Add a rounding parameter to ff_acelp_lp_synthesis_filter()
[FFMpeg-mirror/DVCPRO-HD.git] / libavcodec / imc.c
blob934de4a6a9a18ae3e5fa12359c47d4963299dccd
1 /*
2 * IMC compatible decoder
3 * Copyright (c) 2002-2004 Maxim Poliakovski
4 * Copyright (c) 2006 Benjamin Larsson
5 * Copyright (c) 2006 Konstantin Shishkov
7 * This file is part of FFmpeg.
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 /**
25 * @file imc.c IMC - Intel Music Coder
26 * A mdct based codec using a 256 points large transform
27 * divied into 32 bands with some mix of scale factors.
28 * Only mono is supported.
33 #include <math.h>
34 #include <stddef.h>
35 #include <stdio.h>
37 #define ALT_BITSTREAM_READER
38 #include "avcodec.h"
39 #include "bitstream.h"
40 #include "dsputil.h"
42 #include "imcdata.h"
44 #define IMC_BLOCK_SIZE 64
45 #define IMC_FRAME_ID 0x21
46 #define BANDS 32
47 #define COEFFS 256
49 typedef struct {
50 float old_floor[BANDS];
51 float flcoeffs1[BANDS];
52 float flcoeffs2[BANDS];
53 float flcoeffs3[BANDS];
54 float flcoeffs4[BANDS];
55 float flcoeffs5[BANDS];
56 float flcoeffs6[BANDS];
57 float CWdecoded[COEFFS];
59 /** MDCT tables */
60 //@{
61 float mdct_sine_window[COEFFS];
62 float post_cos[COEFFS];
63 float post_sin[COEFFS];
64 float pre_coef1[COEFFS];
65 float pre_coef2[COEFFS];
66 float last_fft_im[COEFFS];
67 //@}
69 int bandWidthT[BANDS]; ///< codewords per band
70 int bitsBandT[BANDS]; ///< how many bits per codeword in band
71 int CWlengthT[COEFFS]; ///< how many bits in each codeword
72 int levlCoeffBuf[BANDS];
73 int bandFlagsBuf[BANDS]; ///< flags for each band
74 int sumLenArr[BANDS]; ///< bits for all coeffs in band
75 int skipFlagRaw[BANDS]; ///< skip flags are stored in raw form or not
76 int skipFlagBits[BANDS]; ///< bits used to code skip flags
77 int skipFlagCount[BANDS]; ///< skipped coeffients per band
78 int skipFlags[COEFFS]; ///< skip coefficient decoding or not
79 int codewords[COEFFS]; ///< raw codewords read from bitstream
80 float sqrt_tab[30];
81 GetBitContext gb;
82 VLC huffman_vlc[4][4];
83 int decoder_reset;
84 float one_div_log2;
86 DSPContext dsp;
87 FFTContext fft;
88 DECLARE_ALIGNED_16(FFTComplex, samples[COEFFS/2]);
89 DECLARE_ALIGNED_16(float, out_samples[COEFFS]);
90 } IMCContext;
93 static av_cold int imc_decode_init(AVCodecContext * avctx)
95 int i, j;
96 IMCContext *q = avctx->priv_data;
97 double r1, r2;
99 q->decoder_reset = 1;
101 for(i = 0; i < BANDS; i++)
102 q->old_floor[i] = 1.0;
104 /* Build mdct window, a simple sine window normalized with sqrt(2) */
105 ff_sine_window_init(q->mdct_sine_window, COEFFS);
106 for(i = 0; i < COEFFS; i++)
107 q->mdct_sine_window[i] *= sqrt(2.0);
108 for(i = 0; i < COEFFS/2; i++){
109 q->post_cos[i] = cos(i / 256.0 * M_PI);
110 q->post_sin[i] = sin(i / 256.0 * M_PI);
112 r1 = sin((i * 4.0 + 1.0) / 1024.0 * M_PI);
113 r2 = cos((i * 4.0 + 1.0) / 1024.0 * M_PI);
115 if (i & 0x1)
