3 * Copyright (c) 2007 Konstantin Shishkov
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 * @file libavcodec/rv40.c
29 #include "mpegvideo.h"
36 static VLC aic_top_vlc
;
37 static VLC aic_mode1_vlc
[AIC_MODE1_NUM
], aic_mode2_vlc
[AIC_MODE2_NUM
];
38 static VLC ptype_vlc
[NUM_PTYPE_VLCS
], btype_vlc
[NUM_BTYPE_VLCS
];
40 static const int16_t mode2_offs
[] = {
41 0, 614, 1222, 1794, 2410, 3014, 3586, 4202, 4792, 5382, 5966, 6542,
42 7138, 7716, 8292, 8864, 9444, 10030, 10642, 11212, 11814
46 * Initialize all tables.
48 static av_cold
void rv40_init_tables(void)
51 static VLC_TYPE aic_table
[1 << AIC_TOP_BITS
][2];
52 static VLC_TYPE aic_mode1_table
[AIC_MODE1_NUM
<< AIC_MODE1_BITS
][2];
53 static VLC_TYPE aic_mode2_table
[11814][2];
54 static VLC_TYPE ptype_table
[NUM_PTYPE_VLCS
<< PTYPE_VLC_BITS
][2];
55 static VLC_TYPE btype_table
[NUM_BTYPE_VLCS
<< BTYPE_VLC_BITS
][2];
57 aic_top_vlc
.table
= aic_table
;
58 aic_top_vlc
.table_allocated
= 1 << AIC_TOP_BITS
;
59 init_vlc(&aic_top_vlc
, AIC_TOP_BITS
, AIC_TOP_SIZE
,
60 rv40_aic_top_vlc_bits
, 1, 1,
61 rv40_aic_top_vlc_codes
, 1, 1, INIT_VLC_USE_NEW_STATIC
);
62 for(i
= 0; i
< AIC_MODE1_NUM
; i
++){
63 // Every tenth VLC table is empty
64 if((i
% 10) == 9) continue;
65 aic_mode1_vlc
[i
].table
= &aic_mode1_table
[i
<< AIC_MODE1_BITS
];
66 aic_mode1_vlc
[i
].table_allocated
= 1 << AIC_MODE1_BITS
;
67 init_vlc(&aic_mode1_vlc
[i
], AIC_MODE1_BITS
, AIC_MODE1_SIZE
,
68 aic_mode1_vlc_bits
[i
], 1, 1,
69 aic_mode1_vlc_codes
[i
], 1, 1, INIT_VLC_USE_NEW_STATIC
);
71 for(i
= 0; i
< AIC_MODE2_NUM
; i
++){
72 aic_mode2_vlc
[i
].table
= &aic_mode2_table
[mode2_offs
[i
]];
73 aic_mode2_vlc
[i
].table_allocated
= mode2_offs
[i
+ 1] - mode2_offs
[i
];
74 init_vlc(&aic_mode2_vlc
[i
], AIC_MODE2_BITS
, AIC_MODE2_SIZE
,
75 aic_mode2_vlc_bits
[i
], 1, 1,
76 aic_mode2_vlc_codes
[i
], 2, 2, INIT_VLC_USE_NEW_STATIC
);
78 for(i
= 0; i
< NUM_PTYPE_VLCS
; i
++){
79 ptype_vlc
[i
].table
= &ptype_table
[i
<< PTYPE_VLC_BITS
];
80 ptype_vlc
[i
].table_allocated
= 1 << PTYPE_VLC_BITS
;
81 init_vlc_sparse(&ptype_vlc
[i
], PTYPE_VLC_BITS
, PTYPE_VLC_SIZE
,
82 ptype_vlc_bits
[i
], 1, 1,
83 ptype_vlc_codes
[i
], 1, 1,
84 ptype_vlc_syms
, 1, 1, INIT_VLC_USE_NEW_STATIC
);
86 for(i
= 0; i
< NUM_BTYPE_VLCS
; i
++){
87 btype_vlc
[i
].table
= &btype_table
[i
<< BTYPE_VLC_BITS
];
88 btype_vlc
[i
].table_allocated
= 1 << BTYPE_VLC_BITS
;
89 init_vlc_sparse(&btype_vlc
[i
], BTYPE_VLC_BITS
, BTYPE_VLC_SIZE
,
90 btype_vlc_bits
[i
], 1, 1,
91 btype_vlc_codes
[i
], 1, 1,
92 btype_vlc_syms
, 1, 1, INIT_VLC_USE_NEW_STATIC
);
97 * Get stored dimension from bitstream.
