Remove table that was forgotten in the split.
[FFMpeg-mirror/ordered_chapters.git] / libavcodec / resample2.c
blob31d2be7ded984a9f47d7cae21e627c7e1d55329b
1 /*
2 * audio resampling
3 * Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at>
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 /**
23 * @file libavcodec/resample2.c
24 * audio resampling
25 * @author Michael Niedermayer <michaelni@gmx.at>
28 #include "avcodec.h"
29 #include "dsputil.h"
31 #ifndef CONFIG_RESAMPLE_HP
32 #define FILTER_SHIFT 15
34 #define FELEM int16_t
35 #define FELEM2 int32_t
36 #define FELEML int64_t
37 #define FELEM_MAX INT16_MAX
38 #define FELEM_MIN INT16_MIN
39 #define WINDOW_TYPE 9
40 #elif !defined(CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE)
41 #define FILTER_SHIFT 30
43 #define FELEM int32_t
44 #define FELEM2 int64_t
45 #define FELEML int64_t
46 #define FELEM_MAX INT32_MAX
47 #define FELEM_MIN INT32_MIN
48 #define WINDOW_TYPE 12
49 #else
50 #define FILTER_SHIFT 0
52 #define FELEM double
53 #define FELEM2 double
54 #define FELEML double
55 #define WINDOW_TYPE 24
56 #endif
59 typedef struct AVResampleContext{
60 const AVClass *av_class;
61 FELEM *filter_bank;
62 int filter_length;
63 int ideal_dst_incr;
64 int dst_incr;
65 int index;
66 int frac;
67 int src_incr;
68 int compensation_distance;
69 int phase_shift;
70 int phase_mask;
71 int linear;
72 }AVResampleContext;
74 /**
75 * 0th order modified bessel function of the first kind.
77 static double bessel(double x){
78 double v=1;
79 double t=1;
80 int i;
82 x= x*x/4;
83 for(i=1; i<50; i++){
84 t *= x/(i*i);
85 v += t;
87 return v;
90 /**
91 * builds a polyphase filterbank.
92 * @param factor resampling factor
93 * @param scale wanted sum of coefficients for each filter
94 * @param type 0->cubic, 1->blackman nuttall windowed sinc, 2..16->kaiser windowed sinc beta=2..16
96 void av_build_filter(FELEM *filter, double factor, int tap_count, int phase_count, int scale, int type){
97 int ph, i;
98 double x, y, w, tab[tap_count];
99 const int center= (tap_count-1)/2;
101 /* if upsampling, only need to interpolate, no filter */
102 if (factor > 1.0)
103 factor = 1.0;
105 for(ph=0;ph<phase_count;ph++) {
106 double norm = 0;
107 for(i=0;i<tap_count;i++) {
108 x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
109 if (x == 0) y = 1.0;
110 else y = sin(x) / x;
111 switch(type){
112 case 0:{
113 const float d= -0.5; //first order derivative = -0.5
114 x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
115 if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*( -x*x + x*x*x);
116 else y= d*(-4 + 8*x - 5*x*x + x*x*x);
117 break;}
118 case 1:
119 w = 2.0*x / (factor*tap_count) + M_PI;
120 y *= 0.3635819 - 0.4891775 * cos(w) + 0.1365995 * cos(2*w) - 0.0106411 * cos(3*w);
121 break;
122 default:
123 w = 2.0*x / (factor*tap_count*M_PI);
124 y *= bessel(type*sqrt(FFMAX(1-w*w, 0)));
125 break;
128 tab[i] = y;
129 norm += y;
132 /* normalize so that an uniform color remains the same */
133 for(i=0;i<tap_count;i++) {
134 #ifdef CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE
135 filter[ph * tap_count + i] = tab[i] / norm;
136 #else
137 filter[ph * tap_count + i] = av_clip(lrintf(tab[i] * scale / norm), FELEM_MIN, FELEM_MAX);
138 #endif
141 #if 0
143 #define LEN 1024
144 int j,k;
145 double sine[LEN + tap_count];
146 double filtered[LEN];
147 double maxff=-2, minff=2, maxsf=-2, minsf=2;
148 for(i=0; i<LEN; i++){
149 double ss=0, sf=0, ff=0;
150 for(j=0; j<LEN+tap_count; j++)
151 sine[j]= cos(i*j*M_PI/LEN);
152 for(j=0; j<LEN; j++){
153 double sum=0;
154 ph=0;
155 for(k=0; k<tap_count; k++)
156 sum += filter[ph * tap_count + k] * sine[k+j];
157 filtered[j]= sum / (1<<FILTER_SHIFT);
158 ss+= sine[j + center] * sine[j + center];
159 ff+= filtered[j] * filtered[j];
160 sf+= sine[j + center] * filtered[j];
162 ss= sqrt(2*ss/LEN);
163 ff= sqrt(2*ff/LEN);
164 sf= 2*sf/LEN;
165 maxff= FFMAX(maxff, ff);
166 minff= FFMIN(minff, ff);
167 maxsf= FFMAX(maxsf, sf);
168 minsf= FFMIN(minsf, sf);
169 if(i%11==0){
170 av_log(NULL, AV_LOG_ERROR, "i:%4d ss:%f ff:%13.6e-%13.6e sf:%13.6e-%13.6e\n", i, ss, maxff, minff, maxsf, minsf);
171 minff=minsf= 2;
172 maxff=maxsf= -2;
176 #endif