117 q->pre_coef1[i] = (r1 + r2) * sqrt(2.0);
118 q->pre_coef2[i] = -(r1 - r2) * sqrt(2.0);
120 else
122 q->pre_coef1[i] = -(r1 + r2) * sqrt(2.0);
123 q->pre_coef2[i] = (r1 - r2) * sqrt(2.0);
126 q->last_fft_im[i] = 0;
129 /* Generate a square root table */
131 for(i = 0; i < 30; i++) {
132 q->sqrt_tab[i] = sqrt(i);
135 /* initialize the VLC tables */
136 for(i = 0; i < 4 ; i++) {
137 for(j = 0; j < 4; j++) {
138 init_vlc (&q->huffman_vlc[i][j], 9, imc_huffman_sizes[i],
139 imc_huffman_lens[i][j], 1, 1,
140 imc_huffman_bits[i][j], 2, 2, 1);
143 q->one_div_log2 = 1/log(2);
145 ff_fft_init(&q->fft, 7, 1);
146 dsputil_init(&q->dsp, avctx);
147 return 0;
150 static void imc_calculate_coeffs(IMCContext* q, float* flcoeffs1, float* flcoeffs2, int* bandWidthT,
151 float* flcoeffs3, float* flcoeffs5)
153 float workT1[BANDS];
154 float workT2[BANDS];
155 float workT3[BANDS];
156 float snr_limit = 1.e-30;
157 float accum = 0.0;
158 int i, cnt2;
160 for(i = 0; i < BANDS; i++) {
161 flcoeffs5[i] = workT2[i] = 0.0;
162 if (bandWidthT[i]){
163 workT1[i] = flcoeffs1[i] * flcoeffs1[i];
164 flcoeffs3[i] = 2.0 * flcoeffs2[i];
165 } else {
166 workT1[i] = 0.0;
167 flcoeffs3[i] = -30000.0;
169 workT3[i] = bandWidthT[i] * workT1[i] * 0.01;
170 if (workT3[i] <= snr_limit)
171 workT3[i] = 0.0;
174 for(i = 0; i < BANDS; i++) {
175 for(cnt2 = i; cnt2 < cyclTab[i]; cnt2++)
176 flcoeffs5[cnt2] = flcoeffs5[cnt2] + workT3[i];
177 workT2[cnt2-1] = workT2[cnt2-1] + workT3[i];
180 for(i = 1; i < BANDS; i++) {
181 accum = (workT2[i-1] + accum) * imc_weights1[i-1];
182 flcoeffs5[i] += accum;
185 for(i = 0; i < BANDS; i++)
186 workT2[i] = 0.0;
188 for(i = 0; i < BANDS; i++) {
189 for(cnt2 = i-1; cnt2 > cyclTab2[i]; cnt2--)
190 flcoeffs5[cnt2] += workT3[i];
191 workT2[cnt2+1] += workT3[i];
194 accum = 0.0;
196 for(i = BANDS-2; i >= 0; i--) {
197 accum = (workT2[i+1] + accum) * imc_weights2[i];
198 flcoeffs5[i] += accum;
199 //there is missing code here, but it seems to never be triggered
204 static void imc_read_level_coeffs(IMCContext* q, int stream_format_code, int* levlCoeffs)
206 int i;
207 VLC *hufftab[4];
208 int start = 0;
209 const uint8_t *cb_sel;
210 int s;
212 s = stream_format_code >> 1;
213 hufftab[0] = &q->huffman_vlc[s][0];
214 hufftab[1] = &q->huffman_vlc[s][1];
215 hufftab[2] = &q->huffman_vlc[s][2];
216 hufftab[3] = &q->huffman_vlc[s][3];
217 cb_sel = imc_cb_select[s];
219 if(stream_format_code & 4)
220 start = 1;
221 if(start)
222 levlCoeffs[0] = get_bits(&q->gb, 7);
223 for(i = start; i < BANDS; i++){
224 levlCoeffs[i] = get_vlc2(&q->gb, hufftab[cb_sel[i]]->table, hufftab[cb_sel[i]]->bits, 2);
225 if(levlCoeffs[i] == 17)
226 levlCoeffs[i] += get_bits(&q->gb, 4);
230 static void imc_decode_level_coefficients(IMCContext* q, int* levlCoeffBuf, float* flcoeffs1,
231 float* flcoeffs2)
233 int i, level;
234 float tmp, tmp2;
235 //maybe some frequency division thingy
237 flcoeffs1[0] = 20000.0 / pow (2, levlCoeffBuf[0] * 0.18945); // 0.18945 = log2(10) * 0.05703125
