tmp
= cplband
[i
];
848 idx
-=decouple_tab
[cpl_tmp
];
849 cplscale
= q
->cplscales
[q
->js_vlc_bits
-2]; //choose decoupler table
850 f1
= cplscale
[decouple_tab
[cpl_tmp
]];
851 f2
= cplscale
[idx
-1];
852 q
->decouple (q
, i
, f1
, f2
, decode_buffer
, mlt_buffer1
, mlt_buffer2
);
853 idx
= (1 << q
->js_vlc_bits
) - 1;
858 * First part of subpacket decoding:
859 * decode raw stream bytes and read gain info.
861 * @param q pointer to the COOKContext
862 * @param inbuffer pointer to raw stream data
863 * @param gain_ptr array of current/prev gain pointers
867 decode_bytes_and_gain(COOKContext
*q
, const uint8_t *inbuffer
,
868 cook_gains
*gains_ptr
)
872 offset
= decode_bytes(inbuffer
, q
->decoded_bytes_buffer
,
873 q
->bits_per_subpacket
/8);
874 init_get_bits(&q
->gb
, q
->decoded_bytes_buffer
+ offset
,
875 q
->bits_per_subpacket
);
876 decode_gain_info(&q
->gb
, gains_ptr
->now
);
878 /* Swap current and previous gains */
879 FFSWAP(int *, gains_ptr
->now
, gains_ptr
->previous
);
883 * Saturate the output signal to signed 16bit integers.
885 * @param q pointer to the COOKContext
886 * @param chan channel to saturate
887 * @param out pointer to the output vector
890 saturate_output_float (COOKContext
*q
, int chan
, int16_t *out
)
893 float *output
= q
->mono_mdct_output
+ q
->samples_per_channel
;
894 /* Clip and convert floats to 16 bits.
896 for (j
= 0; j
< q
->samples_per_channel
; j
++) {
897 out
[chan
+ q
->nb_channels
* j
] =
898 av_clip_int16(lrintf(output
[j
]));
903 * Final part of subpacket decoding:
904 * Apply modulated lapped transform, gain compensation,
905 * clip and convert to integer.
907 * @param q pointer to the COOKContext
908 * @param decode_buffer pointer to the mlt coefficients
909 * @param gain_ptr array of current/prev gain pointers
910 * @param previous_buffer pointer to the previous buffer to be used for overlapping
911 * @param out pointer to the output buffer
912 * @param chan 0: left or single channel, 1: right channel
916 mlt_compensate_output(COOKContext
*q
, float *decode_buffer
,
917 cook_gains
*gains
, float *previous_buffer
,
918 int16_t *out
, int chan
)
920 imlt_gain(q
, decode_buffer
, gains
, previous_buffer
);
921 q
->saturate_output (q
, chan
, out
);
926 * Cook subpacket decoding. This function returns one decoded subpacket,
927 * usually 1024 samples per channel.
929 * @param q pointer to the COOKContext
930 * @param inbuffer pointer to the inbuffer
931 * @param sub_packet_size subpacket size
932 * @param outbuffer pointer to the outbuffer
936 static int decode_subpacket(COOKContext
*q
, const uint8_t *inbuffer
,
937 int sub_packet_size
, int16_t *outbuffer
) {
939 // for (i=0 ; i<sub_packet_size ; i++) {
940 // av_log(NULL, AV_LOG_ERROR, "%02x", inbuffer[i]);
942 // av_log(NULL, AV_LOG_ERROR, "\n");
944 decode_bytes_and_gain(q
, inbuffer
, &q
->gains1
);
946 if (q
->joint_stereo
) {
947 joint_decode(q
, q
->decode_buffer_1
, q
->decode_buffer_2
);
949 mono_decode(q
, q
->decode_buffer_1
);
951 if (q
->nb_channels
== 2) {
952 decode_bytes_and_gain(q
, inbuffer
+ sub_packet_size
/2, &q
->gains2
);
953 mono_decode(q
, q
->decode_buffer_2
);
957 mlt_compensate_output(q
, q
->decode_buffer_1
, &q
->gains1
,
958 q
->mono_previous_buffer1
, outbuffer
, 0);
960 if (q
->nb_channels
== 2) {
961 if (q
->joint_stereo
) {
