Remove table that was forgotten in the split.
[FFMpeg-mirror/ordered_chapters.git] / libavcodec / cavs.c
bloba201fe26c2395fe7e8e3307b830ec67740d0c383
1 /*
2 * Chinese AVS video (AVS1-P2, JiZhun profile) decoder.
3 * Copyright (c) 2006 Stefan Gehrer <stefan.gehrer@gmx.de>
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 /**
23 * @file libavcodec/cavs.c
24 * Chinese AVS video (AVS1-P2, JiZhun profile) decoder
25 * @author Stefan Gehrer <stefan.gehrer@gmx.de>
28 #include "avcodec.h"
29 #include "get_bits.h"
30 #include "golomb.h"
31 #include "mathops.h"
32 #include "cavs.h"
33 #include "cavsdata.h"
35 /*****************************************************************************
37 * in-loop deblocking filter
39 ****************************************************************************/
41 static inline int get_bs(cavs_vector *mvP, cavs_vector *mvQ, int b) {
42 if((mvP->ref == REF_INTRA) || (mvQ->ref == REF_INTRA))
43 return 2;
44 if( (abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4) )
45 return 1;
46 if(b){
47 mvP += MV_BWD_OFFS;
48 mvQ += MV_BWD_OFFS;
49 if( (abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4) )
50 return 1;
51 }else{
52 if(mvP->ref != mvQ->ref)
53 return 1;
55 return 0;
58 #define SET_PARAMS \
59 alpha = alpha_tab[av_clip(qp_avg + h->alpha_offset,0,63)]; \
60 beta = beta_tab[av_clip(qp_avg + h->beta_offset, 0,63)]; \
61 tc = tc_tab[av_clip(qp_avg + h->alpha_offset,0,63)];
63 /**
64 * in-loop deblocking filter for a single macroblock
66 * boundary strength (bs) mapping:
68 * --4---5--
69 * 0 2 |
70 * | 6 | 7 |
71 * 1 3 |
72 * ---------
75 void ff_cavs_filter(AVSContext *h, enum cavs_mb mb_type) {
76 DECLARE_ALIGNED_8(uint8_t, bs[8]);
77 int qp_avg, alpha, beta, tc;
78 int i;
80 /* save un-deblocked lines */
81 h->topleft_border_y = h->top_border_y[h->mbx*16+15];
82 h->topleft_border_u = h->top_border_u[h->mbx*10+8];
83 h->topleft_border_v = h->top_border_v[h->mbx*10+8];
84 memcpy(&h->top_border_y[h->mbx*16], h->cy + 15* h->l_stride,16);
85 memcpy(&h->top_border_u[h->mbx*10+1], h->cu + 7* h->c_stride,8);
86 memcpy(&h->top_border_v[h->mbx*10+1], h->cv + 7* h->c_stride,8);
87 for(i=0;i<8;i++) {
88 h->left_border_y[i*2+1] = *(h->cy + 15 + (i*2+0)*h->l_stride);
89 h->left_border_y[i*2+2] = *(h->cy + 15 + (i*2+1)*h->l_stride);
90 h->left_border_u[i+1] = *(h->cu + 7 + i*h->c_stride);
91 h->left_border_v[i+1] = *(h->cv + 7 + i*h->c_stride);
93 if(!h->loop_filter_disable) {
94 /* determine bs */
95 if(mb_type == I_8X8)
96 *((uint64_t *)bs) = 0x0202020202020202ULL;
97 else{
98 *((uint64_t *)bs) = 0;
99 if(ff_cavs_partition_flags[mb_type] & SPLITV){
100 bs[2] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X1], mb_type > P_8X8);
101 bs[3] = get_bs(&h->mv[MV_FWD_X2], &h->mv[MV_FWD_X3], mb_type > P_8X8);
103 if(ff_cavs_partition_flags[mb_type] & SPLITH){
104 bs[6] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X2], mb_type > P_8X8);