99 * If the width/height is the standard one then it's coded as a 3-bit index.
100 * Otherwise it is coded as escaped 8-bit portions.
102 static int get_dimension(GetBitContext
*gb
, const int *dim
)
104 int t
= get_bits(gb
, 3);
107 val
= dim
[get_bits1(gb
) - val
];
118 * Get encoded picture size - usually this is called from rv40_parse_slice_header.
120 static void rv40_parse_picture_size(GetBitContext
*gb
, int *w
, int *h
)
122 *w
= get_dimension(gb
, rv40_standard_widths
);
123 *h
= get_dimension(gb
, rv40_standard_heights
);
126 static int rv40_parse_slice_header(RV34DecContext
*r
, GetBitContext
*gb
, SliceInfo
*si
)
129 int w
= r
->s
.width
, h
= r
->s
.height
;
132 memset(si
, 0, sizeof(SliceInfo
));
135 si
->type
= get_bits(gb
, 2);
136 if(si
->type
== 1) si
->type
= 0;
137 si
->quant
= get_bits(gb
, 5);
140 si
->vlc_set
= get_bits(gb
, 2);
142 si
->pts
= get_bits(gb
, 13);
143 if(!si
->type
|| !get_bits1(gb
))
144 rv40_parse_picture_size(gb
, &w
, &h
);
145 if(avcodec_check_dimensions(r
->s
.avctx
, w
, h
) < 0)
149 mb_size
= ((w
+ 15) >> 4) * ((h
+ 15) >> 4);
150 mb_bits
= ff_rv34_get_start_offset(gb
, mb_size
);
151 si
->start
= get_bits(gb
, mb_bits
);
157 * Decode 4x4 intra types array.
159 static int rv40_decode_intra_types(RV34DecContext
*r
, GetBitContext
*gb
, int8_t *dst
)
161 MpegEncContext
*s
= &r
->s
;
167 for(i
= 0; i
< 4; i
++, dst
+= r
->intra_types_stride
){
168 if(!i
&& s
->first_slice_line
){
169 pattern
= get_vlc2(gb
, aic_top_vlc
.table
, AIC_TOP_BITS
, 1);
170 dst
[0] = (pattern
>> 2) & 2;
171 dst
[1] = (pattern
>> 1) & 2;
172 dst
[2] = pattern
& 2;
173 dst
[3] = (pattern
<< 1) & 2;
177 for(j
= 0; j
< 4; j
++){
178 /* Coefficients are read using VLC chosen by the prediction pattern
179 * The first one (used for retrieving a pair of coefficients) is
180 * constructed from the top, top right and left coefficients
181 * The second one (used for retrieving only one coefficient) is
184 A
= ptr
[-r
->intra_types_stride
+ 1]; // it won't be used for the last coefficient in a row
185 B
= ptr
[-r
->intra_types_stride
];
187 pattern
= A
+ (B
<< 4) + (C
<< 8);
188 for(k
= 0; k
< MODE2_PATTERNS_NUM
; k
++)
189 if(pattern
== rv40_aic_table_index
[k
])
191 if(j
< 3 && k
< MODE2_PATTERNS_NUM
){ //pattern is found, decoding 2 coefficients
192 v
= get_vlc2(gb
, aic_mode2_vlc
[k
].table
, AIC_MODE2_BITS
, 2);
197 if(B
!= -1 && C
!= -1)
198 v
= get_vlc2(gb
, aic_mode1_vlc
[B
+ C
*10].table
, AIC_MODE1_BITS
, 1);
199 else{ // tricky decoding
202 case -1: // code 0 -> 1, 1 -> 0
204 v
= get_bits1(gb
) ^ 1;
207 case 2: // code 0 -> 2, 1 -> 0
208 v
= (get_bits1(gb
) ^ 1) << 1;
220 * Decode macroblock information.
