3 * Copyright (c) 2007 Konstantin Shishkov
5 * This file is part of Libav.
7 * Libav is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * Libav is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with Libav; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
27 #include "libavutil/imgutils.h"
30 #include "mpegvideo.h"
37 static VLC aic_top_vlc
;
38 static VLC aic_mode1_vlc
[AIC_MODE1_NUM
], aic_mode2_vlc
[AIC_MODE2_NUM
];
39 static VLC ptype_vlc
[NUM_PTYPE_VLCS
], btype_vlc
[NUM_BTYPE_VLCS
];
41 static const int16_t mode2_offs
[] = {
42 0, 614, 1222, 1794, 2410, 3014, 3586, 4202, 4792, 5382, 5966, 6542,
43 7138, 7716, 8292, 8864, 9444, 10030, 10642, 11212, 11814
47 * Initialize all tables.
49 static av_cold
void rv40_init_tables(void)
52 static VLC_TYPE aic_table
[1 << AIC_TOP_BITS
][2];
53 static VLC_TYPE aic_mode1_table
[AIC_MODE1_NUM
<< AIC_MODE1_BITS
][2];
54 static VLC_TYPE aic_mode2_table
[11814][2];
55 static VLC_TYPE ptype_table
[NUM_PTYPE_VLCS
<< PTYPE_VLC_BITS
][2];
56 static VLC_TYPE btype_table
[NUM_BTYPE_VLCS
<< BTYPE_VLC_BITS
][2];
58 aic_top_vlc
.table
= aic_table
;
59 aic_top_vlc
.table_allocated
= 1 << AIC_TOP_BITS
;
60 init_vlc(&aic_top_vlc
, AIC_TOP_BITS
, AIC_TOP_SIZE
,
61 rv40_aic_top_vlc_bits
, 1, 1,
62 rv40_aic_top_vlc_codes
, 1, 1, INIT_VLC_USE_NEW_STATIC
);
63 for(i
= 0; i
< AIC_MODE1_NUM
; i
++){
64 // Every tenth VLC table is empty
65 if((i
% 10) == 9) continue;
66 aic_mode1_vlc
[i
].table
= &aic_mode1_table
[i
<< AIC_MODE1_BITS
];
67 aic_mode1_vlc
[i
].table_allocated
= 1 << AIC_MODE1_BITS
;
68 init_vlc(&aic_mode1_vlc
[i
], AIC_MODE1_BITS
, AIC_MODE1_SIZE
,
69 aic_mode1_vlc_bits
[i
], 1, 1,
70 aic_mode1_vlc_codes
[i
], 1, 1, INIT_VLC_USE_NEW_STATIC
);
72 for(i
= 0; i
< AIC_MODE2_NUM
; i
++){
73 aic_mode2_vlc
[i
].table
= &aic_mode2_table
[mode2_offs
[i
]];
74 aic_mode2_vlc
[i
].table_allocated
= mode2_offs
[i
+ 1] - mode2_offs
[i
];
75 init_vlc(&aic_mode2_vlc
[i
], AIC_MODE2_BITS
, AIC_MODE2_SIZE
,
76 aic_mode2_vlc_bits
[i
], 1, 1,
77 aic_mode2_vlc_codes
[i
], 2, 2, INIT_VLC_USE_NEW_STATIC
);
79 for(i
= 0; i
< NUM_PTYPE_VLCS
; i
++){
80 ptype_vlc
[i
].table
= &ptype_table
[i
<< PTYPE_VLC_BITS
];
81 ptype_vlc
[i
].table_allocated
= 1 << PTYPE_VLC_BITS
;
82 ff_init_vlc_sparse(&ptype_vlc
[i
], PTYPE_VLC_BITS
, PTYPE_VLC_SIZE
,
83 ptype_vlc_bits
[i
], 1, 1,
84 ptype_vlc_codes
[i
], 1, 1,
85 ptype_vlc_syms
, 1, 1, INIT_VLC_USE_NEW_STATIC
);
87 for(i
= 0; i
< NUM_BTYPE_VLCS
; i
++){
88 btype_vlc
[i
].table
= &btype_table
[i
<< BTYPE_VLC_BITS
];
89 btype_vlc
[i
].table_allocated
= 1 << BTYPE_VLC_BITS
;
90 ff_init_vlc_sparse(&btype_vlc
[i
], BTYPE_VLC_BITS
, BTYPE_VLC_SIZE
,
91 btype_vlc_bits
[i
], 1, 1,
92 btype_vlc_codes
[i
], 1, 1,
93 btype_vlc_syms
, 1, 1, INIT_VLC_USE_NEW_STATIC
);
98 * Get stored dimension from bitstream.