105 bs[7] = get_bs(&h->mv[MV_FWD_X1], &h->mv[MV_FWD_X3], mb_type > P_8X8);
107 bs[0] = get_bs(&h->mv[MV_FWD_A1], &h->mv[MV_FWD_X0], mb_type > P_8X8);
108 bs[1] = get_bs(&h->mv[MV_FWD_A3], &h->mv[MV_FWD_X2], mb_type > P_8X8);
109 bs[4] = get_bs(&h->mv[MV_FWD_B2], &h->mv[MV_FWD_X0], mb_type > P_8X8);
110 bs[5] = get_bs(&h->mv[MV_FWD_B3], &h->mv[MV_FWD_X1], mb_type > P_8X8);
112 if( *((uint64_t *)bs) ) {
113 if(h->flags & A_AVAIL) {
114 qp_avg = (h->qp + h->left_qp + 1) >> 1;
115 SET_PARAMS;
116 h->s.dsp.cavs_filter_lv(h->cy,h->l_stride,alpha,beta,tc,bs[0],bs[1]);
117 h->s.dsp.cavs_filter_cv(h->cu,h->c_stride,alpha,beta,tc,bs[0],bs[1]);
118 h->s.dsp.cavs_filter_cv(h->cv,h->c_stride,alpha,beta,tc,bs[0],bs[1]);
120 qp_avg = h->qp;
121 SET_PARAMS;
122 h->s.dsp.cavs_filter_lv(h->cy + 8,h->l_stride,alpha,beta,tc,bs[2],bs[3]);
123 h->s.dsp.cavs_filter_lh(h->cy + 8*h->l_stride,h->l_stride,alpha,beta,tc,
124 bs[6],bs[7]);
126 if(h->flags & B_AVAIL) {
127 qp_avg = (h->qp + h->top_qp[h->mbx] + 1) >> 1;
128 SET_PARAMS;
129 h->s.dsp.cavs_filter_lh(h->cy,h->l_stride,alpha,beta,tc,bs[4],bs[5]);
130 h->s.dsp.cavs_filter_ch(h->cu,h->c_stride,alpha,beta,tc,bs[4],bs[5]);
131 h->s.dsp.cavs_filter_ch(h->cv,h->c_stride,alpha,beta,tc,bs[4],bs[5]);
135 h->left_qp = h->qp;
136 h->top_qp[h->mbx] = h->qp;
139 #undef SET_PARAMS
141 /*****************************************************************************
143 * spatial intra prediction
145 ****************************************************************************/
147 void ff_cavs_load_intra_pred_luma(AVSContext *h, uint8_t *top,
148 uint8_t **left, int block) {
149 int i;
151 switch(block) {
152 case 0:
153 *left = h->left_border_y;
154 h->left_border_y[0] = h->left_border_y[1];
155 memset(&h->left_border_y[17],h->left_border_y[16],9);
156 memcpy(&top[1],&h->top_border_y[h->mbx*16],16);
157 top[17] = top[16];
158 top[0] = top[1];
159 if((h->flags & A_AVAIL) && (h->flags & B_AVAIL))
160 h->left_border_y[0] = top[0] = h->topleft_border_y;
161 break;
162 case 1:
163 *left = h->intern_border_y;
164 for(i=0;i<8;i++)
165 h->intern_border_y[i+1] = *(h->cy + 7 + i*h->l_stride);
166 memset(&h->intern_border_y[9],h->intern_border_y[8],9);
167 h->intern_border_y[0] = h->intern_border_y[1];
168 memcpy(&top[1],&h->top_border_y[h->mbx*16+8],8);
169 if(h->flags & C_AVAIL)
170 memcpy(&top[9],&h->top_border_y[(h->mbx + 1)*16],8);
171 else
172 memset(&top[9],top[8],9);
173 top[17] = top[16];
174 top[0] = top[1];
175 if(h->flags & B_AVAIL)
176 h->intern_border_y[0] = top[0] = h->top_border_y[h->mbx*16+7];
177 break;
178 case 2:
179 *left = &h->left_border_y[8];
180 memcpy(&top[1],h->cy + 7*h->l_stride,16);
181 top[17] = top[16];
182 top[0] = top[1];
183 if(h->flags & A_AVAIL)
184 top[0] = h->left_border_y[8];
185 break;
186 case 3:
187 *left = &h->intern_border_y[8];