222 static int rv40_decode_mb_info(RV34DecContext
*r
)
224 MpegEncContext
*s
= &r
->s
;
225 GetBitContext
*gb
= &s
->gb
;
228 int mb_pos
= s
->mb_x
+ s
->mb_y
* s
->mb_stride
;
229 int blocks
[RV34_MB_TYPES
] = {0};
232 if(!r
->s
.mb_skip_run
)
233 r
->s
.mb_skip_run
= svq3_get_ue_golomb(gb
) + 1;
235 if(--r
->s
.mb_skip_run
)
238 if(r
->avail_cache
[6-1])
239 blocks
[r
->mb_type
[mb_pos
- 1]]++;
240 if(r
->avail_cache
[6-4]){
241 blocks
[r
->mb_type
[mb_pos
- s
->mb_stride
]]++;
242 if(r
->avail_cache
[6-2])
243 blocks
[r
->mb_type
[mb_pos
- s
->mb_stride
+ 1]]++;
244 if(r
->avail_cache
[6-5])
245 blocks
[r
->mb_type
[mb_pos
- s
->mb_stride
- 1]]++;
248 for(i
= 0; i
< RV34_MB_TYPES
; i
++){
249 if(blocks
[i
] > count
){
254 if(s
->pict_type
== FF_P_TYPE
){
255 prev_type
= block_num_to_ptype_vlc_num
[prev_type
];
256 q
= get_vlc2(gb
, ptype_vlc
[prev_type
].table
, PTYPE_VLC_BITS
, 1);
257 if(q
< PBTYPE_ESCAPE
)
259 q
= get_vlc2(gb
, ptype_vlc
[prev_type
].table
, PTYPE_VLC_BITS
, 1);
260 av_log(s
->avctx
, AV_LOG_ERROR
, "Dquant for P-frame\n");
262 prev_type
= block_num_to_btype_vlc_num
[prev_type
];
263 q
= get_vlc2(gb
, btype_vlc
[prev_type
].table
, BTYPE_VLC_BITS
, 1);
264 if(q
< PBTYPE_ESCAPE
)
266 q
= get_vlc2(gb
, btype_vlc
[prev_type
].table
, BTYPE_VLC_BITS
, 1);
267 av_log(s
->avctx
, AV_LOG_ERROR
, "Dquant for B-frame\n");
272 #define CLIP_SYMM(a, b) av_clip(a, -(b), b)
274 * weaker deblocking very similar to the one described in 4.4.2 of JVT-A003r1
276 static inline void rv40_weak_loop_filter(uint8_t *src
, const int step
,
277 const int filter_p1
, const int filter_q1
,
278 const int alpha
, const int beta
,
280 const int lim_q1
, const int lim_p1
,
281 const int diff_p1p0
, const int diff_q1q0
,
282 const int diff_p1p2
, const int diff_q1q2
)
284 uint8_t *cm
= ff_cropTbl
+ MAX_NEG_CROP
;
287 t
= src
[0*step
] - src
[-1*step
];
290 u
= (alpha
* FFABS(t
)) >> 7;
291 if(u
> 3 - (filter_p1
&& filter_q1
))
295 if(filter_p1
&& filter_q1
)
296 t
+= src
[-2*step
] - src
[1*step
];
297 diff
= CLIP_SYMM((t
+ 4) >> 3, lim_p0q0
);
298 src
[-1*step
] = cm
[src
[-1*step
] + diff
];
299 src
[ 0*step
] = cm
[src
[ 0*step
] - diff
];
300 if(FFABS(diff_p1p2
) <= beta
&& filter_p1
){
301 t
= (diff_p1p0
+ diff_p1p2
- diff
) >> 1;
302 src
[-2*step
] = cm
[src
[-2*step
] - CLIP_SYMM(t
, lim_p1
)];
304 if(FFABS(diff_q1q2
) <= beta
&& filter_q1
){
305 t
= (diff_q1q0
+ diff_q1q2
+ diff
) >> 1;
306 src
[ 1*step
] = cm
