lavfi: switch to AVFrame.
[FFMpeg-mirror/mplayer-patches.git] / libavcodec / imc.c
blob9b984c12bb8d9103753463b7519e9f11d750fae2
1 /*
2 * IMC compatible decoder
3 * Copyright (c) 2002-2004 Maxim Poliakovski
4 * Copyright (c) 2006 Benjamin Larsson
5 * Copyright (c) 2006 Konstantin Shishkov
7 * This file is part of Libav.
9 * Libav is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
14 * Libav is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with Libav; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 /**
25 * @file
26 * IMC - Intel Music Coder
27 * A mdct based codec using a 256 points large transform
28 * divided into 32 bands with some mix of scale factors.
29 * Only mono is supported.
34 #include <math.h>
35 #include <stddef.h>
36 #include <stdio.h>
38 #include "libavutil/channel_layout.h"
39 #include "libavutil/float_dsp.h"
40 #include "libavutil/internal.h"
41 #include "avcodec.h"
42 #include "get_bits.h"
43 #include "dsputil.h"
44 #include "fft.h"
45 #include "internal.h"
46 #include "sinewin.h"
48 #include "imcdata.h"
50 #define IMC_BLOCK_SIZE 64
51 #define IMC_FRAME_ID 0x21
52 #define BANDS 32
53 #define COEFFS 256
55 typedef struct IMCChannel {
56 float old_floor[BANDS];
57 float flcoeffs1[BANDS];
58 float flcoeffs2[BANDS];
59 float flcoeffs3[BANDS];
60 float flcoeffs4[BANDS];
61 float flcoeffs5[BANDS];
62 float flcoeffs6[BANDS];
63 float CWdecoded[COEFFS];
65 int bandWidthT[BANDS]; ///< codewords per band
66 int bitsBandT[BANDS]; ///< how many bits per codeword in band
67 int CWlengthT[COEFFS]; ///< how many bits in each codeword
68 int levlCoeffBuf[BANDS];
69 int bandFlagsBuf[BANDS]; ///< flags for each band
70 int sumLenArr[BANDS]; ///< bits for all coeffs in band
71 int skipFlagRaw[BANDS]; ///< skip flags are stored in raw form or not
72 int skipFlagBits[BANDS]; ///< bits used to code skip flags
73 int skipFlagCount[BANDS]; ///< skipped coeffients per band
74 int skipFlags[COEFFS]; ///< skip coefficient decoding or not
75 int codewords[COEFFS]; ///< raw codewords read from bitstream
77 float last_fft_im[COEFFS];
79 int decoder_reset;
80 } IMCChannel;
82 typedef struct {
83 IMCChannel chctx[2];
85 /** MDCT tables */
86 //@{
87 float mdct_sine_window[COEFFS];
88 float post_cos[COEFFS];
89 float post_sin[COEFFS];
90 float pre_coef1[COEFFS];
91 float pre_coef2[COEFFS];
92 //@}
94 float sqrt_tab[30];
95 GetBitContext gb;
97 DSPContext dsp;
98 AVFloatDSPContext fdsp;
99 FFTContext fft;
100 DECLARE_ALIGNED(32, FFTComplex, samples)[COEFFS / 2];
101 float *out_samples;
103 int8_t cyclTab[32], cyclTab2[32];
104 float weights1[31], weights2[31];
105 } IMCContext;
107 static VLC huffman_vlc[4][4];
109 #define VLC_TABLES_SIZE 9512
111 static const int vlc_offsets[17] = {
112 0, 640, 1156, 1732, 2308, 2852, 3396, 3924,
113 4452, 5220, 5860, 6628, 7268, 7908, 8424, 8936, VLC_TABLES_SIZE
116 static VLC_TYPE vlc_tables[VLC_TABLES_SIZE][2];
118 static inline double freq2bark(double freq)
120 return 3.5 * atan((freq / 7500.0) * (freq / 7500.0)) + 13.0 * atan(freq * 0.00076);
123 static av_cold void iac_generate_tabs(IMCContext *q, int sampling_rate)
125 double freqmin[32], freqmid[32], freqmax[32];
126 double scale = sampling_rate / (256.0 * 2.0 * 2.0);
127 double nyquist_freq = sampling_rate * 0.5;