238 flcoeffs2[0] = log(flcoeffs1[0])/log(2);
239 tmp = flcoeffs1[0];
240 tmp2 = flcoeffs2[0];
242 for(i = 1; i < BANDS; i++) {
243 level = levlCoeffBuf[i];
244 if (level == 16) {
245 flcoeffs1[i] = 1.0;
246 flcoeffs2[i] = 0.0;
247 } else {
248 if (level < 17)
249 level -=7;
250 else if (level <= 24)
251 level -=32;
252 else
253 level -=16;
255 tmp *= imc_exp_tab[15 + level];
256 tmp2 += 0.83048 * level; // 0.83048 = log2(10) * 0.25
257 flcoeffs1[i] = tmp;
258 flcoeffs2[i] = tmp2;
264 static void imc_decode_level_coefficients2(IMCContext* q, int* levlCoeffBuf, float* old_floor, float* flcoeffs1,
265 float* flcoeffs2) {
266 int i;
267 //FIXME maybe flag_buf = noise coding and flcoeffs1 = new scale factors
268 // and flcoeffs2 old scale factors
269 // might be incomplete due to a missing table that is in the binary code
270 for(i = 0; i < BANDS; i++) {
271 flcoeffs1[i] = 0;
272 if(levlCoeffBuf[i] < 16) {
273 flcoeffs1[i] = imc_exp_tab2[levlCoeffBuf[i]] * old_floor[i];
274 flcoeffs2[i] = (levlCoeffBuf[i]-7) * 0.83048 + flcoeffs2[i]; // 0.83048 = log2(10) * 0.25
275 } else {
276 flcoeffs1[i] = old_floor[i];
282 * Perform bit allocation depending on bits available
284 static int bit_allocation (IMCContext* q, int stream_format_code, int freebits, int flag) {
285 int i, j;
286 const float limit = -1.e20;
287 float highest = 0.0;
288 int indx;
289 int t1 = 0;
290 int t2 = 1;
291 float summa = 0.0;
292 int iacc = 0;
293 int summer = 0;
294 int rres, cwlen;
295 float lowest = 1.e10;
296 int low_indx = 0;
297 float workT[32];
298 int flg;
299 int found_indx = 0;
301 for(i = 0; i < BANDS; i++)
302 highest = FFMAX(highest, q->flcoeffs1[i]);
304 for(i = 0; i < BANDS-1; i++) {
305 q->flcoeffs4[i] = q->flcoeffs3[i] - log(q->flcoeffs5[i])/log(2);
307 q->flcoeffs4[BANDS - 1] = limit;
309 highest = highest * 0.25;
311 for(i = 0; i < BANDS; i++) {
312 indx = -1;
313 if ((band_tab[i+1] - band_tab[i]) == q->bandWidthT[i])
314 indx = 0;
316 if ((band_tab[i+1] - band_tab[i]) > q->bandWidthT[i])
317 indx = 1;
319 if (((band_tab[i+1] - band_tab[i])/2) >= q->bandWidthT[i])
320 indx = 2;
322 if (indx == -1)
323 return -1;
325 q->flcoeffs4[i] = q->flcoeffs4[i] + xTab[(indx*2 + (q->flcoeffs1[i] < highest)) * 2 + flag];
328 if (stream_format_code & 0x2) {
329 q->flcoeffs4[0] = limit;
330 q->flcoeffs4[1] = limit;
331 q->flcoeffs4[2] = limit;
332 q->flcoeffs4[3] = limit;
335 for(i = (stream_format_code & 0x2)?4:0; i < BANDS-1; i++) {
336 iacc += q->bandWidthT[i];
337 summa += q->bandWidthT[i] * q->flcoeffs4[i];
339 q->bandWidthT[BANDS-1] = 0;
340 summa = (summa * 0.5 - freebits) / iacc;
343 for(i = 0; i < BANDS/2; i++) {
344 rres = summer - freebits;
345 if((rres >= -8) && (rres <= 8)) break;
347 summer = 0;
348 iacc = 0;
350 for(j = (stream_format_code & 0x2)?4:0; j < BANDS; j++) {
351 cwlen = av_clip((int)((q->flcoeffs4[j] * 0.5) - summa + 0.5), 0, 6);