100 * If the width/height is the standard one then it's coded as a 3-bit index.
101 * Otherwise it is coded as escaped 8-bit portions.
103 static int get_dimension(GetBitContext
*gb
, const int *dim
)
105 int t
= get_bits(gb
, 3);
108 val
= dim
[get_bits1(gb
) - val
];
119 * Get encoded picture size - usually this is called from rv40_parse_slice_header.
121 static void rv40_parse_picture_size(GetBitContext
*gb
, int *w
, int *h
)
123 *w
= get_dimension(gb
, rv40_standard_widths
);
124 *h
= get_dimension(gb
, rv40_standard_heights
);
127 static int rv40_parse_slice_header(RV34DecContext
*r
, GetBitContext
*gb
, SliceInfo
*si
)
130 int w
= r
->s
.width
, h
= r
->s
.height
;
133 memset(si
, 0, sizeof(SliceInfo
));
136 si
->type
= get_bits(gb
, 2);
137 if(si
->type
== 1) si
->type
= 0;
138 si
->quant
= get_bits(gb
, 5);
141 si
->vlc_set
= get_bits(gb
, 2);
143 si
->pts
= get_bits(gb
, 13);
144 if(!si
->type
|| !get_bits1(gb
))
145 rv40_parse_picture_size(gb
, &w
, &h
);
146 if(av_image_check_size(w
, h
, 0, r
->s
.avctx
) < 0)
150 mb_size
= ((w
+ 15) >> 4) * ((h
+ 15) >> 4);
151 mb_bits
= ff_rv34_get_start_offset(gb
, mb_size
);
152 si
->start
= get_bits(gb
, mb_bits
);
158 * Decode 4x4 intra types array.
160 static int rv40_decode_intra_types(RV34DecContext
*r
, GetBitContext
*gb
, int8_t *dst
)
162 MpegEncContext
*s
= &r
->s
;
168 for(i
= 0; i
< 4; i
++, dst
+= r
->intra_types_stride
){
169 if(!i
&& s
->first_slice_line
){
170 pattern
= get_vlc2(gb
, aic_top_vlc
.table
, AIC_TOP_BITS
, 1);
171 dst
[0] = (pattern
>> 2) & 2;
172 dst
[1] = (pattern
>> 1) & 2;
173 dst
[2] = pattern
& 2;
174 dst
[3] = (pattern
<< 1) & 2;
178 for(j
= 0; j
< 4; j
++){
179 /* Coefficients are read using VLC chosen by the prediction pattern
180 * The first one (used for retrieving a pair of coefficients) is
181 * constructed from the top, top right and left coefficients
182 * The second one (used for retrieving only one coefficient) is
185 A
= ptr
[-r
->intra_types_stride
+ 1]; // it won't be used for the last coefficient in a row
186 B
= ptr
[-r
->intra_types_stride
];
188 pattern
= A
+ (B
<< 4) + (C
<< 8);
189 for(k
= 0; k
< MODE2_PATTERNS_NUM
; k
++)
190 if(pattern
== rv40_aic_table_index
[k
])
192 if(j
< 3 && k
< MODE2_PATTERNS_NUM
){ //pattern is found, decoding 2 coefficients
193 v
= get_vlc2(gb
, aic_mode2_vlc
[k
].table
, AIC_MODE2_BITS
, 2);
198 if(B
!= -1 && C
!= -1)
199 v
= get_vlc2(gb
, aic_mode1_vlc
[B
+ C
*10].table
, AIC_MODE1_BITS
, 1);
200 else{ // tricky decoding
203 case -1: // code 0 -> 1, 1 -> 0
205 v
= get_bits1(gb
) ^ 1;
208 case 2: // code 0 -> 2, 1 -> 0
209 v
= (get_bits1(gb
) ^ 1) << 1;
221 * Decode macroblock information.