188 for(i=0;i<8;i++)
189 h->intern_border_y[i+9] = *(h->cy + 7 + (i+8)*h->l_stride);
190 memset(&h->intern_border_y[17],h->intern_border_y[16],9);
191 memcpy(&top[0],h->cy + 7 + 7*h->l_stride,9);
192 memset(&top[9],top[8],9);
193 break;
197 void ff_cavs_load_intra_pred_chroma(AVSContext *h) {
198 /* extend borders by one pixel */
199 h->left_border_u[9] = h->left_border_u[8];
200 h->left_border_v[9] = h->left_border_v[8];
201 h->top_border_u[h->mbx*10+9] = h->top_border_u[h->mbx*10+8];
202 h->top_border_v[h->mbx*10+9] = h->top_border_v[h->mbx*10+8];
203 if(h->mbx && h->mby) {
204 h->top_border_u[h->mbx*10] = h->left_border_u[0] = h->topleft_border_u;
205 h->top_border_v[h->mbx*10] = h->left_border_v[0] = h->topleft_border_v;
206 } else {
207 h->left_border_u[0] = h->left_border_u[1];
208 h->left_border_v[0] = h->left_border_v[1];
209 h->top_border_u[h->mbx*10] = h->top_border_u[h->mbx*10+1];
210 h->top_border_v[h->mbx*10] = h->top_border_v[h->mbx*10+1];
214 static void intra_pred_vert(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
215 int y;
216 uint64_t a = AV_RN64(&top[1]);
217 for(y=0;y<8;y++) {
218 *((uint64_t *)(d+y*stride)) = a;
222 static void intra_pred_horiz(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
223 int y;
224 uint64_t a;
225 for(y=0;y<8;y++) {
226 a = left[y+1] * 0x0101010101010101ULL;
227 *((uint64_t *)(d+y*stride)) = a;
231 static void intra_pred_dc_128(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
232 int y;
233 uint64_t a = 0x8080808080808080ULL;
234 for(y=0;y<8;y++)
235 *((uint64_t *)(d+y*stride)) = a;
238 static void intra_pred_plane(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
239 int x,y,ia;
240 int ih = 0;
241 int iv = 0;
242 uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
244 for(x=0; x<4; x++) {
245 ih += (x+1)*(top[5+x]-top[3-x]);
246 iv += (x+1)*(left[5+x]-left[3-x]);
248 ia = (top[8]+left[8])<<4;
249 ih = (17*ih+16)>>5;
250 iv = (17*iv+16)>>5;
251 for(y=0; y<8; y++)
252 for(x=0; x<8; x++)
253 d[y*stride+x] = cm[(ia+(x-3)*ih+(y-3)*iv+16)>>5];
256 #define LOWPASS(ARRAY,INDEX) \
257 (( ARRAY[(INDEX)-1] + 2*ARRAY[(INDEX)] + ARRAY[(INDEX)+1] + 2) >> 2)
259 static void intra_pred_lp(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
260 int x,y;
261 for(y=0; y<8; y++)
262 for(x=0; x<8; x++)
263 d[y*stride+x] = (LOWPASS(top,x+1) + LOWPASS(left,y+1)) >> 1;
266 static void intra_pred_down_left(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
267 int x,y;
268 for(y=0; y<8; y++)
269 for(x=0; x<8; x++)
270 d[y*stride+x] = (LOWPASS(top,x+y+2) + LOWPASS(left,x+y+2)) >> 1;
273 static void intra_pred_down_right(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
274 int x,y;
275 for(y=0; y<8; y++)
276 for(x=0; x<8; x++)
277 if(x==y)
278 d[y*stride+x] = (left[1]+2*top[0]+top[1]+2)>>2;
279 else if(x>y)
280 d[y*stride+x] = LOWPASS(top,x-y);
281 else
282 d[y*stride+x] = LOWPASS(left,y-x);