353 q->bitsBandT[j] = cwlen;
354 summer += q->bandWidthT[j] * cwlen;
356 if (cwlen > 0)
357 iacc += q->bandWidthT[j];
360 flg = t2;
361 t2 = 1;
362 if (freebits < summer)
363 t2 = -1;
364 if (i == 0)
365 flg = t2;
366 if(flg != t2)
367 t1++;
369 summa = (float)(summer - freebits) / ((t1 + 1) * iacc) + summa;
372 for(i = (stream_format_code & 0x2)?4:0; i < BANDS; i++) {
373 for(j = band_tab[i]; j < band_tab[i+1]; j++)
374 q->CWlengthT[j] = q->bitsBandT[i];
377 if (freebits > summer) {
378 for(i = 0; i < BANDS; i++) {
379 workT[i] = (q->bitsBandT[i] == 6) ? -1.e20 : (q->bitsBandT[i] * -2 + q->flcoeffs4[i] - 0.415);
382 highest = 0.0;
385 if (highest <= -1.e20)
386 break;
388 found_indx = 0;
389 highest = -1.e20;
391 for(i = 0; i < BANDS; i++) {
392 if (workT[i] > highest) {
393 highest = workT[i];
394 found_indx = i;
398 if (highest > -1.e20) {
399 workT[found_indx] -= 2.0;
400 if (++(q->bitsBandT[found_indx]) == 6)
401 workT[found_indx] = -1.e20;
403 for(j = band_tab[found_indx]; j < band_tab[found_indx+1] && (freebits > summer); j++){
404 q->CWlengthT[j]++;
405 summer++;
408 }while (freebits > summer);
410 if (freebits < summer) {
411 for(i = 0; i < BANDS; i++) {
412 workT[i] = q->bitsBandT[i] ? (q->bitsBandT[i] * -2 + q->flcoeffs4[i] + 1.585) : 1.e20;
414 if (stream_format_code & 0x2) {
415 workT[0] = 1.e20;
416 workT[1] = 1.e20;
417 workT[2] = 1.e20;
418 workT[3] = 1.e20;
420 while (freebits < summer){
421 lowest = 1.e10;
422 low_indx = 0;
423 for(i = 0; i < BANDS; i++) {
424 if (workT[i] < lowest) {
425 lowest = workT[i];
426 low_indx = i;
429 //if(lowest >= 1.e10) break;
430 workT[low_indx] = lowest + 2.0;
432 if (!(--q->bitsBandT[low_indx]))
433 workT[low_indx] = 1.e20;
435 for(j = band_tab[low_indx]; j < band_tab[low_indx+1] && (freebits < summer); j++){
436 if(q->CWlengthT[j] > 0){
437 q->CWlengthT[j]--;
438 summer--;
443 return 0;
446 static void imc_get_skip_coeff(IMCContext* q) {
447 int i, j;
449 memset(q->skipFlagBits, 0, sizeof(q->skipFlagBits));
450 memset(q->skipFlagCount, 0, sizeof(q->skipFlagCount));
451 for(i = 0; i < BANDS; i++) {
452 if (!q->bandFlagsBuf[i] || !q->bandWidthT[i])
453 continue;
455 if (!q->skipFlagRaw[i]) {
456 q->skipFlagBits[i] = band_tab[i+1] - band_tab[i];
458 for(j = band_tab[i]; j < band_tab[i+1]; j++) {
459 if ((q->skipFlags[j] = get_bits1(&q->gb)))
460 q->skipFlagCount[i]++;
462 } else {
463 for(j = band_tab[i]; j < (band_tab[i+1]-1); j += 2) {
464 if(!get_bits1(&q->gb)){//0
465 q->skipFlagBits[i]++;
466 q->skipFlags[j]=1;
467 q->skipFlags[j+1]=1;
468 q->skipFlagCount[i] += 2;
469 }else{
470 if(get_bits1(&q->gb)){//11
471 q->skipFlagBits[i] +=2;
472 q->skipFlags[j]=0;
473 q->skipFlags[j+1]=1;
474 q->skipFlagCount[i]++;
475 }else{
476 q->skipFlagBits[i] +=3;
477 q->skipFlags[j+1]=0;
478 if(!get_bits1(&q->gb)){//100
479 q->skipFlags[j]=1;
480 q->skipFlagCount[i]++;
481 }else{//101
482 q->skipFlags[j]=0;
488 if (j < band_tab[i+1]) {