128 double freq, bark, prev_bark = 0, tf, tb;
129 int i, j;
131 for (i = 0; i < 32; i++) {
132 freq = (band_tab[i] + band_tab[i + 1] - 1) * scale;
133 bark = freq2bark(freq);
135 if (i > 0) {
136 tb = bark - prev_bark;
137 q->weights1[i - 1] = pow(10.0, -1.0 * tb);
138 q->weights2[i - 1] = pow(10.0, -2.7 * tb);
140 prev_bark = bark;
142 freqmid[i] = freq;
144 tf = freq;
145 while (tf < nyquist_freq) {
146 tf += 0.5;
147 tb = freq2bark(tf);
148 if (tb > bark + 0.5)
149 break;
151 freqmax[i] = tf;
153 tf = freq;
154 while (tf > 0.0) {
155 tf -= 0.5;
156 tb = freq2bark(tf);
157 if (tb <= bark - 0.5)
158 break;
160 freqmin[i] = tf;
163 for (i = 0; i < 32; i++) {
164 freq = freqmax[i];
165 for (j = 31; j > 0 && freq <= freqmid[j]; j--);
166 q->cyclTab[i] = j + 1;
168 freq = freqmin[i];
169 for (j = 0; j < 32 && freq >= freqmid[j]; j++);
170 q->cyclTab2[i] = j - 1;
174 static av_cold int imc_decode_init(AVCodecContext *avctx)
176 int i, j, ret;
177 IMCContext *q = avctx->priv_data;
178 double r1, r2;
180 if (avctx->codec_id == AV_CODEC_ID_IMC)
181 avctx->channels = 1;
183 if (avctx->channels > 2) {
184 av_log_ask_for_sample(avctx, "Number of channels is not supported\n");
185 return AVERROR_PATCHWELCOME;
188 for (j = 0; j < avctx->channels; j++) {
189 q->chctx[j].decoder_reset = 1;
191 for (i = 0; i < BANDS; i++)
192 q->chctx[j].old_floor[i] = 1.0;
194 for (i = 0; i < COEFFS / 2; i++)
195 q->chctx[j].last_fft_im[i] = 0;
198 /* Build mdct window, a simple sine window normalized with sqrt(2) */
199 ff_sine_window_init(q->mdct_sine_window, COEFFS);
200 for (i = 0; i < COEFFS; i++)
201 q->mdct_sine_window[i] *= sqrt(2.0);
202 for (i = 0; i < COEFFS / 2; i++) {
203 q->post_cos[i] = (1.0f / 32768) * cos(i / 256.0 * M_PI);
204 q->post_sin[i] = (1.0f / 32768) * sin(i / 256.0 * M_PI);
206 r1 = sin((i * 4.0 + 1.0) / 1024.0 * M_PI);
207 r2 = cos((i * 4.0 + 1.0) / 1024.0 * M_PI);
209 if (i & 0x1) {
210 q->pre_coef1[i] = (r1 + r2) * sqrt(2.0);
211 q->pre_coef2[i] = -(r1 - r2) * sqrt(2.0);
212 } else {
213 q->pre_coef1[i] = -(r1 + r2) * sqrt(2.0);
214 q->pre_coef2[i] = (r1 - r2) * sqrt(2.0);
218 /* Generate a square root table */
220 for (i = 0; i < 30; i++)
221 q->sqrt_tab[i] = sqrt(i);
223 /* initialize the VLC tables */
224 for (i = 0; i < 4 ; i++) {
225 for (j = 0; j < 4; j++) {
226 huffman_vlc[i][j].table = &vlc_tables[vlc_offsets[i * 4 + j]];
227 huffman_vlc[i][j].table_allocated = vlc_offsets[i * 4 + j + 1] - vlc_offsets[i * 4 + j];
228 init_vlc(&huffman_vlc[i][j], 9, imc_huffman_sizes[i],
229 imc_huffman_lens[i][j], 1, 1,
230 imc_huffman_bits[i][j], 2, 2, INIT_VLC_USE_NEW_STATIC);
234 if (avctx->codec_id == AV_CODEC_ID_IAC) {
235 iac_generate_tabs(q, avctx->sample_rate);
236 } else {
237 memcpy(q->cyclTab, cyclTab, sizeof(cyclTab));
238 memcpy(q->cyclTab2, cyclTab2, sizeof(cyclTab2));
239 memcpy(q->weights1, imc_weights1, sizeof(imc_weights1));
240 memcpy(q->weights2, imc_weights2, sizeof(imc_weights2));
243 if ((ret = ff_fft_init(&q->fft, 7, 1))) {
244 av_log(avctx, AV_LOG_INFO, "FFT init failed\n");
245 return ret;
247 ff_dsputil_init(&q->dsp, avctx);
248 avpriv_float_dsp_init(&q->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
249 avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
250 avctx->channel_layout = avctx->channels == 1 ? AV_CH_LAYOUT_MONO