179 AVResampleContext *av_resample_init(int out_rate, int in_rate, int filter_size, int phase_shift, int linear, double cutoff){
180 AVResampleContext *c= av_mallocz(sizeof(AVResampleContext));
181 double factor= FFMIN(out_rate * cutoff / in_rate, 1.0);
182 int phase_count= 1<<phase_shift;
184 c->phase_shift= phase_shift;
185 c->phase_mask= phase_count-1;
186 c->linear= linear;
188 c->filter_length= FFMAX((int)ceil(filter_size/factor), 1);
189 c->filter_bank= av_mallocz(c->filter_length*(phase_count+1)*sizeof(FELEM));
190 av_build_filter(c->filter_bank, factor, c->filter_length, phase_count, 1<<FILTER_SHIFT, WINDOW_TYPE);
191 memcpy(&c->filter_bank[c->filter_length*phase_count+1], c->filter_bank, (c->filter_length-1)*sizeof(FELEM));
192 c->filter_bank[c->filter_length*phase_count]= c->filter_bank[c->filter_length - 1];
194 c->src_incr= out_rate;
195 c->ideal_dst_incr= c->dst_incr= in_rate * phase_count;
196 c->index= -phase_count*((c->filter_length-1)/2);
198 return c;
201 void av_resample_close(AVResampleContext *c){
202 av_freep(&c->filter_bank);
203 av_freep(&c);
206 void av_resample_compensate(AVResampleContext *c, int sample_delta, int compensation_distance){
207 // sample_delta += (c->ideal_dst_incr - c->dst_incr)*(int64_t)c->compensation_distance / c->ideal_dst_incr;
208 c->compensation_distance= compensation_distance;
209 c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance;
212 int av_resample(AVResampleContext *c, short *dst, short *src, int *consumed, int src_size, int dst_size, int update_ctx){
213 int dst_index, i;
214 int index= c->index;
215 int frac= c->frac;
216 int dst_incr_frac= c->dst_incr % c->src_incr;
217 int dst_incr= c->dst_incr / c->src_incr;
218 int compensation_distance= c->compensation_distance;
220 if(compensation_distance == 0 && c->filter_length == 1 && c->phase_shift==0){
221 int64_t index2= ((int64_t)index)<<32;
222 int64_t incr= (1LL<<32) * c->dst_incr / c->src_incr;
223 dst_size= FFMIN(dst_size, (src_size-1-index) * (int64_t)c->src_incr / c->dst_incr);
225 for(dst_index=0; dst_index < dst_size; dst_index++){
226 dst[dst_index] = src[index2>>32];
227 index2 += incr;
229 frac += dst_index * dst_incr_frac;
230 index += dst_index * dst_incr;
231 index += frac / c->src_incr;
232 frac %= c->src_incr;
233 }else{
234 for(dst_index=0; dst_index < dst_size; dst_index++){
235 FELEM *filter= c->filter_bank + c->filter_length*(index & c->phase_mask);
236 int sample_index= index >> c->phase_shift;
237 FELEM2 val=0;
239 if(sample_index < 0){
240 for(i=0; i<c->filter_length; i++)
241 val += src[FFABS(sample_index + i) % src_size] * filter[i];
242 }else if(sample_index + c->filter_length > src_size){
243 break;
244 }else if(c->linear){
245 FELEM2 v2=0;
246 for(i=0; i<c->filter_length; i++){
247 val += src[sample_index + i] * (FELEM2)filter[i];
248 v2 += src[sample_index + i] * (FELEM2)filter[i + c->filter_length];
250 val+=(v2-val)*(FELEML)frac / c->src_incr;
251 }else{
252 for(i=0; i<c->filter_length; i++){
253 val += src[sample_index + i] * (FELEM2)filter[i];
257 #ifdef CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE
258 dst[dst_index] = av_clip_int16(lrintf(val));
259 #else
260 val = (val + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT;
261 dst[dst_index] = (unsigned)(val + 32768) > 65535 ? (val>>31) ^ 32767 : val;
262 #endif
264 frac += dst_incr_frac;
265 index += dst_incr;
266 if(frac >= c->src_incr){
267 frac -= c->src_incr;
268 index++;
271 if(dst_index + 1 == compensation_distance){
272 compensation_distance= 0;
273 dst_incr_frac= c->ideal_dst_incr % c->src_incr;
274 dst_incr= c->ideal_dst_incr / c->src_incr;
278 *consumed= FFMAX(index, 0) >> c->phase_shift;
279 if(index>=0) index &= c->phase_mask;
281 if(compensation_distance){
282 compensation_distance -= dst_index;
283 assert(compensation_distance > 0);
285 if(update_ctx){
286 c->frac= frac;
287 c->index= index;
288 c->dst_incr= dst_incr_frac + c->src_incr*dst_incr;
289 c->compensation_distance= compensation_distance;
291 #if 0
292 if(update_ctx && !c->compensation_distance){
293 #undef rand
294 av_resample_compensate(c, rand() % (8000*2) - 8000, 8000*2);
295 av_log(NULL, AV_LOG_DEBUG, "%d %d %d\n", c->dst_incr, c->ideal_dst_incr, c->compensation_distance);
297 #endif
299 return dst_index;