489 q->skipFlagBits[i]++;
490 if ((q->skipFlags[j] = get_bits1(&q->gb)))
491 q->skipFlagCount[i]++;
498 * Increase highest' band coefficient sizes as some bits won't be used
500 static void imc_adjust_bit_allocation (IMCContext* q, int summer) {
501 float workT[32];
502 int corrected = 0;
503 int i, j;
504 float highest = 0;
505 int found_indx=0;
507 for(i = 0; i < BANDS; i++) {
508 workT[i] = (q->bitsBandT[i] == 6) ? -1.e20 : (q->bitsBandT[i] * -2 + q->flcoeffs4[i] - 0.415);
511 while (corrected < summer) {
512 if(highest <= -1.e20)
513 break;
515 highest = -1.e20;
517 for(i = 0; i < BANDS; i++) {
518 if (workT[i] > highest) {
519 highest = workT[i];
520 found_indx = i;
524 if (highest > -1.e20) {
525 workT[found_indx] -= 2.0;
526 if (++(q->bitsBandT[found_indx]) == 6)
527 workT[found_indx] = -1.e20;
529 for(j = band_tab[found_indx]; j < band_tab[found_indx+1] && (corrected < summer); j++) {
530 if (!q->skipFlags[j] && (q->CWlengthT[j] < 6)) {
531 q->CWlengthT[j]++;
532 corrected++;
539 static void imc_imdct256(IMCContext *q) {
540 int i;
541 float re, im;
543 /* prerotation */
544 for(i=0; i < COEFFS/2; i++){
545 q->samples[i].re = -(q->pre_coef1[i] * q->CWdecoded[COEFFS-1-i*2]) -
546 (q->pre_coef2[i] * q->CWdecoded[i*2]);
547 q->samples[i].im = (q->pre_coef2[i] * q->CWdecoded[COEFFS-1-i*2]) -
548 (q->pre_coef1[i] * q->CWdecoded[i*2]);
551 /* FFT */
552 ff_fft_permute(&q->fft, q->samples);
553 ff_fft_calc (&q->fft, q->samples);
555 /* postrotation, window and reorder */
556 for(i = 0; i < COEFFS/2; i++){
557 re = (q->samples[i].re * q->post_cos[i]) + (-q->samples[i].im * q->post_sin[i]);
558 im = (-q->samples[i].im * q->post_cos[i]) - (q->samples[i].re * q->post_sin[i]);
559 q->out_samples[i*2] = (q->mdct_sine_window[COEFFS-1-i*2] * q->last_fft_im[i]) + (q->mdct_sine_window[i*2] * re);
560 q->out_samples[COEFFS-1-i*2] = (q->mdct_sine_window[i*2] * q->last_fft_im[i]) - (q->mdct_sine_window[COEFFS-1-i*2] * re);
561 q->last_fft_im[i] = im;
565 static int inverse_quant_coeff (IMCContext* q, int stream_format_code) {
566 int i, j;
567 int middle_value, cw_len, max_size;
568 const float* quantizer;
570 for(i = 0; i < BANDS; i++) {
571 for(j = band_tab[i]; j < band_tab[i+1]; j++) {
572 q->CWdecoded[j] = 0;
573 cw_len = q->CWlengthT[j];
575 if (cw_len <= 0 || q->skipFlags[j])
576 continue;
578 max_size = 1 << cw_len;
579 middle_value = max_size >> 1;
581 if (q->codewords[j] >= max_size || q->codewords[j] < 0)
582 return -1;
584 if (cw_len >= 4){
585 quantizer = imc_quantizer2[(stream_format_code & 2) >> 1];
586 if (q->codewords[j] >= middle_value)
587 q->CWdecoded[j] = quantizer[q->codewords[j] - 8] * q->flcoeffs6[i];
588 else
589 q->CWdecoded[j] = -quantizer[max_size - q->codewords[j] - 8 - 1] * q->flcoeffs6[i];
590 }else{
591 quantizer = imc_quantizer1[((stream_format_code & 2) >> 1) | (q->bandFlagsBuf[i] << 1)];
592 if (q->codewords[j] >= middle_value)