251 : AV_CH_LAYOUT_STEREO;
253 return 0;
256 static void imc_calculate_coeffs(IMCContext *q, float *flcoeffs1,
257 float *flcoeffs2, int *bandWidthT,
258 float *flcoeffs3, float *flcoeffs5)
260 float workT1[BANDS];
261 float workT2[BANDS];
262 float workT3[BANDS];
263 float snr_limit = 1.e-30;
264 float accum = 0.0;
265 int i, cnt2;
267 for (i = 0; i < BANDS; i++) {
268 flcoeffs5[i] = workT2[i] = 0.0;
269 if (bandWidthT[i]) {
270 workT1[i] = flcoeffs1[i] * flcoeffs1[i];
271 flcoeffs3[i] = 2.0 * flcoeffs2[i];
272 } else {
273 workT1[i] = 0.0;
274 flcoeffs3[i] = -30000.0;
276 workT3[i] = bandWidthT[i] * workT1[i] * 0.01;
277 if (workT3[i] <= snr_limit)
278 workT3[i] = 0.0;
281 for (i = 0; i < BANDS; i++) {
282 for (cnt2 = i; cnt2 < q->cyclTab[i]; cnt2++)
283 flcoeffs5[cnt2] = flcoeffs5[cnt2] + workT3[i];
284 workT2[cnt2 - 1] = workT2[cnt2 - 1] + workT3[i];
287 for (i = 1; i < BANDS; i++) {
288 accum = (workT2[i - 1] + accum) * q->weights1[i - 1];
289 flcoeffs5[i] += accum;
292 for (i = 0; i < BANDS; i++)
293 workT2[i] = 0.0;
295 for (i = 0; i < BANDS; i++) {
296 for (cnt2 = i - 1; cnt2 > q->cyclTab2[i]; cnt2--)
297 flcoeffs5[cnt2] += workT3[i];
298 workT2[cnt2+1] += workT3[i];
301 accum = 0.0;
303 for (i = BANDS-2; i >= 0; i--) {
304 accum = (workT2[i+1] + accum) * q->weights2[i];
305 flcoeffs5[i] += accum;
306 // there is missing code here, but it seems to never be triggered
311 static void imc_read_level_coeffs(IMCContext *q, int stream_format_code,
312 int *levlCoeffs)
314 int i;
315 VLC *hufftab[4];
316 int start = 0;
317 const uint8_t *cb_sel;
318 int s;
320 s = stream_format_code >> 1;
321 hufftab[0] = &huffman_vlc[s][0];
322 hufftab[1] = &huffman_vlc[s][1];
323 hufftab[2] = &huffman_vlc[s][2];
324 hufftab[3] = &huffman_vlc[s][3];
325 cb_sel = imc_cb_select[s];
327 if (stream_format_code & 4)
328 start = 1;
329 if (start)
330 levlCoeffs[0] = get_bits(&q->gb, 7);
331 for (i = start; i < BANDS; i++) {
332 levlCoeffs[i] = get_vlc2(&q->gb, hufftab[cb_sel[i]]->table,
333 hufftab[cb_sel[i]]->bits, 2);
334 if (levlCoeffs[i] == 17)
335 levlCoeffs[i] += get_bits(&q->gb, 4);
339 static void imc_decode_level_coefficients(IMCContext *q, int *levlCoeffBuf,
340 float *flcoeffs1, float *flcoeffs2)
342 int i, level;
343 float tmp, tmp2;
344 // maybe some frequency division thingy
346 flcoeffs1[0] = 20000.0 / pow (2, levlCoeffBuf[0] * 0.18945); // 0.18945 = log2(10) * 0.05703125
347 flcoeffs2[0] = log2f(flcoeffs1[0]);
348 tmp = flcoeffs1[0];
349 tmp2 = flcoeffs2[0];
351 for (i = 1; i < BANDS; i++) {
352 level = levlCoeffBuf[i];
353 if (level == 16) {
354 flcoeffs1[i] = 1.0;
355 flcoeffs2[i] = 0.0;
356 } else {
357 if (level < 17)
358 level -= 7;
359 else if (level <= 24)
360 level -= 32;
361 else
362 level -= 16;
364 tmp *= imc_exp_tab[15 + level];
365 tmp2 += 0.83048 * level; // 0.83048 = log2(10) * 0.25
366 flcoeffs1[i] = tmp;
367 flcoeffs2[i] = tmp2;
373 static void imc_decode_level_coefficients2(IMCContext *q, int *levlCoeffBuf,
374 float *old_floor, float *flcoeffs1,
375 float *flcoeffs2)
377 int i;
378 /* FIXME maybe flag_buf = noise coding and flcoeffs1 = new scale factors
379 * and flcoeffs2 old scale factors
380 * might be incomplete due to a missing table that is in the binary code
382 for (i = 0; i < BANDS; i++) {