285 static void intra_pred_lp_left(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
286 int x,y;
287 for(y=0; y<8; y++)
288 for(x=0; x<8; x++)
289 d[y*stride+x] = LOWPASS(left,y+1);
292 static void intra_pred_lp_top(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
293 int x,y;
294 for(y=0; y<8; y++)
295 for(x=0; x<8; x++)
296 d[y*stride+x] = LOWPASS(top,x+1);
299 #undef LOWPASS
301 void ff_cavs_modify_mb_i(AVSContext *h, int *pred_mode_uv) {
302 /* save pred modes before they get modified */
303 h->pred_mode_Y[3] = h->pred_mode_Y[5];
304 h->pred_mode_Y[6] = h->pred_mode_Y[8];
305 h->top_pred_Y[h->mbx*2+0] = h->pred_mode_Y[7];
306 h->top_pred_Y[h->mbx*2+1] = h->pred_mode_Y[8];
308 /* modify pred modes according to availability of neighbour samples */
309 if(!(h->flags & A_AVAIL)) {
310 modify_pred(ff_left_modifier_l, &h->pred_mode_Y[4] );
311 modify_pred(ff_left_modifier_l, &h->pred_mode_Y[7] );
312 modify_pred(ff_left_modifier_c, pred_mode_uv );
314 if(!(h->flags & B_AVAIL)) {
315 modify_pred(ff_top_modifier_l, &h->pred_mode_Y[4] );
316 modify_pred(ff_top_modifier_l, &h->pred_mode_Y[5] );
317 modify_pred(ff_top_modifier_c, pred_mode_uv );
321 /*****************************************************************************
323 * motion compensation
325 ****************************************************************************/
327 static inline void mc_dir_part(AVSContext *h,Picture *pic,int square,
328 int chroma_height,int delta,int list,uint8_t *dest_y,
329 uint8_t *dest_cb,uint8_t *dest_cr,int src_x_offset,
330 int src_y_offset,qpel_mc_func *qpix_op,
331 h264_chroma_mc_func chroma_op,cavs_vector *mv){
332 MpegEncContext * const s = &h->s;
333 const int mx= mv->x + src_x_offset*8;
334 const int my= mv->y + src_y_offset*8;
335 const int luma_xy= (mx&3) + ((my&3)<<2);
336 uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*h->l_stride;
337 uint8_t * src_cb= pic->data[1] + (mx>>3) + (my>>3)*h->c_stride;
338 uint8_t * src_cr= pic->data[2] + (mx>>3) + (my>>3)*h->c_stride;
339 int extra_width= 0; //(s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16;
340 int extra_height= extra_width;
341 int emu=0;
342 const int full_mx= mx>>2;
343 const int full_my= my>>2;
344 const int pic_width = 16*h->mb_width;
345 const int pic_height = 16*h->mb_height;
347 if(!pic->data[0])
348 return;
349 if(mx&7) extra_width -= 3;
350 if(my&7) extra_height -= 3;
352 if( full_mx < 0-extra_width
353 || full_my < 0-extra_height
354 || full_mx + 16/*FIXME*/ > pic_width + extra_width
355 || full_my + 16/*FIXME*/ > pic_height + extra_height){
356 ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*h->l_stride, h->l_stride,
357 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
358 src_y= s->edge_emu_buffer + 2 + 2*h->l_stride;
359 emu=1;
362 qpix_op[luma_xy](dest_y, src_y, h->l_stride); //FIXME try variable height perhaps?