[src
[ 1*step
] - CLIP_SYMM(t
, lim_q1
)];
310 static inline void rv40_adaptive_loop_filter(uint8_t *src
, const int step
,
311 const int stride
, const int dmode
,
312 const int lim_q1
, const int lim_p1
,
314 const int beta
, const int beta2
,
315 const int chroma
, const int edge
)
317 int diff_p1p0
[4], diff_q1q0
[4], diff_p1p2
[4], diff_q1q2
[4];
318 int sum_p1p0
= 0, sum_q1q0
= 0, sum_p1p2
= 0, sum_q1q2
= 0;
320 int flag_strong0
= 1, flag_strong1
= 1;
321 int filter_p1
, filter_q1
;
325 for(i
= 0, ptr
= src
; i
< 4; i
++, ptr
+= stride
){
326 diff_p1p0
[i
] = ptr
[-2*step
] - ptr
[-1*step
];
327 diff_q1q0
[i
] = ptr
[ 1*step
] - ptr
[ 0*step
];
328 sum_p1p0
+= diff_p1p0
[i
];
329 sum_q1q0
+= diff_q1q0
[i
];
331 filter_p1
= FFABS(sum_p1p0
) < (beta
<<2);
332 filter_q1
= FFABS(sum_q1q0
) < (beta
<<2);
333 if(!filter_p1
&& !filter_q1
)
336 for(i
= 0, ptr
= src
; i
< 4; i
++, ptr
+= stride
){
337 diff_p1p2
[i
] = ptr
[-2*step
] - ptr
[-3*step
];
338 diff_q1q2
[i
] = ptr
[ 1*step
] - ptr
[ 2*step
];
339 sum_p1p2
+= diff_p1p2
[i
];
340 sum_q1q2
+= diff_q1q2
[i
];
344 flag_strong0
= filter_p1
&& (FFABS(sum_p1p2
) < beta2
);
345 flag_strong1
= filter_q1
&& (FFABS(sum_q1q2
) < beta2
);
347 flag_strong0
= flag_strong1
= 0;
350 lims
= filter_p1
+ filter_q1
+ ((lim_q1
+ lim_p1
) >> 1) + 1;
351 if(flag_strong0
&& flag_strong1
){ /* strong filtering */
352 for(i
= 0; i
< 4; i
++, src
+= stride
){
353 int sflag
, p0
, q0
, p1
, q1
;
354 int t
= src
[0*step
] - src
[-1*step
];
357 sflag
= (alpha
* FFABS(t
)) >> 7;
358 if(sflag
> 1) continue;
360 p0
= (25*src
[-3*step
] + 26*src
[-2*step
]
362 + 26*src
[ 0*step
] + 25*src
[ 1*step
] + rv40_dither_l
[dmode
+ i
]) >> 7;
363 q0
= (25*src
[-2*step
] + 26*src
[-1*step
]
365 + 26*src
[ 1*step
] + 25*src
[ 2*step
] + rv40_dither_r
[dmode
+ i
]) >> 7;
367 p0
= av_clip(p0
, src
[-1*step
] - lims
, src
[-1*step
] + lims
);
368 q0
= av_clip(q0
, src
[ 0*step
] - lims
, src
[ 0*step
] + lims
);
370 p1
= (25*src
[-4*step
] + 26*src
[-3*step
]
372 + 26*p0
+ 25*src
[ 0*step
] + rv40_dither_l
[dmode
+ i
]) >> 7;
373 q1
= (25*src
[-1*step
] + 26*q0
375 + 26*src
[ 2*step
] + 25*src
[ 3*step
] + rv40_dither_r
[dmode
+ i
]) >> 7;
377 p1
= av_clip(p1
, src
[-2*step
] - lims
, src
[-2*step
] + lims
);
378 q1
= av_clip(q1
, src
[ 1*step
] - lims
, src
[ 1*step
] + lims
);
385 src
[-3*step
] = (25*src
[-1*step
] + 26*src
[-2*step
] + 51*src
[-3*step
] + 26*src
[-4*step
] + 64) >> 7;
386 src
[ 2*step