383 flcoeffs1[i] = 0;
384 if (levlCoeffBuf[i] < 16) {
385 flcoeffs1[i] = imc_exp_tab2[levlCoeffBuf[i]] * old_floor[i];
386 flcoeffs2[i] = (levlCoeffBuf[i] - 7) * 0.83048 + flcoeffs2[i]; // 0.83048 = log2(10) * 0.25
387 } else {
388 flcoeffs1[i] = old_floor[i];
394 * Perform bit allocation depending on bits available
396 static int bit_allocation(IMCContext *q, IMCChannel *chctx,
397 int stream_format_code, int freebits, int flag)
399 int i, j;
400 const float limit = -1.e20;
401 float highest = 0.0;
402 int indx;
403 int t1 = 0;
404 int t2 = 1;
405 float summa = 0.0;
406 int iacc = 0;
407 int summer = 0;
408 int rres, cwlen;
409 float lowest = 1.e10;
410 int low_indx = 0;
411 float workT[32];
412 int flg;
413 int found_indx = 0;
415 for (i = 0; i < BANDS; i++)
416 highest = FFMAX(highest, chctx->flcoeffs1[i]);
418 for (i = 0; i < BANDS - 1; i++)
419 chctx->flcoeffs4[i] = chctx->flcoeffs3[i] - log2f(chctx->flcoeffs5[i]);
420 chctx->flcoeffs4[BANDS - 1] = limit;
422 highest = highest * 0.25;
424 for (i = 0; i < BANDS; i++) {
425 indx = -1;
426 if ((band_tab[i + 1] - band_tab[i]) == chctx->bandWidthT[i])
427 indx = 0;
429 if ((band_tab[i + 1] - band_tab[i]) > chctx->bandWidthT[i])
430 indx = 1;
432 if (((band_tab[i + 1] - band_tab[i]) / 2) >= chctx->bandWidthT[i])
433 indx = 2;
435 if (indx == -1)
436 return AVERROR_INVALIDDATA;
438 chctx->flcoeffs4[i] += xTab[(indx * 2 + (chctx->flcoeffs1[i] < highest)) * 2 + flag];
441 if (stream_format_code & 0x2) {
442 chctx->flcoeffs4[0] = limit;
443 chctx->flcoeffs4[1] = limit;
444 chctx->flcoeffs4[2] = limit;
445 chctx->flcoeffs4[3] = limit;
448 for (i = (stream_format_code & 0x2) ? 4 : 0; i < BANDS - 1; i++) {
449 iacc += chctx->bandWidthT[i];
450 summa += chctx->bandWidthT[i] * chctx->flcoeffs4[i];
452 chctx->bandWidthT[BANDS - 1] = 0;
453 summa = (summa * 0.5 - freebits) / iacc;
456 for (i = 0; i < BANDS / 2; i++) {
457 rres = summer - freebits;
458 if ((rres >= -8) && (rres <= 8))
459 break;
461 summer = 0;
462 iacc = 0;
464 for (j = (stream_format_code & 0x2) ? 4 : 0; j < BANDS; j++) {
465 cwlen = av_clipf(((chctx->flcoeffs4[j] * 0.5) - summa + 0.5), 0, 6);
467 chctx->bitsBandT[j] = cwlen;
468 summer += chctx->bandWidthT[j] * cwlen;
470 if (cwlen > 0)
471 iacc += chctx->bandWidthT[j];
474 flg = t2;
475 t2 = 1;
476 if (freebits < summer)
477 t2 = -1;
478 if (i == 0)
479 flg = t2;
480 if (flg != t2)
481 t1++;
483 summa = (float)(summer - freebits) / ((t1 + 1) * iacc) + summa;
486 for (i = (stream_format_code & 0x2) ? 4 : 0; i < BANDS; i++) {
487 for (j = band_tab[i]; j < band_tab[i + 1]; j++)
488 chctx->CWlengthT[j] = chctx->bitsBandT[i];
491 if (freebits > summer) {
492 for (i = 0; i < BANDS; i++) {
493 workT[i] = (chctx->bitsBandT[i] == 6) ? -1.e20
494 : (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] - 0.415);
497 highest = 0.0;
499 do {
500 if (highest <= -1.e20)
501 break;
503 found_indx = 0;
504 highest = -1.e20;
506 for (i = 0; i < BANDS; i++) {
507 if (workT[i] > highest) {
508 highest = workT[i];
509 found_indx = i;
513 if (highest > -1.e20) {
514 workT[found_indx] -= 2.0;
515 if (++chctx->bitsBandT[found_indx] == 6)
516 workT[found_indx] = -1.e20;
518 for (j = band_tab[found_indx]; j < band_tab[found_indx + 1] && (freebits > summer); j++) {
519 chctx->CWlengthT[j]++;