223 static int rv40_decode_mb_info(RV34DecContext
*r
)
225 MpegEncContext
*s
= &r
->s
;
226 GetBitContext
*gb
= &s
->gb
;
229 int mb_pos
= s
->mb_x
+ s
->mb_y
* s
->mb_stride
;
231 if(!r
->s
.mb_skip_run
)
232 r
->s
.mb_skip_run
= svq3_get_ue_golomb(gb
) + 1;
234 if(--r
->s
.mb_skip_run
)
237 if(r
->avail_cache
[6-4]){
238 int blocks
[RV34_MB_TYPES
] = {0};
240 if(r
->avail_cache
[6-1])
241 blocks
[r
->mb_type
[mb_pos
- 1]]++;
242 blocks
[r
->mb_type
[mb_pos
- s
->mb_stride
]]++;
243 if(r
->avail_cache
[6-2])
244 blocks
[r
->mb_type
[mb_pos
- s
->mb_stride
+ 1]]++;
245 if(r
->avail_cache
[6-5])
246 blocks
[r
->mb_type
[mb_pos
- s
->mb_stride
- 1]]++;
247 for(i
= 0; i
< RV34_MB_TYPES
; i
++){
248 if(blocks
[i
] > count
){
255 } else if (r
->avail_cache
[6-1])
256 prev_type
= r
->mb_type
[mb_pos
- 1];
258 if(s
->pict_type
== AV_PICTURE_TYPE_P
){
259 prev_type
= block_num_to_ptype_vlc_num
[prev_type
];
260 q
= get_vlc2(gb
, ptype_vlc
[prev_type
].table
, PTYPE_VLC_BITS
, 1);
261 if(q
< PBTYPE_ESCAPE
)
263 q
= get_vlc2(gb
, ptype_vlc
[prev_type
].table
, PTYPE_VLC_BITS
, 1);
264 av_log(s
->avctx
, AV_LOG_ERROR
, "Dquant for P-frame\n");
266 prev_type
= block_num_to_btype_vlc_num
[prev_type
];
267 q
= get_vlc2(gb
, btype_vlc
[prev_type
].table
, BTYPE_VLC_BITS
, 1);
268 if(q
< PBTYPE_ESCAPE
)
270 q
= get_vlc2(gb
, btype_vlc
[prev_type
].table
, BTYPE_VLC_BITS
, 1);
271 av_log(s
->avctx
, AV_LOG_ERROR
, "Dquant for B-frame\n");
283 #define MASK_CUR 0x0001
284 #define MASK_RIGHT 0x0008
285 #define MASK_BOTTOM 0x0010
286 #define MASK_TOP 0x1000
287 #define MASK_Y_TOP_ROW 0x000F
288 #define MASK_Y_LAST_ROW 0xF000
289 #define MASK_Y_LEFT_COL 0x1111
290 #define MASK_Y_RIGHT_COL 0x8888
291 #define MASK_C_TOP_ROW 0x0003
292 #define MASK_C_LAST_ROW 0x000C
293 #define MASK_C_LEFT_COL 0x0005
294 #define MASK_C_RIGHT_COL 0x000A
296 static const int neighbour_offs_x
[4] = { 0, 0, -1, 0 };
297 static const int neighbour_offs_y
[4] = { 0, -1, 0, 1 };
299 static void rv40_adaptive_loop_filter(RV34DSPContext
*rdsp
,
300 uint8_t *src
, int stride
, int dmode
,
301 int lim_q1
, int lim_p1
,
302 int alpha
, int beta
, int beta2
,
303 int chroma
, int edge
, int dir
)
305 int filter_p1
, filter_q1
;
309 strong
= rdsp
->rv40_loop_filter_strength
[dir
](src
, stride
, beta
, beta2
,
310 edge
, &filter_p1
, &filter_q1
);
312 lims
= filter_p1
+ filter_q1
+ ((lim_q1
+ lim_p1
) >> 1) + 1;
315 rdsp
->rv40_strong_loop_filter
[dir
](src
, stride
, alpha
,
316 lims
, dmode
, chroma
);
317 } else if (filter_p1
& filter_q1
) {
318 rdsp
->rv40_weak_loop_filter
[dir
](src
, stride
, 1, 1, alpha
, beta
,
319 lims
, lim_q1
, lim_p1
);
320 } else if (filter_p1
| filter_q1
) {
321 rdsp
->rv40_weak_loop_filter
[dir
](src
, stride
, filter_p1
, filter_q1
,
322 alpha
, beta
, lims
>> 1, lim_q1
>> 1,
328 * RV40 loop filtering function
330 static void rv40_loop_filter(RV34DecContext
*r
, int row
)
332 MpegEncContext
*s
= &r
->s
;
336 int alpha
, beta
, betaY
, betaC
;
338 int mbtype
[4]; ///< current macroblock and its neighbours types
340 * flags indicating that macroblock can be filtered with strong filter
341 * it is set only for intra coded MB and MB with DCs coded separately
344 int clip
[4]; ///< MB filter clipping value calculated from filtering strength
346 * coded block patterns for luma part of current macroblock and its neighbours
348 * LSB corresponds to the top left block,
349 * each nibble represents one row of subblocks.