] = (25*src
[ 0*step
] + 26*src
[ 1*step
] + 51*src
[ 2*step
] + 26*src
[ 3*step
] + 64) >> 7;
389 }else if(filter_p1
&& filter_q1
){
390 for(i
= 0; i
< 4; i
++, src
+= stride
)
391 rv40_weak_loop_filter(src
, step
, 1, 1, alpha
, beta
, lims
, lim_q1
, lim_p1
,
392 diff_p1p0
[i
], diff_q1q0
[i
], diff_p1p2
[i
], diff_q1q2
[i
]);
394 for(i
= 0; i
< 4; i
++, src
+= stride
)
395 rv40_weak_loop_filter(src
, step
, filter_p1
, filter_q1
,
396 alpha
, beta
, lims
>>1, lim_q1
>>1, lim_p1
>>1,
397 diff_p1p0
[i
], diff_q1q0
[i
], diff_p1p2
[i
], diff_q1q2
[i
]);
401 static void rv40_v_loop_filter(uint8_t *src
, int stride
, int dmode
,
402 int lim_q1
, int lim_p1
,
403 int alpha
, int beta
, int beta2
, int chroma
, int edge
){
404 rv40_adaptive_loop_filter(src
, 1, stride
, dmode
, lim_q1
, lim_p1
,
405 alpha
, beta
, beta2
, chroma
, edge
);
407 static void rv40_h_loop_filter(uint8_t *src
, int stride
, int dmode
,
408 int lim_q1
, int lim_p1
,
409 int alpha
, int beta
, int beta2
, int chroma
, int edge
){
410 rv40_adaptive_loop_filter(src
, stride
, 1, dmode
, lim_q1
, lim_p1
,
411 alpha
, beta
, beta2
, chroma
, edge
);
421 #define MASK_CUR 0x0001
422 #define MASK_RIGHT 0x0008
423 #define MASK_BOTTOM 0x0010
424 #define MASK_TOP 0x1000
425 #define MASK_Y_TOP_ROW 0x000F
426 #define MASK_Y_LAST_ROW 0xF000
427 #define MASK_Y_LEFT_COL 0x1111
428 #define MASK_Y_RIGHT_COL 0x8888
429 #define MASK_C_TOP_ROW 0x0003
430 #define MASK_C_LAST_ROW 0x000C
431 #define MASK_C_LEFT_COL 0x0005
432 #define MASK_C_RIGHT_COL 0x000A
434 static const int neighbour_offs_x
[4] = { 0, 0, -1, 0 };
435 static const int neighbour_offs_y
[4] = { 0, -1, 0, 1 };
438 * RV40 loop filtering function
440 static void rv40_loop_filter(RV34DecContext
*r
, int row
)
442 MpegEncContext
*s
= &r
->s
;
446 int alpha
, beta
, betaY
, betaC
;
448 int mbtype
[4]; ///< current macroblock and its neighbours types
450 * flags indicating that macroblock can be filtered with strong filter
451 * it is set only for intra coded MB and MB with DCs coded separately
454 int clip
[4]; ///< MB filter clipping value calculated from filtering strength
456 * coded block patterns for luma part of current macroblock and its neighbours
458 * LSB corresponds to the top left block,
459 * each nibble represents one row of subblocks.
463 * coded block patterns for chroma part of current macroblock and its neighbours
464 * Format is the same as for luma with two subblocks in a row.