520 summer++;
523 } while (freebits > summer);
525 if (freebits < summer) {
526 for (i = 0; i < BANDS; i++) {
527 workT[i] = chctx->bitsBandT[i] ? (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] + 1.585)
528 : 1.e20;
530 if (stream_format_code & 0x2) {
531 workT[0] = 1.e20;
532 workT[1] = 1.e20;
533 workT[2] = 1.e20;
534 workT[3] = 1.e20;
536 while (freebits < summer) {
537 lowest = 1.e10;
538 low_indx = 0;
539 for (i = 0; i < BANDS; i++) {
540 if (workT[i] < lowest) {
541 lowest = workT[i];
542 low_indx = i;
545 // if (lowest >= 1.e10)
546 // break;
547 workT[low_indx] = lowest + 2.0;
549 if (!--chctx->bitsBandT[low_indx])
550 workT[low_indx] = 1.e20;
552 for (j = band_tab[low_indx]; j < band_tab[low_indx+1] && (freebits < summer); j++) {
553 if (chctx->CWlengthT[j] > 0) {
554 chctx->CWlengthT[j]--;
555 summer--;
560 return 0;
563 static void imc_get_skip_coeff(IMCContext *q, IMCChannel *chctx)
565 int i, j;
567 memset(chctx->skipFlagBits, 0, sizeof(chctx->skipFlagBits));
568 memset(chctx->skipFlagCount, 0, sizeof(chctx->skipFlagCount));
569 for (i = 0; i < BANDS; i++) {
570 if (!chctx->bandFlagsBuf[i] || !chctx->bandWidthT[i])
571 continue;
573 if (!chctx->skipFlagRaw[i]) {
574 chctx->skipFlagBits[i] = band_tab[i + 1] - band_tab[i];
576 for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
577 chctx->skipFlags[j] = get_bits1(&q->gb);
578 if (chctx->skipFlags[j])
579 chctx->skipFlagCount[i]++;
581 } else {
582 for (j = band_tab[i]; j < band_tab[i + 1] - 1; j += 2) {
583 if (!get_bits1(&q->gb)) { // 0
584 chctx->skipFlagBits[i]++;
585 chctx->skipFlags[j] = 1;
586 chctx->skipFlags[j + 1] = 1;
587 chctx->skipFlagCount[i] += 2;
588 } else {
589 if (get_bits1(&q->gb)) { // 11
590 chctx->skipFlagBits[i] += 2;
591 chctx->skipFlags[j] = 0;
592 chctx->skipFlags[j + 1] = 1;
593 chctx->skipFlagCount[i]++;
594 } else {
595 chctx->skipFlagBits[i] += 3;
596 chctx->skipFlags[j + 1] = 0;
597 if (!get_bits1(&q->gb)) { // 100
598 chctx->skipFlags[j] = 1;
599 chctx->skipFlagCount[i]++;
600 } else { // 101
601 chctx->skipFlags[j] = 0;
607 if (j < band_tab[i + 1]) {
608 chctx->skipFlagBits[i]++;
609 if ((chctx->skipFlags[j] = get_bits1(&q->gb)))
610 chctx->skipFlagCount[i]++;
617 * Increase highest' band coefficient sizes as some bits won't be used
619 static void imc_adjust_bit_allocation(IMCContext *q, IMCChannel *chctx,
620 int summer)
622 float workT[32];
623 int corrected = 0;
624 int i, j;
625 float highest = 0;
626 int found_indx = 0;
628 for (i = 0; i < BANDS; i++) {
629 workT[i] = (chctx->bitsBandT[i] == 6) ? -1.e20
630 : (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] - 0.415);
633 while (corrected < summer) {
634 if (highest <= -1.e20)
635 break;
637 highest = -1.e20;
639 for (i = 0; i < BANDS; i++) {
640 if (workT[i] > highest) {
641 highest = workT[i];
642 found_indx = i;
646 if (highest > -1.e20) {
647 workT[found_indx] -= 2.0;
648 if (++(chctx->bitsBandT[found_indx]) == 6)
649 workT[found_indx] = -1.e20;
651 for (j = band_tab[found_indx]; j < band_tab[found_indx+1] && (corrected < summer); j++) {
652 if (!chctx->skipFlags[j] && (chctx->CWlengthT[j] < 6)) {
653 chctx->CWlengthT[j]++;
654 corrected++;
661 static void imc_imdct256(IMCContext *q, IMCChannel *chctx, int channels)
663 int i;
664 float re, im;