353 * coded block patterns for chroma part of current macroblock and its neighbours
354 * Format is the same as for luma with two subblocks in a row.
358 * This mask represents the pattern of luma subblocks that should be filtered
359 * in addition to the coded ones because because they lie at the edge of
360 * 8x8 block with different enough motion vectors
364 mb_pos
= row
* s
->mb_stride
;
365 for(mb_x
= 0; mb_x
< s
->mb_width
; mb_x
++, mb_pos
++){
366 int mbtype
= s
->current_picture_ptr
->f
.mb_type
[mb_pos
];
367 if(IS_INTRA(mbtype
) || IS_SEPARATE_DC(mbtype
))
368 r
->cbp_luma
[mb_pos
] = r
->deblock_coefs
[mb_pos
] = 0xFFFF;
370 r
->cbp_chroma
[mb_pos
] = 0xFF;
372 mb_pos
= row
* s
->mb_stride
;
373 for(mb_x
= 0; mb_x
< s
->mb_width
; mb_x
++, mb_pos
++){
374 int y_h_deblock
, y_v_deblock
;
375 int c_v_deblock
[2], c_h_deblock
[2];
378 unsigned y_to_deblock
;
381 q
= s
->current_picture_ptr
->f
.qscale_table
[mb_pos
];
382 alpha
= rv40_alpha_tab
[q
];
383 beta
= rv40_beta_tab
[q
];
384 betaY
= betaC
= beta
* 3;
385 if(s
->width
* s
->height
<= 176*144)
391 avail
[3] = row
< s
->mb_height
- 1;
392 for(i
= 0; i
< 4; i
++){
394 int pos
= mb_pos
+ neighbour_offs_x
[i
] + neighbour_offs_y
[i
]*s
->mb_stride
;
395 mvmasks
[i
] = r
->deblock_coefs
[pos
];
396 mbtype
[i
] = s
->current_picture_ptr
->f
.mb_type
[pos
];
397 cbp
[i
] = r
->cbp_luma
[pos
];
398 uvcbp
[i
][0] = r
->cbp_chroma
[pos
] & 0xF;
399 uvcbp
[i
][1] = r
->cbp_chroma
[pos
] >> 4;
402 mbtype
[i
] = mbtype
[0];
404 uvcbp
[i
][0] = uvcbp
[i
][1] = 0;
406 mb_strong
[i
] = IS_INTRA(mbtype
[i
]) || IS_SEPARATE_DC(mbtype
[i
]);
407 clip
[i
] = rv40_filter_clip_tbl
[mb_strong
[i
] + 1][q
];
409 y_to_deblock
= mvmasks
[POS_CUR
]
410 | (mvmasks
[POS_BOTTOM
] << 16);
411 /* This pattern contains bits signalling that horizontal edges of
412 * the current block can be filtered.
413 * That happens when either of adjacent subblocks is coded or lies on
414 * the edge of 8x8 blocks with motion vectors differing by more than
415 * 3/4 pel in any component (any edge orientation for some reason).
417 y_h_deblock
= y_to_deblock
418 | ((cbp
[POS_CUR
] << 4) & ~MASK_Y_TOP_ROW
)
419 | ((cbp
[POS_TOP
] & MASK_Y_LAST_ROW
) >> 12);
420 /* This pattern contains bits signalling that vertical edges of
421 * the current block can be filtered.
422 * That happens when either of adjacent subblocks is coded or lies on
423 * the edge of 8x8 blocks with motion vectors differing by more than
424 * 3/4 pel in any component (any edge orientation for some reason).