593 q->CWdecoded[j] = quantizer[q->codewords[j] - 1] * q->flcoeffs6[i];
594 else
595 q->CWdecoded[j] = -quantizer[max_size - 2 - q->codewords[j]] * q->flcoeffs6[i];
599 return 0;
603 static int imc_get_coeffs (IMCContext* q) {
604 int i, j, cw_len, cw;
606 for(i = 0; i < BANDS; i++) {
607 if(!q->sumLenArr[i]) continue;
608 if (q->bandFlagsBuf[i] || q->bandWidthT[i]) {
609 for(j = band_tab[i]; j < band_tab[i+1]; j++) {
610 cw_len = q->CWlengthT[j];
611 cw = 0;
613 if (get_bits_count(&q->gb) + cw_len > 512){
614 //av_log(NULL,0,"Band %i coeff %i cw_len %i\n",i,j,cw_len);
615 return -1;
618 if(cw_len && (!q->bandFlagsBuf[i] || !q->skipFlags[j]))
619 cw = get_bits(&q->gb, cw_len);
621 q->codewords[j] = cw;
625 return 0;
628 static int imc_decode_frame(AVCodecContext * avctx,
629 void *data, int *data_size,
630 const uint8_t * buf, int buf_size)
633 IMCContext *q = avctx->priv_data;
635 int stream_format_code;
636 int imc_hdr, i, j;
637 int flag;
638 int bits, summer;
639 int counter, bitscount;
640 uint16_t buf16[IMC_BLOCK_SIZE / 2];
642 if (buf_size < IMC_BLOCK_SIZE) {
643 av_log(avctx, AV_LOG_ERROR, "imc frame too small!\n");
644 return -1;
646 for(i = 0; i < IMC_BLOCK_SIZE / 2; i++)
647 buf16[i] = bswap_16(((const uint16_t*)buf)[i]);
649 init_get_bits(&q->gb, (const uint8_t*)buf16, IMC_BLOCK_SIZE * 8);
651 /* Check the frame header */
652 imc_hdr = get_bits(&q->gb, 9);
653 if (imc_hdr != IMC_FRAME_ID) {
654 av_log(avctx, AV_LOG_ERROR, "imc frame header check failed!\n");
655 av_log(avctx, AV_LOG_ERROR, "got %x instead of 0x21.\n", imc_hdr);
656 return -1;
658 stream_format_code = get_bits(&q->gb, 3);
660 if(stream_format_code & 1){
661 av_log(avctx, AV_LOG_ERROR, "Stream code format %X is not supported\n", stream_format_code);
662 return -1;
665 // av_log(avctx, AV_LOG_DEBUG, "stream_format_code = %d\n", stream_format_code);
667 if (stream_format_code & 0x04)
668 q->decoder_reset = 1;
670 if(q->decoder_reset) {
671 memset(q->out_samples, 0, sizeof(q->out_samples));
672 for(i = 0; i < BANDS; i++)q->old_floor[i] = 1.0;
673 for(i = 0; i < COEFFS; i++)q->CWdecoded[i] = 0;
674 q->decoder_reset = 0;
677 flag = get_bits1(&q->gb);
678 imc_read_level_coeffs(q, stream_format_code, q->levlCoeffBuf);
680 if (stream_format_code & 0x4)
681 imc_decode_level_coefficients(q, q->levlCoeffBuf, q->flcoeffs1, q->flcoeffs2);
682 else
683 imc_decode_level_coefficients2(q, q->levlCoeffBuf, q->old_floor, q->flcoeffs1, q->flcoeffs2);
685 memcpy(q->old_floor, q->flcoeffs1, 32 * sizeof(float));
687 counter = 0;
688 for (i=0 ; i<BANDS ; i++) {
689 if (q->levlCoeffBuf[i] == 16) {
690 q->bandWidthT[i] = 0;
691 counter++;
692 } else
693 q->bandWidthT[i] = band_tab[i+1] - band_tab[i];
695 memset(q->bandFlagsBuf, 0, BANDS * sizeof(int));
696 for(i = 0; i < BANDS-1; i++) {
697 if (q->bandWidthT[i])
698 q->bandFlagsBuf[i] = get_bits1(&q->gb);
701 imc_calculate_coeffs(q, q->flcoeffs1, q->flcoeffs2, q->bandWidthT, q->flcoeffs3, q->flcoeffs5);