468 * This mask represents the pattern of luma subblocks that should be filtered
469 * in addition to the coded ones because because they lie at the edge of
470 * 8x8 block with different enough motion vectors
474 mb_pos
= row
* s
->mb_stride
;
475 for(mb_x
= 0; mb_x
< s
->mb_width
; mb_x
++, mb_pos
++){
476 int mbtype
= s
->current_picture_ptr
->mb_type
[mb_pos
];
477 if(IS_INTRA(mbtype
) || IS_SEPARATE_DC(mbtype
))
478 r
->cbp_luma
[mb_pos
] = r
->deblock_coefs
[mb_pos
] = 0xFFFF;
480 r
->cbp_chroma
[mb_pos
] = 0xFF;
482 mb_pos
= row
* s
->mb_stride
;
483 for(mb_x
= 0; mb_x
< s
->mb_width
; mb_x
++, mb_pos
++){
484 int y_h_deblock
, y_v_deblock
;
485 int c_v_deblock
[2], c_h_deblock
[2];
488 int y_to_deblock
, c_to_deblock
[2];
490 q
= s
->current_picture_ptr
->qscale_table
[mb_pos
];
491 alpha
= rv40_alpha_tab
[q
];
492 beta
= rv40_beta_tab
[q
];
493 betaY
= betaC
= beta
* 3;
494 if(s
->width
* s
->height
<= 176*144)
500 avail
[3] = row
< s
->mb_height
- 1;
501 for(i
= 0; i
< 4; i
++){
503 int pos
= mb_pos
+ neighbour_offs_x
[i
] + neighbour_offs_y
[i
]*s
->mb_stride
;
504 mvmasks
[i
] = r
->deblock_coefs
[pos
];
505 mbtype
[i
] = s
->current_picture_ptr
->mb_type
[pos
];
506 cbp
[i
] = r
->cbp_luma
[pos
];
507 uvcbp
[i
][0] = r
->cbp_chroma
[pos
] & 0xF;
508 uvcbp
[i
][1] = r
->cbp_chroma
[pos
] >> 4;
511 mbtype
[i
] = mbtype
[0];
513 uvcbp
[i
][0] = uvcbp
[i
][1] = 0;
515 mb_strong
[i
] = IS_INTRA(mbtype
[i
]) || IS_SEPARATE_DC(mbtype
[i
]);
516 clip
[i
] = rv40_filter_clip_tbl
[mb_strong
[i
] + 1][q
];
518 y_to_deblock
= mvmasks
[POS_CUR
]
519 | (mvmasks
[POS_BOTTOM
] << 16);
520 /* This pattern contains bits signalling that horizontal edges of
521 * the current block can be filtered.
522 * That happens when either of adjacent subblocks is coded or lies on
523 * the edge of 8x8 blocks with motion vectors differing by more than
524 * 3/4 pel in any component (any edge orientation for some reason).
526 y_h_deblock
= y_to_deblock
527 | ((cbp
[POS_CUR
] << 4) & ~MASK_Y_TOP_ROW
)
528 | ((cbp
[POS_TOP
] & MASK_Y_LAST_ROW
) >> 12);
529 /* This pattern contains bits signalling that vertical edges of
530 * the current block can be filtered.
531 * That happens when either of adjacent subblocks is coded or lies on
532 * the edge of 8x8 blocks with motion vectors differing by more than
533 * 3/4 pel in any component (any edge orientation for some reason).
535 y_v_deblock
= y_to_deblock
536 | ((cbp
[POS_CUR
] << 1) & ~MASK_Y_LEFT_COL
)
537 | ((cbp
[POS_LEFT
] & MASK_Y_RIGHT_COL
) >> 3);
539 y_v_deblock
&= ~MASK_Y_LEFT_COL
;
541 y_h_deblock
&= ~MASK_Y_TOP_ROW
;
542 if(row
== s
->mb_height
- 1 || (mb_strong
[POS_CUR
] || mb_strong
[POS_BOTTOM
]))
543 y_h_deblock
&= ~(MASK_Y_TOP_ROW
<< 16);
544 /* Calculating chroma patterns is similar and easier since there is
545 * no motion vector pattern for them.
547 for(i
= 0; i
< 2; i
++){
548 c_to_deblock
[i
] = (uvcbp
[POS_BOTTOM
][i
] << 4) | uvcbp
[POS_CUR
][i
];
549 c_v_deblock
[i
] = c_to_deblock
[i
]
550 | ((uvcbp
[POS_CUR
] [i
] << 1) & ~MASK_C_LEFT_COL
)
551 | ((uvcbp