426 y_v_deblock
= y_to_deblock
427 | ((cbp
[POS_CUR
] << 1) & ~MASK_Y_LEFT_COL
)
428 | ((cbp
[POS_LEFT
] & MASK_Y_RIGHT_COL
) >> 3);
430 y_v_deblock
&= ~MASK_Y_LEFT_COL
;
432 y_h_deblock
&= ~MASK_Y_TOP_ROW
;
433 if(row
== s
->mb_height
- 1 || (mb_strong
[POS_CUR
] | mb_strong
[POS_BOTTOM
]))
434 y_h_deblock
&= ~(MASK_Y_TOP_ROW
<< 16);
435 /* Calculating chroma patterns is similar and easier since there is
436 * no motion vector pattern for them.
438 for(i
= 0; i
< 2; i
++){
439 c_to_deblock
[i
] = (uvcbp
[POS_BOTTOM
][i
] << 4) | uvcbp
[POS_CUR
][i
];
440 c_v_deblock
[i
] = c_to_deblock
[i
]
441 | ((uvcbp
[POS_CUR
] [i
] << 1) & ~MASK_C_LEFT_COL
)
442 | ((uvcbp
[POS_LEFT
][i
] & MASK_C_RIGHT_COL
) >> 1);
443 c_h_deblock
[i
] = c_to_deblock
[i
]
444 | ((uvcbp
[POS_TOP
][i
] & MASK_C_LAST_ROW
) >> 2)
445 | (uvcbp
[POS_CUR
][i
] << 2);
447 c_v_deblock
[i
] &= ~MASK_C_LEFT_COL
;
449 c_h_deblock
[i
] &= ~MASK_C_TOP_ROW
;
450 if(row
== s
->mb_height
- 1 || (mb_strong
[POS_CUR
] | mb_strong
[POS_BOTTOM
]))
451 c_h_deblock
[i
] &= ~(MASK_C_TOP_ROW
<< 4);
454 for(j
= 0; j
< 16; j
+= 4){
455 Y
= s
->current_picture_ptr
->f
.data
[0] + mb_x
*16 + (row
*16 + j
) * s
->linesize
;
456 for(i
= 0; i
< 4; i
++, Y
+= 4){
458 int clip_cur
= y_to_deblock
& (MASK_CUR
<< ij
) ? clip
[POS_CUR
] : 0;
459 int dither
= j
? ij
: i
*4;
461 // if bottom block is coded then we can filter its top edge
462 // (or bottom edge of this block, which is the same)
463 if(y_h_deblock
& (MASK_BOTTOM
<< ij
)){
464 rv40_adaptive_loop_filter(&r
->rdsp
, Y
+4*s
->linesize
,
466 y_to_deblock
& (MASK_BOTTOM
<< ij
) ? clip
[POS_CUR
] : 0,
467 clip_cur
, alpha
, beta
, betaY
,
470 // filter left block edge in ordinary mode (with low filtering strength)
471 if(y_v_deblock
& (MASK_CUR
<< ij
) && (i
|| !(mb_strong
[POS_CUR
] | mb_strong
[POS_LEFT
]))){
473 clip_left
= mvmasks
[POS_LEFT
] & (MASK_RIGHT
<< j
) ? clip
[POS_LEFT
] : 0;
475 clip_left
= y_to_deblock
& (MASK_CUR
<< (ij
-1)) ? clip
[POS_CUR
] : 0;
476 rv40_adaptive_loop_filter(&r
->rdsp
, Y
, s
->linesize
, dither
,
479 alpha
, beta
, betaY
, 0, 0, 1);
481 // filter top edge of the current macroblock when filtering strength is high
482 if(!j
&& y_h_deblock
& (MASK_CUR
<< i
) && (mb_strong
[POS_CUR
] | mb_strong
[POS_TOP
])){
483 rv40_adaptive_loop_filter(&r
->rdsp
, Y
, s
->linesize
, dither
,
485 mvmasks
[POS_TOP
] & (MASK_TOP
<< i
) ? clip
[POS_TOP
] : 0,
486 alpha
, beta
, betaY
, 0, 1, 0);
488 // filter left block edge in edge mode (with high filtering strength)
489 if(y_v_deblock
& (MASK_CUR
<< ij
) && !i
&& (mb_strong
[POS_CUR
] | mb_strong
[POS_LEFT
])){
490 clip_left
= mvmasks
[POS_LEFT
] & (MASK_RIGHT
<< j
) ? clip
[POS_LEFT
] : 0;