962 mlt_compensate_output(q
, q
->decode_buffer_2
, &q
->gains1
,
963 q
->mono_previous_buffer2
, outbuffer
, 1);
965 mlt_compensate_output(q
, q
->decode_buffer_2
, &q
->gains2
,
966 q
->mono_previous_buffer2
, outbuffer
, 1);
969 return q
->samples_per_frame
* sizeof(int16_t);
974 * Cook frame decoding
976 * @param avctx pointer to the AVCodecContext
979 static int cook_decode_frame(AVCodecContext
*avctx
,
980 void *data
, int *data_size
,
981 const uint8_t *buf
, int buf_size
) {
982 COOKContext
*q
= avctx
->priv_data
;
984 if (buf_size
< avctx
->block_align
)
987 *data_size
= decode_subpacket(q
, buf
, avctx
->block_align
, data
);
989 /* Discard the first two frames: no valid audio. */
990 if (avctx
->frame_number
< 2) *data_size
= 0;
992 return avctx
->block_align
;
996 static void dump_cook_context(COOKContext
*q
)
999 #define PRINT(a,b) av_log(NULL,AV_LOG_ERROR," %s = %d\n", a, b);
1000 av_log(NULL
,AV_LOG_ERROR
,"COOKextradata\n");
1001 av_log(NULL
,AV_LOG_ERROR
,"cookversion=%x\n",q
->cookversion
);
1002 if (q
->cookversion
> STEREO
) {
1003 PRINT("js_subband_start",q
->js_subband_start
);
1004 PRINT("js_vlc_bits",q
->js_vlc_bits
);
1006 av_log(NULL
,AV_LOG_ERROR
,"COOKContext\n");
1007 PRINT("nb_channels",q
->nb_channels
);
1008 PRINT("bit_rate",q
->bit_rate
);
1009 PRINT("sample_rate",q
->sample_rate
);
1010 PRINT("samples_per_channel",q
->samples_per_channel
);
1011 PRINT("samples_per_frame",q
->samples_per_frame
);
1012 PRINT("subbands",q
->subbands
);
1013 PRINT("random_state",q
->random_state
);
1014 PRINT("js_subband_start",q
->js_subband_start
);
1015 PRINT("log2_numvector_size",q
->log2_numvector_size
);
1016 PRINT("numvector_size",q
->numvector_size
);
1017 PRINT("total_subbands",q
->total_subbands
);
1022 * Cook initialization
1024 * @param avctx pointer to the AVCodecContext
1027 static int cook_decode_init(AVCodecContext
*avctx
)
1029 COOKContext
*q
= avctx
->priv_data
;
1030 const uint8_t *edata_ptr
= avctx
->extradata
;
1032 /* Take care of the codec specific extradata. */
1033 if (avctx
->extradata_size
<= 0) {
1034 av_log(avctx
,AV_LOG_ERROR
,"Necessary extradata missing!\n");
1037 /* 8 for mono, 16 for stereo, ? for multichannel
1038 Swap to right endianness so we don't need to care later on. */
1039 av_log(avctx
,AV_LOG_DEBUG
,"codecdata_length=%d\n",avctx
->extradata_size
);
1040 if (avctx
->extradata_size
>= 8){
1041 q
->cookversion
= bytestream_get_be32(&edata_ptr
);
1042 q
->samples_per_frame
= bytestream_get_be16(&edata_ptr
);
1043 q
->subbands
= bytestream_get_be16(&edata_ptr
);
1045 if (avctx
->extradata_size
>= 16){
1046 bytestream_get_be32(&edata_ptr
); //Unknown unused
1047 q
->js_subband_start
= bytestream_get_be16(&edata_ptr
);
1048 q
->js_vlc_bits
= bytestream_get_be16(&edata_ptr
);
1052 /* Take data from the AVCodecContext (RM container). */
1053 q
->sample_rate
= avctx
->sample_rate
;
1054 q
->nb_channels
= avctx
->channels
;
1055 q
->bit_rate
= avctx
->bit_rate
;
1057 /* Initialize RNG. */
1058 av_init_random(1, &q
->random_state
);
1060 /* Initialize extradata related variables. */
1061 q
->samples_per_channel
= q
->samples_per_frame
/ q
->nb_channels
;
1062 q
->bits_per_subpacket
= avctx
->block_align
* 8;
1064 /* Initialize default data states. */
1065 q
->log2_numvector_size
= 5;
1066 q
->total_subbands
= q
->subbands
;