363 if(!square){
364 qpix_op[luma_xy](dest_y + delta, src_y + delta, h->l_stride);
367 if(emu){
368 ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, h->c_stride,
369 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
370 src_cb= s->edge_emu_buffer;
372 chroma_op(dest_cb, src_cb, h->c_stride, chroma_height, mx&7, my&7);
374 if(emu){
375 ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, h->c_stride,
376 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
377 src_cr= s->edge_emu_buffer;
379 chroma_op(dest_cr, src_cr, h->c_stride, chroma_height, mx&7, my&7);
382 static inline void mc_part_std(AVSContext *h,int square,int chroma_height,int delta,
383 uint8_t *dest_y,uint8_t *dest_cb,uint8_t *dest_cr,
384 int x_offset, int y_offset,qpel_mc_func *qpix_put,
385 h264_chroma_mc_func chroma_put,qpel_mc_func *qpix_avg,
386 h264_chroma_mc_func chroma_avg, cavs_vector *mv){
387 qpel_mc_func *qpix_op= qpix_put;
388 h264_chroma_mc_func chroma_op= chroma_put;
390 dest_y += 2*x_offset + 2*y_offset*h->l_stride;
391 dest_cb += x_offset + y_offset*h->c_stride;
392 dest_cr += x_offset + y_offset*h->c_stride;
393 x_offset += 8*h->mbx;
394 y_offset += 8*h->mby;
396 if(mv->ref >= 0){
397 Picture *ref= &h->DPB[mv->ref];
398 mc_dir_part(h, ref, square, chroma_height, delta, 0,
399 dest_y, dest_cb, dest_cr, x_offset, y_offset,
400 qpix_op, chroma_op, mv);
402 qpix_op= qpix_avg;
403 chroma_op= chroma_avg;
406 if((mv+MV_BWD_OFFS)->ref >= 0){
407 Picture *ref= &h->DPB[0];
408 mc_dir_part(h, ref, square, chroma_height, delta, 1,
409 dest_y, dest_cb, dest_cr, x_offset, y_offset,
410 qpix_op, chroma_op, mv+MV_BWD_OFFS);
414 void ff_cavs_inter(AVSContext *h, enum cavs_mb mb_type) {
415 if(ff_cavs_partition_flags[mb_type] == 0){ // 16x16
416 mc_part_std(h, 1, 8, 0, h->cy, h->cu, h->cv, 0, 0,
417 h->s.dsp.put_cavs_qpel_pixels_tab[0],
418 h->s.dsp.put_h264_chroma_pixels_tab[0],
419 h->s.dsp.avg_cavs_qpel_pixels_tab[0],
420 h->s.dsp.avg_h264_chroma_pixels_tab[0],&h->mv[MV_FWD_X0]);
421 }else{
422 mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 0, 0,
423 h->s.dsp.put_cavs_qpel_pixels_tab[1],
424 h->s.dsp.put_h264_chroma_pixels_tab[1],
425 h->s.dsp.avg_cavs_qpel_pixels_tab[1],
426 h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X0]);
427 mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 4, 0,
428 h->s.dsp.put_cavs_qpel_pixels_tab[1],
429 h->s.dsp.put_h264_chroma_pixels_tab[1],
430 h->s.dsp.avg_cavs_qpel_pixels_tab[1],
431 h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X1]);
432 mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 0, 4,
433 h->s.dsp.put_cavs_qpel_pixels_tab[1],
434 h->s.dsp.put_h264_chroma_pixels_tab[1],
435 h->s.dsp.avg_cavs_qpel_pixels_tab[1],
436 h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X2]);
437 mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 4, 4,
438 h->s.dsp.put_cavs_qpel_pixels_tab[1],
439 h->s.dsp.put_h264_chroma_pixels_tab[1],
440 h->s.dsp.avg_cavs_qpel_pixels_tab[1],
441 h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X3]);
445 /*****************************************************************************
447 * motion vector prediction