665 float *dst1 = q->out_samples;
666 float *dst2 = q->out_samples + (COEFFS - 1);
668 /* prerotation */
669 for (i = 0; i < COEFFS / 2; i++) {
670 q->samples[i].re = -(q->pre_coef1[i] * chctx->CWdecoded[COEFFS - 1 - i * 2]) -
671 (q->pre_coef2[i] * chctx->CWdecoded[i * 2]);
672 q->samples[i].im = (q->pre_coef2[i] * chctx->CWdecoded[COEFFS - 1 - i * 2]) -
673 (q->pre_coef1[i] * chctx->CWdecoded[i * 2]);
676 /* FFT */
677 q->fft.fft_permute(&q->fft, q->samples);
678 q->fft.fft_calc(&q->fft, q->samples);
680 /* postrotation, window and reorder */
681 for (i = 0; i < COEFFS / 2; i++) {
682 re = ( q->samples[i].re * q->post_cos[i]) + (-q->samples[i].im * q->post_sin[i]);
683 im = (-q->samples[i].im * q->post_cos[i]) - ( q->samples[i].re * q->post_sin[i]);
684 *dst1 = (q->mdct_sine_window[COEFFS - 1 - i * 2] * chctx->last_fft_im[i])
685 + (q->mdct_sine_window[i * 2] * re);
686 *dst2 = (q->mdct_sine_window[i * 2] * chctx->last_fft_im[i])
687 - (q->mdct_sine_window[COEFFS - 1 - i * 2] * re);
688 dst1 += 2;
689 dst2 -= 2;
690 chctx->last_fft_im[i] = im;
694 static int inverse_quant_coeff(IMCContext *q, IMCChannel *chctx,
695 int stream_format_code)
697 int i, j;
698 int middle_value, cw_len, max_size;
699 const float *quantizer;
701 for (i = 0; i < BANDS; i++) {
702 for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
703 chctx->CWdecoded[j] = 0;
704 cw_len = chctx->CWlengthT[j];
706 if (cw_len <= 0 || chctx->skipFlags[j])
707 continue;
709 max_size = 1 << cw_len;
710 middle_value = max_size >> 1;
712 if (chctx->codewords[j] >= max_size || chctx->codewords[j] < 0)
713 return AVERROR_INVALIDDATA;
715 if (cw_len >= 4) {
716 quantizer = imc_quantizer2[(stream_format_code & 2) >> 1];
717 if (chctx->codewords[j] >= middle_value)
718 chctx->CWdecoded[j] = quantizer[chctx->codewords[j] - 8] * chctx->flcoeffs6[i];
719 else
720 chctx->CWdecoded[j] = -quantizer[max_size - chctx->codewords[j] - 8 - 1] * chctx->flcoeffs6[i];
721 }else{
722 quantizer = imc_quantizer1[((stream_format_code & 2) >> 1) | (chctx->bandFlagsBuf[i] << 1)];
723 if (chctx->codewords[j] >= middle_value)
724 chctx->CWdecoded[j] = quantizer[chctx->codewords[j] - 1] * chctx->flcoeffs6[i];
725 else
726 chctx->CWdecoded[j] = -quantizer[max_size - 2 - chctx->codewords[j]] * chctx->flcoeffs6[i];
730 return 0;
734 static int imc_get_coeffs(IMCContext *q, IMCChannel *chctx)
736 int i, j, cw_len, cw;
738 for (i = 0; i < BANDS; i++) {
739 if (!chctx->sumLenArr[i])
740 continue;
741 if (chctx->bandFlagsBuf[i] || chctx->bandWidthT[i]) {
742 for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
743 cw_len = chctx->CWlengthT[j];
744 cw = 0;
746 if (get_bits_count(&q->gb) + cw_len > 512) {
747 av_dlog(NULL, "Band %i coeff %i cw_len %i\n", i, j, cw_len);
748 return AVERROR_INVALIDDATA;
751 if (cw_len && (!chctx->bandFlagsBuf[i] || !chctx->skipFlags[j]))
752 cw = get_bits(&q->gb, cw_len);
754 chctx->codewords[j] = cw;
758 return 0;
761 static int imc_decode_block(AVCodecContext *avctx, IMCContext *q, int ch)
763 int stream_format_code;
764 int imc_hdr, i, j, ret;
765 int flag;
766 int bits, summer;
767 int counter, bitscount;
768 IMCChannel *chctx = q->chctx + ch;
771 /* Check the frame header */
772 imc_hdr = get_bits(&q->gb, 9);
773 if (imc_hdr & 0x18) {