1068 /* Initialize version-dependent variables */
1069 av_log(NULL
,AV_LOG_DEBUG
,"q->cookversion=%x\n",q
->cookversion
);
1070 q
->joint_stereo
= 0;
1071 switch (q
->cookversion
) {
1073 if (q
->nb_channels
!= 1) {
1074 av_log(avctx
,AV_LOG_ERROR
,"Container channels != 1, report sample!\n");
1077 av_log(avctx
,AV_LOG_DEBUG
,"MONO\n");
1080 if (q
->nb_channels
!= 1) {
1081 q
->bits_per_subpacket
= q
->bits_per_subpacket
/2;
1083 av_log(avctx
,AV_LOG_DEBUG
,"STEREO\n");
1086 if (q
->nb_channels
!= 2) {
1087 av_log(avctx
,AV_LOG_ERROR
,"Container channels != 2, report sample!\n");
1090 av_log(avctx
,AV_LOG_DEBUG
,"JOINT_STEREO\n");
1091 if (avctx
->extradata_size
>= 16){
1092 q
->total_subbands
= q
->subbands
+ q
->js_subband_start
;
1093 q
->joint_stereo
= 1;
1095 if (q
->samples_per_channel
> 256) {
1096 q
->log2_numvector_size
= 6;
1098 if (q
->samples_per_channel
> 512) {
1099 q
->log2_numvector_size
= 7;
1103 av_log(avctx
,AV_LOG_ERROR
,"MC_COOK not supported!\n");
1107 av_log(avctx
,AV_LOG_ERROR
,"Unknown Cook version, report sample!\n");
1112 /* Initialize variable relations */
1113 q
->numvector_size
= (1 << q
->log2_numvector_size
);
1115 /* Generate tables */
1118 init_cplscales_table(q
);
1120 if (init_cook_vlc_tables(q
) != 0)
1124 if(avctx
->block_align
>= UINT_MAX
/2)
1127 /* Pad the databuffer with:
1128 DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
1129 FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
1130 if (q
->nb_channels
==2 && q
->joint_stereo
==0) {
1131 q
->decoded_bytes_buffer
=
1132 av_mallocz(avctx
->block_align
/2
1133 + DECODE_BYTES_PAD2(avctx
->block_align
/2)
1134 + FF_INPUT_BUFFER_PADDING_SIZE
);
1136 q
->decoded_bytes_buffer
=
1137 av_mallocz(avctx
->block_align
1138 + DECODE_BYTES_PAD1(avctx
->block_align
)
1139 + FF_INPUT_BUFFER_PADDING_SIZE
);
1141 if (q
->decoded_bytes_buffer
== NULL
)
1144 q
->gains1
.now
= q
->gain_1
;
1145 q
->gains1
.previous
= q
->gain_2
;
1146 q
->gains2
.now
= q
->gain_3
;
1147 q
->gains2
.previous
= q
->gain_4
;
1149 /* Initialize transform. */
1150 if ( init_cook_mlt(q
) != 0 )
1153 /* Initialize COOK signal arithmetic handling */
1155 q
->scalar_dequant
= scalar_dequant_float
;
1156 q
->decouple
= decouple_float
;
1157 q
->imlt_window
= imlt_window_float
;
1158 q
->interpolate
= interpolate_float
;
1159 q
->saturate_output
= saturate_output_float
;
1162 /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1163 if (q
->total_subbands
> 53) {
1164 av_log(avctx
,AV_LOG_ERROR
,"total_subbands > 53, report sample!\n");
1167 if (q
->subbands
> 50) {
1168 av_log(avctx
,AV_LOG_ERROR
,"subbands > 50, report sample!\n");
1171 if ((q
->samples_per_channel
== 256) || (q
->samples_per_channel
== 512) || (q
->samples_per_channel
== 1024)) {
1173 av_log(avctx
,AV_LOG_ERROR
,"unknown amount of samples_per_channel = %d, report sample!\n",q
->samples_per_channel
);
1176 if ((q
->js_vlc_bits
> 6) || (q
->js_vlc_bits
< 0)) {
1177 av_log(avctx
,AV_LOG_ERROR
,"q->js_vlc_bits = %d, only >= 0 and <= 6 allowed!\n",q
->js_vlc_bits
);
1182 dump_cook_context(q
);
1188 AVCodec cook_decoder
=
1191 .type
= CODEC_TYPE_AUDIO
,
1192 .id
= CODEC_ID_COOK
,
1193 .priv_data_size
= sizeof(COOKContext
),
1194 .init
= cook_decode_init
,
1195 .close
= cook_decode_close
,
1196 .decode
= cook_decode_frame
,
1197 .long_name
= NULL_IF_CONFIG_SMALL("COOK"),