Rename var: val -> energy
[FFMpeg-mirror/DVCPRO-HD.git] / libavcodec / ac3.h
blobe933f86884586aae7222557f42210f4bd29e0f9c
1 /*
2 * Common code between AC3 encoder and decoder
3 * Copyright (c) 2000, 2001, 2002 Fabrice Bellard.
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 /**
23 * @file ac3.h
24 * Common code between AC3 encoder and decoder.
27 #ifndef FFMPEG_AC3_H
28 #define FFMPEG_AC3_H
30 #include "ac3tab.h"
32 #define AC3_MAX_CODED_FRAME_SIZE 3840 /* in bytes */
33 #define AC3_MAX_CHANNELS 6 /* including LFE channel */
35 #define NB_BLOCKS 6 /* number of PCM blocks inside an AC3 frame */
36 #define AC3_FRAME_SIZE (NB_BLOCKS * 256)
38 /* exponent encoding strategy */
39 #define EXP_REUSE 0
40 #define EXP_NEW 1
42 #define EXP_D15 1
43 #define EXP_D25 2
44 #define EXP_D45 3
46 /** Delta bit allocation strategy */
47 typedef enum {
48 DBA_REUSE = 0,
49 DBA_NEW,
50 DBA_NONE,
51 DBA_RESERVED
52 } AC3DeltaStrategy;
54 /** Channel mode (audio coding mode) */
55 typedef enum {
56 AC3_CHMODE_DUALMONO = 0,
57 AC3_CHMODE_MONO,
58 AC3_CHMODE_STEREO,
59 AC3_CHMODE_3F,
60 AC3_CHMODE_2F1R,
61 AC3_CHMODE_3F1R,
62 AC3_CHMODE_2F2R,
63 AC3_CHMODE_3F2R
64 } AC3ChannelMode;
66 typedef struct AC3BitAllocParameters {
67 int sr_code;
68 int sr_shift;
69 int slow_gain, slow_decay, fast_decay, db_per_bit, floor;
70 int cpl_fast_leak, cpl_slow_leak;
71 } AC3BitAllocParameters;
73 /**
74 * @struct AC3HeaderInfo
75 * Coded AC-3 header values up to the lfeon element, plus derived values.
77 typedef struct {
78 /** @defgroup coded Coded elements
79 * @{
81 uint16_t sync_word;
82 uint16_t crc1;
83 uint8_t sr_code;
84 uint8_t bitstream_id;
85 uint8_t channel_mode;
86 uint8_t lfe_on;
87 uint8_t frame_type;
88 /** @} */
90 /** @defgroup derived Derived values
91 * @{
93 uint8_t sr_shift;
94 uint16_t sample_rate;
95 uint32_t bit_rate;
96 uint8_t channels;
97 uint16_t frame_size;
98 int center_mix_level; ///< Center mix level index
99 int surround_mix_level; ///< Surround mix level index
100 uint16_t channel_map;
101 /** @} */
102 } AC3HeaderInfo;
104 typedef enum {
105 EAC3_FRAME_TYPE_INDEPENDENT = 0,
106 EAC3_FRAME_TYPE_DEPENDENT,
107 EAC3_FRAME_TYPE_AC3_CONVERT,
108 EAC3_FRAME_TYPE_RESERVED
109 } EAC3FrameType;
111 void ac3_common_init(void);
114 * Calculates the log power-spectral density of the input signal.
115 * This gives a rough estimate of signal power in the frequency domain by using
116 * the spectral envelope (exponents). The psd is also separately grouped
117 * into critical bands for use in the calculating the masking curve.
118 * 128 units in psd = -6 dB. The dbknee parameter in AC3BitAllocParameters
119 * determines the reference level.
121 * @param[in] exp frequency coefficient exponents
122 * @param[in] start starting bin location
123 * @param[in] end ending bin location
124 * @param[out] psd signal power for each frequency bin
125 * @param[out] band_psd signal power for each critical band
127 void ff_ac3_bit_alloc_calc_psd(int8_t *exp, int start, int end, int16_t *psd,
128 int16_t *band_psd);
131 * Calculates the masking curve.
132 * First, the excitation is calculated using parameters in \p s and the signal
133 * power in each critical band. The excitation is compared with a predefined
134 * hearing threshold table to produce the masking curve. If delta bit
135 * allocation information is provided, it is used for adjusting the masking
136 * curve, usually to give a closer match to a better psychoacoustic model.
138 * @param[in] s adjustable bit allocation parameters
139 * @param[in] band_psd signal power for each critical band
140 * @param[in] start starting bin location
141 * @param[in] end ending bin location
142 * @param[in] fast_gain fast gain (estimated signal-to-mask ratio)
143 * @param[in] is_lfe whether or not the channel being processed is the LFE
144 * @param[in] dba_mode delta bit allocation mode (none, reuse, or new)
145 * @param[in] dba_nsegs number of delta segments
146 * @param[in] dba_offsets location offsets for each segment
147 * @param[in] dba_lengths length of each segment
148 * @param[in] dba_values delta bit allocation for each segment
149 * @param[out] mask calculated masking curve
151 void ff_ac3_bit_alloc_calc_mask(AC3BitAllocParameters *s, int16_t *band_psd,
152 int start, int end, int fast_gain, int is_lfe,
153 int dba_mode, int dba_nsegs, uint8_t *dba_offsets,
154 uint8_t *dba_lengths, uint8_t *dba_values,
155 int16_t *mask);
158 * Calculates bit allocation pointers.
159 * The SNR is the difference between the masking curve and the signal. AC-3
160 * uses this value for each frequency bin to allocate bits. The \p snroffset
161 * parameter is a global adjustment to the SNR for all bins.
163 * @param[in] mask masking curve
164 * @param[in] psd signal power for each frequency bin
165 * @param[in] start starting bin location
166 * @param[in] end ending bin location
167 * @param[in] snr_offset SNR adjustment
168 * @param[in] floor noise floor
169 * @param[out] bap bit allocation pointers
171 void ff_ac3_bit_alloc_calc_bap(int16_t *mask, int16_t *psd, int start, int end,
172 int snr_offset, int floor, uint8_t *bap);
174 void ac3_parametric_bit_allocation(AC3BitAllocParameters *s, uint8_t *bap,
175 int8_t *exp, int start, int end,
176 int snr_offset, int fast_gain, int is_lfe,
177 int dba_mode, int dba_nsegs,
178 uint8_t *dba_offsets, uint8_t *dba_lengths,
179 uint8_t *dba_values);
181 #endif /* FFMPEG_AC3_H */