774 av_log(avctx, AV_LOG_ERROR, "frame header check failed!\n");
775 av_log(avctx, AV_LOG_ERROR, "got %X.\n", imc_hdr);
776 return AVERROR_INVALIDDATA;
778 stream_format_code = get_bits(&q->gb, 3);
780 if (stream_format_code & 1) {
781 av_log_ask_for_sample(avctx, "Stream format %X is not supported\n",
782 stream_format_code);
783 return AVERROR_PATCHWELCOME;
786 if (stream_format_code & 0x04)
787 chctx->decoder_reset = 1;
789 if (chctx->decoder_reset) {
790 for (i = 0; i < BANDS; i++)
791 chctx->old_floor[i] = 1.0;
792 for (i = 0; i < COEFFS; i++)
793 chctx->CWdecoded[i] = 0;
794 chctx->decoder_reset = 0;
797 flag = get_bits1(&q->gb);
798 imc_read_level_coeffs(q, stream_format_code, chctx->levlCoeffBuf);
800 if (stream_format_code & 0x4)
801 imc_decode_level_coefficients(q, chctx->levlCoeffBuf,
802 chctx->flcoeffs1, chctx->flcoeffs2);
803 else
804 imc_decode_level_coefficients2(q, chctx->levlCoeffBuf, chctx->old_floor,
805 chctx->flcoeffs1, chctx->flcoeffs2);
807 memcpy(chctx->old_floor, chctx->flcoeffs1, 32 * sizeof(float));
809 counter = 0;
810 for (i = 0; i < BANDS; i++) {
811 if (chctx->levlCoeffBuf[i] == 16) {
812 chctx->bandWidthT[i] = 0;
813 counter++;
814 } else
815 chctx->bandWidthT[i] = band_tab[i + 1] - band_tab[i];
817 memset(chctx->bandFlagsBuf, 0, BANDS * sizeof(int));
818 for (i = 0; i < BANDS - 1; i++) {
819 if (chctx->bandWidthT[i])
820 chctx->bandFlagsBuf[i] = get_bits1(&q->gb);
823 imc_calculate_coeffs(q, chctx->flcoeffs1, chctx->flcoeffs2, chctx->bandWidthT, chctx->flcoeffs3, chctx->flcoeffs5);
825 bitscount = 0;
826 /* first 4 bands will be assigned 5 bits per coefficient */
827 if (stream_format_code & 0x2) {
828 bitscount += 15;
830 chctx->bitsBandT[0] = 5;
831 chctx->CWlengthT[0] = 5;
832 chctx->CWlengthT[1] = 5;
833 chctx->CWlengthT[2] = 5;
834 for (i = 1; i < 4; i++) {
835 bits = (chctx->levlCoeffBuf[i] == 16) ? 0 : 5;
836 chctx->bitsBandT[i] = bits;
837 for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
838 chctx->CWlengthT[j] = bits;
839 bitscount += bits;
843 if (avctx->codec_id == AV_CODEC_ID_IAC) {
844 bitscount += !!chctx->bandWidthT[BANDS - 1];
845 if (!(stream_format_code & 0x2))
846 bitscount += 16;
849 if ((ret = bit_allocation(q, chctx, stream_format_code,
850 512 - bitscount - get_bits_count(&q->gb),
851 flag)) < 0) {
852 av_log(avctx, AV_LOG_ERROR, "Bit allocations failed\n");
853 chctx->decoder_reset = 1;
854 return ret;
857 for (i = 0; i < BANDS; i++) {
858 chctx->sumLenArr[i] = 0;
859 chctx->skipFlagRaw[i] = 0;
860 for (j = band_tab[i]; j < band_tab[i + 1]; j++)
861 chctx->sumLenArr[i] += chctx->CWlengthT[j];
862 if (chctx->bandFlagsBuf[i])
863 if ((((band_tab[i + 1] - band_tab[i]) * 1.5) > chctx->sumLenArr[i]) && (chctx->sumLenArr[i] > 0))
864 chctx->skipFlagRaw[i] = 1;
867 imc_get_skip_coeff(q, chctx);
869 for (i = 0; i < BANDS; i++) {
870 chctx->flcoeffs6[i] = chctx->flcoeffs1[i];
871 /* band has flag set and at least one coded coefficient */
872 if (chctx->bandFlagsBuf[i] && (band_tab[i + 1] - band_tab[i]) != chctx->skipFlagCount[i]) {
873 chctx->flcoeffs6[i] *= q->sqrt_tab[ band_tab[i + 1] - band_tab[i]] /
874 q->sqrt_tab[(band_tab[i + 1] - band_tab[i] - chctx->skipFlagCount[i])];
878 /* calculate bits left, bits needed and adjust bit allocation */
879 bits = summer = 0;