449 ****************************************************************************/
451 static inline void scale_mv(AVSContext *h, int *d_x, int *d_y, cavs_vector *src, int distp) {
452 int den = h->scale_den[src->ref];
454 *d_x = (src->x*distp*den + 256 + (src->x>>31)) >> 9;
455 *d_y = (src->y*distp*den + 256 + (src->y>>31)) >> 9;
458 static inline void mv_pred_median(AVSContext *h, cavs_vector *mvP,
459 cavs_vector *mvA, cavs_vector *mvB, cavs_vector *mvC) {
460 int ax, ay, bx, by, cx, cy;
461 int len_ab, len_bc, len_ca, len_mid;
463 /* scale candidates according to their temporal span */
464 scale_mv(h, &ax, &ay, mvA, mvP->dist);
465 scale_mv(h, &bx, &by, mvB, mvP->dist);
466 scale_mv(h, &cx, &cy, mvC, mvP->dist);
467 /* find the geometrical median of the three candidates */
468 len_ab = abs(ax - bx) + abs(ay - by);
469 len_bc = abs(bx - cx) + abs(by - cy);
470 len_ca = abs(cx - ax) + abs(cy - ay);
471 len_mid = mid_pred(len_ab, len_bc, len_ca);
472 if(len_mid == len_ab) {
473 mvP->x = cx;
474 mvP->y = cy;
475 } else if(len_mid == len_bc) {
476 mvP->x = ax;
477 mvP->y = ay;
478 } else {
479 mvP->x = bx;
480 mvP->y = by;
484 void ff_cavs_mv(AVSContext *h, enum cavs_mv_loc nP, enum cavs_mv_loc nC,
485 enum cavs_mv_pred mode, enum cavs_block size, int ref) {
486 cavs_vector *mvP = &h->mv[nP];
487 cavs_vector *mvA = &h->mv[nP-1];
488 cavs_vector *mvB = &h->mv[nP-4];
489 cavs_vector *mvC = &h->mv[nC];
490 const cavs_vector *mvP2 = NULL;
492 mvP->ref = ref;
493 mvP->dist = h->dist[mvP->ref];
494 if(mvC->ref == NOT_AVAIL)
495 mvC = &h->mv[nP-5]; // set to top-left (mvD)
496 if((mode == MV_PRED_PSKIP) &&
497 ((mvA->ref == NOT_AVAIL) || (mvB->ref == NOT_AVAIL) ||
498 ((mvA->x | mvA->y | mvA->ref) == 0) ||
499 ((mvB->x | mvB->y | mvB->ref) == 0) )) {
500 mvP2 = &ff_cavs_un_mv;
501 /* if there is only one suitable candidate, take it */
502 } else if((mvA->ref >= 0) && (mvB->ref < 0) && (mvC->ref < 0)) {
503 mvP2= mvA;
504 } else if((mvA->ref < 0) && (mvB->ref >= 0) && (mvC->ref < 0)) {
505 mvP2= mvB;
506 } else if((mvA->ref < 0) && (mvB->ref < 0) && (mvC->ref >= 0)) {
507 mvP2= mvC;
508 } else if(mode == MV_PRED_LEFT && mvA->ref == ref){
509 mvP2= mvA;
510 } else if(mode == MV_PRED_TOP && mvB->ref == ref){
511 mvP2= mvB;
512 } else if(mode == MV_PRED_TOPRIGHT && mvC->ref == ref){
513 mvP2= mvC;
515 if(mvP2){
516 mvP->x = mvP2->x;
517 mvP->y = mvP2->y;
518 }else
519 mv_pred_median(h, mvP, mvA, mvB, mvC);
521 if(mode < MV_PRED_PSKIP) {
522 mvP->x += get_se_golomb(&h->s.gb);
523 mvP->y += get_se_golomb(&h->s.gb);
525 set_mvs(mvP,size);
528 /*****************************************************************************
530 * macroblock level
532 ****************************************************************************/
535 * initialise predictors for motion vectors and intra prediction
537 void ff_cavs_init_mb(AVSContext *h) {
538 int i;
540 /* copy predictors from top line (MB B and C) into cache */
541 for(i=0;i<3;i++) {
542 h->mv[MV_FWD_B2+i] = h->top_mv[0][h->mbx*2+i];
543 h->mv[MV_BWD_B2+i] = h->top_mv[1][h->mbx*2+i];
545 h->pred_mode_Y[1] = h->top_pred_Y[h->mbx*2+0];
546 h->pred_mode_Y[2] = h->top_pred_Y[h->mbx*2+1];