703 bitscount = 0;
704 /* first 4 bands will be assigned 5 bits per coefficient */
705 if (stream_format_code & 0x2) {
706 bitscount += 15;
708 q->bitsBandT[0] = 5;
709 q->CWlengthT[0] = 5;
710 q->CWlengthT[1] = 5;
711 q->CWlengthT[2] = 5;
712 for(i = 1; i < 4; i++){
713 bits = (q->levlCoeffBuf[i] == 16) ? 0 : 5;
714 q->bitsBandT[i] = bits;
715 for(j = band_tab[i]; j < band_tab[i+1]; j++) {
716 q->CWlengthT[j] = bits;
717 bitscount += bits;
722 if(bit_allocation (q, stream_format_code, 512 - bitscount - get_bits_count(&q->gb), flag) < 0) {
723 av_log(avctx, AV_LOG_ERROR, "Bit allocations failed\n");
724 q->decoder_reset = 1;
725 return -1;
728 for(i = 0; i < BANDS; i++) {
729 q->sumLenArr[i] = 0;
730 q->skipFlagRaw[i] = 0;
731 for(j = band_tab[i]; j < band_tab[i+1]; j++)
732 q->sumLenArr[i] += q->CWlengthT[j];
733 if (q->bandFlagsBuf[i])
734 if( (((band_tab[i+1] - band_tab[i]) * 1.5) > q->sumLenArr[i]) && (q->sumLenArr[i] > 0))
735 q->skipFlagRaw[i] = 1;
738 imc_get_skip_coeff(q);
740 for(i = 0; i < BANDS; i++) {
741 q->flcoeffs6[i] = q->flcoeffs1[i];
742 /* band has flag set and at least one coded coefficient */
743 if (q->bandFlagsBuf[i] && (band_tab[i+1] - band_tab[i]) != q->skipFlagCount[i]){
744 q->flcoeffs6[i] *= q->sqrt_tab[band_tab[i+1] - band_tab[i]] /
745 q->sqrt_tab[(band_tab[i+1] - band_tab[i] - q->skipFlagCount[i])];
749 /* calculate bits left, bits needed and adjust bit allocation */
750 bits = summer = 0;
752 for(i = 0; i < BANDS; i++) {
753 if (q->bandFlagsBuf[i]) {
754 for(j = band_tab[i]; j < band_tab[i+1]; j++) {
755 if(q->skipFlags[j]) {
756 summer += q->CWlengthT[j];
757 q->CWlengthT[j] = 0;
760 bits += q->skipFlagBits[i];
761 summer -= q->skipFlagBits[i];
764 imc_adjust_bit_allocation(q, summer);
766 for(i = 0; i < BANDS; i++) {
767 q->sumLenArr[i] = 0;
769 for(j = band_tab[i]; j < band_tab[i+1]; j++)
770 if (!q->skipFlags[j])
771 q->sumLenArr[i] += q->CWlengthT[j];
774 memset(q->codewords, 0, sizeof(q->codewords));
776 if(imc_get_coeffs(q) < 0) {
777 av_log(avctx, AV_LOG_ERROR, "Read coefficients failed\n");
778 q->decoder_reset = 1;
779 return 0;
782 if(inverse_quant_coeff(q, stream_format_code) < 0) {
783 av_log(avctx, AV_LOG_ERROR, "Inverse quantization of coefficients failed\n");
784 q->decoder_reset = 1;
785 return 0;
788 memset(q->skipFlags, 0, sizeof(q->skipFlags));
790 imc_imdct256(q);
792 q->dsp.float_to_int16(data, q->out_samples, COEFFS);
794 *data_size = COEFFS * sizeof(int16_t);
796 return IMC_BLOCK_SIZE;
800 static av_cold int imc_decode_close(AVCodecContext * avctx)
802 IMCContext *q = avctx->priv_data;
804 ff_fft_end(&q->fft);
805 return 0;
809 AVCodec imc_decoder = {
810 .name = "imc",
811 .type = CODEC_TYPE_AUDIO,
812 .id = CODEC_ID_IMC,
813 .priv_data_size = sizeof(IMCContext),
814 .init = imc_decode_init,
815 .close = imc_decode_close,
816 .decode = imc_decode_frame,
817 .long_name = NULL_IF_CONFIG_SMALL("IMC (Intel Music Coder)"),