881 for (i = 0; i < BANDS; i++) {
882 if (chctx->bandFlagsBuf[i]) {
883 for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
884 if (chctx->skipFlags[j]) {
885 summer += chctx->CWlengthT[j];
886 chctx->CWlengthT[j] = 0;
889 bits += chctx->skipFlagBits[i];
890 summer -= chctx->skipFlagBits[i];
893 imc_adjust_bit_allocation(q, chctx, summer);
895 for (i = 0; i < BANDS; i++) {
896 chctx->sumLenArr[i] = 0;
898 for (j = band_tab[i]; j < band_tab[i + 1]; j++)
899 if (!chctx->skipFlags[j])
900 chctx->sumLenArr[i] += chctx->CWlengthT[j];
903 memset(chctx->codewords, 0, sizeof(chctx->codewords));
905 if (imc_get_coeffs(q, chctx) < 0) {
906 av_log(avctx, AV_LOG_ERROR, "Read coefficients failed\n");
907 chctx->decoder_reset = 1;
908 return AVERROR_INVALIDDATA;
911 if (inverse_quant_coeff(q, chctx, stream_format_code) < 0) {
912 av_log(avctx, AV_LOG_ERROR, "Inverse quantization of coefficients failed\n");
913 chctx->decoder_reset = 1;
914 return AVERROR_INVALIDDATA;
917 memset(chctx->skipFlags, 0, sizeof(chctx->skipFlags));
919 imc_imdct256(q, chctx, avctx->channels);
921 return 0;
924 static int imc_decode_frame(AVCodecContext *avctx, void *data,
925 int *got_frame_ptr, AVPacket *avpkt)
927 AVFrame *frame = data;
928 const uint8_t *buf = avpkt->data;
929 int buf_size = avpkt->size;
930 int ret, i;
932 IMCContext *q = avctx->priv_data;
934 LOCAL_ALIGNED_16(uint16_t, buf16, [IMC_BLOCK_SIZE / 2]);
936 if (buf_size < IMC_BLOCK_SIZE * avctx->channels) {
937 av_log(avctx, AV_LOG_ERROR, "frame too small!\n");
938 return AVERROR_INVALIDDATA;
941 /* get output buffer */
942 frame->nb_samples = COEFFS;
943 if ((ret = ff_get_buffer(avctx, frame)) < 0) {
944 av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
945 return ret;
948 for (i = 0; i < avctx->channels; i++) {
949 q->out_samples = (float *)frame->extended_data[i];
951 q->dsp.bswap16_buf(buf16, (const uint16_t*)buf, IMC_BLOCK_SIZE / 2);
953 init_get_bits(&q->gb, (const uint8_t*)buf16, IMC_BLOCK_SIZE * 8);
955 buf += IMC_BLOCK_SIZE;
957 if ((ret = imc_decode_block(avctx, q, i)) < 0)
958 return ret;
961 if (avctx->channels == 2) {
962 q->fdsp.butterflies_float((float *)frame->extended_data[0],
963 (float *)frame->extended_data[1], COEFFS);
966 *got_frame_ptr = 1;
968 return IMC_BLOCK_SIZE * avctx->channels;
972 static av_cold int imc_decode_close(AVCodecContext * avctx)
974 IMCContext *q = avctx->priv_data;
976 ff_fft_end(&q->fft);
978 return 0;
982 AVCodec ff_imc_decoder = {
983 .name = "imc",
984 .type = AVMEDIA_TYPE_AUDIO,
985 .id = AV_CODEC_ID_IMC,
986 .priv_data_size = sizeof(IMCContext),
987 .init = imc_decode_init,
988 .close = imc_decode_close,
989 .decode = imc_decode_frame,
990 .capabilities = CODEC_CAP_DR1,
991 .long_name = NULL_IF_CONFIG_SMALL("IMC (Intel Music Coder)"),
992 .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
993 AV_SAMPLE_FMT_NONE },
996 AVCodec ff_iac_decoder = {
997 .name = "iac",
998 .type = AVMEDIA_TYPE_AUDIO,
999 .id = AV_CODEC_ID_IAC,
1000 .priv_data_size = sizeof(IMCContext),
1001 .init = imc_decode_init,
1002 .close = imc_decode_close,
1003 .decode = imc_decode_frame,
1004 .capabilities = CODEC_CAP_DR1,
1005 .long_name = NULL_IF_CONFIG_SMALL("IAC (Indeo Audio Coder)"),
1006 .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
1007 AV_SAMPLE_FMT_NONE },