491 rv40_adaptive_loop_filter(&r
->rdsp
, Y
, s
->linesize
, dither
,
494 alpha
, beta
, betaY
, 0, 1, 1);
498 for(k
= 0; k
< 2; k
++){
499 for(j
= 0; j
< 2; j
++){
500 C
= s
->current_picture_ptr
->f
.data
[k
+ 1] + mb_x
*8 + (row
*8 + j
*4) * s
->uvlinesize
;
501 for(i
= 0; i
< 2; i
++, C
+= 4){
503 int clip_cur
= c_to_deblock
[k
] & (MASK_CUR
<< ij
) ? clip
[POS_CUR
] : 0;
504 if(c_h_deblock
[k
] & (MASK_CUR
<< (ij
+2))){
505 int clip_bot
= c_to_deblock
[k
] & (MASK_CUR
<< (ij
+2)) ? clip
[POS_CUR
] : 0;
506 rv40_adaptive_loop_filter(&r
->rdsp
, C
+4*s
->uvlinesize
, s
->uvlinesize
, i
*8,
509 alpha
, beta
, betaC
, 1, 0, 0);
511 if((c_v_deblock
[k
] & (MASK_CUR
<< ij
)) && (i
|| !(mb_strong
[POS_CUR
] | mb_strong
[POS_LEFT
]))){
513 clip_left
= uvcbp
[POS_LEFT
][k
] & (MASK_CUR
<< (2*j
+1)) ? clip
[POS_LEFT
] : 0;
515 clip_left
= c_to_deblock
[k
] & (MASK_CUR
<< (ij
-1)) ? clip
[POS_CUR
] : 0;
516 rv40_adaptive_loop_filter(&r
->rdsp
, C
, s
->uvlinesize
, j
*8,
519 alpha
, beta
, betaC
, 1, 0, 1);
521 if(!j
&& c_h_deblock
[k
] & (MASK_CUR
<< ij
) && (mb_strong
[POS_CUR
] | mb_strong
[POS_TOP
])){
522 int clip_top
= uvcbp
[POS_TOP
][k
] & (MASK_CUR
<< (ij
+2)) ? clip
[POS_TOP
] : 0;
523 rv40_adaptive_loop_filter(&r
->rdsp
, C
, s
->uvlinesize
, i
*8,
526 alpha
, beta
, betaC
, 1, 1, 0);
528 if(c_v_deblock
[k
] & (MASK_CUR
<< ij
) && !i
&& (mb_strong
[POS_CUR
] | mb_strong
[POS_LEFT
])){
529 clip_left
= uvcbp
[POS_LEFT
][k
] & (MASK_CUR
<< (2*j
+1)) ? clip
[POS_LEFT
] : 0;
530 rv40_adaptive_loop_filter(&r
->rdsp
, C
, s
->uvlinesize
, j
*8,
533 alpha
, beta
, betaC
, 1, 1, 1);
542 * Initialize decoder.
544 static av_cold
int rv40_decode_init(AVCodecContext
*avctx
)
546 RV34DecContext
*r
= avctx
->priv_data
;
549 ff_rv34_decode_init(avctx
);
550 if(!aic_top_vlc
.bits
)
552 r
->parse_slice_header
= rv40_parse_slice_header
;
553 r
->decode_intra_types
= rv40_decode_intra_types
;
554 r
->decode_mb_info
= rv40_decode_mb_info
;
555 r
->loop_filter
= rv40_loop_filter
;
556 r
->luma_dc_quant_i
= rv40_luma_dc_quant
[0];
557 r
->luma_dc_quant_p
= rv40_luma_dc_quant
[1];
561 AVCodec ff_rv40_decoder
= {
563 .type
= AVMEDIA_TYPE_VIDEO
,
564 .id
= AV_CODEC_ID_RV40
,
565 .priv_data_size
= sizeof(RV34DecContext
),
566 .init
= rv40_decode_init
,
567 .close
= ff_rv34_decode_end
,
568 .decode
= ff_rv34_decode_frame
,
569 .capabilities
= CODEC_CAP_DR1
| CODEC_CAP_DELAY
|
570 CODEC_CAP_FRAME_THREADS
,
571 .flush
= ff_mpeg_flush
,
572 .long_name
= NULL_IF_CONFIG_SMALL("RealVideo 4.0"),
573 .pix_fmts
= ff_pixfmt_list_420
,
574 .init_thread_copy
= ONLY_IF_THREADS_ENABLED(ff_rv34_decode_init_thread_copy
),
575 .update_thread_context
= ONLY_IF_THREADS_ENABLED(ff_rv34_decode_update_thread_context
),