547 /* clear top predictors if MB B is not available */
548 if(!(h->flags & B_AVAIL)) {
549 h->mv[MV_FWD_B2] = ff_cavs_un_mv;
550 h->mv[MV_FWD_B3] = ff_cavs_un_mv;
551 h->mv[MV_BWD_B2] = ff_cavs_un_mv;
552 h->mv[MV_BWD_B3] = ff_cavs_un_mv;
553 h->pred_mode_Y[1] = h->pred_mode_Y[2] = NOT_AVAIL;
554 h->flags &= ~(C_AVAIL|D_AVAIL);
555 } else if(h->mbx) {
556 h->flags |= D_AVAIL;
558 if(h->mbx == h->mb_width-1) //MB C not available
559 h->flags &= ~C_AVAIL;
560 /* clear top-right predictors if MB C is not available */
561 if(!(h->flags & C_AVAIL)) {
562 h->mv[MV_FWD_C2] = ff_cavs_un_mv;
563 h->mv[MV_BWD_C2] = ff_cavs_un_mv;
565 /* clear top-left predictors if MB D is not available */
566 if(!(h->flags & D_AVAIL)) {
567 h->mv[MV_FWD_D3] = ff_cavs_un_mv;
568 h->mv[MV_BWD_D3] = ff_cavs_un_mv;
573 * save predictors for later macroblocks and increase
574 * macroblock address
575 * @returns 0 if end of frame is reached, 1 otherwise
577 int ff_cavs_next_mb(AVSContext *h) {
578 int i;
580 h->flags |= A_AVAIL;
581 h->cy += 16;
582 h->cu += 8;
583 h->cv += 8;
584 /* copy mvs as predictors to the left */
585 for(i=0;i<=20;i+=4)
586 h->mv[i] = h->mv[i+2];
587 /* copy bottom mvs from cache to top line */
588 h->top_mv[0][h->mbx*2+0] = h->mv[MV_FWD_X2];
589 h->top_mv[0][h->mbx*2+1] = h->mv[MV_FWD_X3];
590 h->top_mv[1][h->mbx*2+0] = h->mv[MV_BWD_X2];
591 h->top_mv[1][h->mbx*2+1] = h->mv[MV_BWD_X3];
592 /* next MB address */
593 h->mbidx++;
594 h->mbx++;
595 if(h->mbx == h->mb_width) { //new mb line
596 h->flags = B_AVAIL|C_AVAIL;
597 /* clear left pred_modes */
598 h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
599 /* clear left mv predictors */
600 for(i=0;i<=20;i+=4)
601 h->mv[i] = ff_cavs_un_mv;
602 h->mbx = 0;
603 h->mby++;
604 /* re-calculate sample pointers */
605 h->cy = h->picture.data[0] + h->mby*16*h->l_stride;
606 h->cu = h->picture.data[1] + h->mby*8*h->c_stride;
607 h->cv = h->picture.data[2] + h->mby*8*h->c_stride;
608 if(h->mby == h->mb_height) { //frame end
609 return 0;
612 return 1;
615 /*****************************************************************************
617 * frame level
619 ****************************************************************************/
621 void ff_cavs_init_pic(AVSContext *h) {
622 int i;
624 /* clear some predictors */
625 for(i=0;i<=20;i+=4)
626 h->mv[i] = ff_cavs_un_mv;
627 h->mv[MV_BWD_X0] = ff_cavs_dir_mv;
628 set_mvs(&h->mv[MV_BWD_X0], BLK_16X16);
629 h->mv[MV_FWD_X0] = ff_cavs_dir_mv;
630 set_mvs(&h->mv[MV_FWD_X0], BLK_16X16);
631 h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
632 h->cy = h->picture.data[0];
633 h->cu = h->picture.data[1];
634 h->cv = h->picture.data[2];
635 h->l_stride = h->picture.linesize[0];
636 h->c_stride = h->picture.linesize[1];
637 h->luma_scan[2] = 8*h->l_stride;
638 h->luma_scan[3] = 8*h->l_stride+8;
639 h->mbx = h->mby = h->mbidx = 0;
640 h->flags = 0;
643 /*****************************************************************************
645 * headers and interface
647 ****************************************************************************/
650 * some predictions require data from the top-neighbouring macroblock.
651 * this data has to be stored for one complete row of macroblocks
652 * and this storage space is allocated here
654 void ff_cavs_init_top_lines(AVSContext *h) {
655 /* alloc top line of predictors */
656 h->top_qp = av_malloc( h->mb_width);
657 h->top_mv[0] = av_malloc((h->mb_width*2+1)*sizeof(cavs_vector));
658 h->top_mv[1] = av_malloc((h->mb_width*2+1)*sizeof(cavs_vector));
659 h->top_pred_Y = av_malloc( h->mb_width*2*sizeof(*h->top_pred_Y));
660 h->top_border_y = av_malloc((h->mb_width+1)*16);
661 h->top_border_u = av_malloc((h->mb_width)*10);
662 h->top_border_v = av_malloc((h->mb_width)*10);
664 /* alloc space for co-located MVs and types */
665 h->col_mv = av_malloc( h->mb_width*h->mb_height*4*sizeof(cavs_vector));
666 h->col_type_base = av_malloc(h->mb_width*h->mb_height);
667 h->block = av_mallocz(64*sizeof(DCTELEM));
670 av_cold int ff_cavs_init(AVCodecContext *avctx) {
671 AVSContext *h = avctx->priv_data;
672 MpegEncContext * const s = &h->s;
674 MPV_decode_defaults(s);
675 s->avctx = avctx;
677 avctx->pix_fmt= PIX_FMT_YUV420P;
679 h->luma_scan[0] = 0;
680 h->luma_scan[1] = 8;
681 h->intra_pred_l[ INTRA_L_VERT] = intra_pred_vert;
682 h->intra_pred_l[ INTRA_L_HORIZ] = intra_pred_horiz;
683 h->intra_pred_l[ INTRA_L_LP] = intra_pred_lp;
684 h->intra_pred_l[ INTRA_L_DOWN_LEFT] = intra_pred_down_left;
685 h->intra_pred_l[INTRA_L_DOWN_RIGHT] = intra_pred_down_right;
686 h->intra_pred_l[ INTRA_L_LP_LEFT] = intra_pred_lp_left;
687 h->intra_pred_l[ INTRA_L_LP_TOP] = intra_pred_lp_top;
688 h->intra_pred_l[ INTRA_L_DC_128] = intra_pred_dc_128;
689 h->intra_pred_c[ INTRA_C_LP] = intra_pred_lp;
690 h->intra_pred_c[ INTRA_C_HORIZ] = intra_pred_horiz;
691 h->intra_pred_c[ INTRA_C_VERT] = intra_pred_vert;
692 h->intra_pred_c[ INTRA_C_PLANE] = intra_pred_plane;
693 h->intra_pred_c[ INTRA_C_LP_LEFT] = intra_pred_lp_left;
694 h->intra_pred_c[ INTRA_C_LP_TOP] = intra_pred_lp_top;
695 h->intra_pred_c[ INTRA_C_DC_128] = intra_pred_dc_128;
696 h->mv[ 7] = ff_cavs_un_mv;
697 h->mv[19] = ff_cavs_un_mv;
698 return 0;
701 av_cold int ff_cavs_end(AVCodecContext *avctx) {
702 AVSContext *h = avctx->priv_data;
704 av_free(h->top_qp);
705 av_free(h->top_mv[0]);
706 av_free(h->top_mv[1]);
707 av_free(h->top_pred_Y);
708 av_free(h->top_border_y);
709 av_free(h->top_border_u);
710 av_free(h->top_border_v);
711 av_free(h->col_mv);
712 av_free(h->col_type_base);
713 av_free(h->block);
714 return 0;