[POS_LEFT
][i
] & MASK_C_RIGHT_COL
) >> 1);
552 c_h_deblock
[i
] = c_to_deblock
[i
]
553 | ((uvcbp
[POS_TOP
][i
] & MASK_C_LAST_ROW
) >> 2)
554 | (uvcbp
[POS_CUR
][i
] << 2);
556 c_v_deblock
[i
] &= ~MASK_C_LEFT_COL
;
558 c_h_deblock
[i
] &= ~MASK_C_TOP_ROW
;
559 if(row
== s
->mb_height
- 1 || mb_strong
[POS_CUR
] || mb_strong
[POS_BOTTOM
])
560 c_h_deblock
[i
] &= ~(MASK_C_TOP_ROW
<< 4);
563 for(j
= 0; j
< 16; j
+= 4){
564 Y
= s
->current_picture_ptr
->data
[0] + mb_x
*16 + (row
*16 + j
) * s
->linesize
;
565 for(i
= 0; i
< 4; i
++, Y
+= 4){
567 int clip_cur
= y_to_deblock
& (MASK_CUR
<< ij
) ? clip
[POS_CUR
] : 0;
568 int dither
= j
? ij
: i
*4;
570 // if bottom block is coded then we can filter its top edge
571 // (or bottom edge of this block, which is the same)
572 if(y_h_deblock
& (MASK_BOTTOM
<< ij
)){
573 rv40_h_loop_filter(Y
+4*s
->linesize
, s
->linesize
, dither
,
574 y_to_deblock
& (MASK_BOTTOM
<< ij
) ? clip
[POS_CUR
] : 0,
576 alpha
, beta
, betaY
, 0, 0);
578 // filter left block edge in ordinary mode (with low filtering strength)
579 if(y_v_deblock
& (MASK_CUR
<< ij
) && (i
|| !(mb_strong
[POS_CUR
] || mb_strong
[POS_LEFT
]))){
581 clip_left
= mvmasks
[POS_LEFT
] & (MASK_RIGHT
<< j
) ? clip
[POS_LEFT
] : 0;
583 clip_left
= y_to_deblock
& (MASK_CUR
<< (ij
-1)) ? clip
[POS_CUR
] : 0;
584 rv40_v_loop_filter(Y
, s
->linesize
, dither
,
587 alpha
, beta
, betaY
, 0, 0);
589 // filter top edge of the current macroblock when filtering strength is high
590 if(!j
&& y_h_deblock
& (MASK_CUR
<< i
) && (mb_strong
[POS_CUR
] || mb_strong
[POS_TOP
])){
591 rv40_h_loop_filter(Y
, s
->linesize
, dither
,
593 mvmasks
[POS_TOP
] & (MASK_TOP
<< i
) ? clip
[POS_TOP
] : 0,
594 alpha
, beta
, betaY
, 0, 1);
596 // filter left block edge in edge mode (with high filtering strength)
597 if(y_v_deblock
& (MASK_CUR
<< ij
) && !i
&& (mb_strong
[POS_CUR
] || mb_strong
[POS_LEFT
])){
598 clip_left
= mvmasks
[POS_LEFT
] & (MASK_RIGHT
<< j
) ? clip
[POS_LEFT
] : 0;
599 rv40_v_loop_filter(Y
, s
->linesize
, dither
,
602 alpha
, beta
, betaY
, 0, 1);
606 for(k
= 0; k
< 2; k
++){
607 for(j
= 0; j
< 2; j
++){
608 C
= s
->current_picture_ptr
->data
[k
+1] + mb_x
*8 + (row
*8 + j
*4) * s
->uvlinesize
;
609 for(i
= 0; i
< 2; i
++, C
+= 4){
611 int clip_cur
= c_to_deblock
[k
] & (MASK_CUR
<< ij
) ? clip
[POS_CUR
] : 0;
612 if(c_h_deblock
[k
] & (MASK_CUR
<< (ij
+2))){
613 int clip_bot
= c_to_deblock
[k
] & (MASK_CUR
<< (ij
+2)) ? clip
[POS_CUR
] : 0;
614 rv40_h_loop_filter(C
+4*s
->uvlinesize
, s
->uvlinesize
, i
*8,
617 alpha
, beta
, betaC
, 1, 0);
619 if((c_v_deblock
[k
] & (MASK_CUR
<< ij
)) && (i
|| !(mb_strong
[POS_CUR
] || mb_strong
[POS_LEFT
]))){
621 clip_left
= uvcbp
[POS_LEFT
][k
] & (MASK_CUR
<< (2*j
+1)) ? clip
[POS_LEFT
] : 0;
623 clip_left
= c_to_deblock
[k
] & (MASK_CUR
<< (ij
-1)) ? clip
[POS_CUR
] : 0;
624 rv40_v_loop_filter(C
, s
->uvlinesize
, j
*8,
627 alpha
, beta
, betaC
, 1, 0);
629 if(!j
&& c_h_deblock
[k
] & (MASK_CUR
<< ij
) && (mb_strong
[POS_CUR
] || mb_strong
[POS_TOP
])){
630 int clip_top
= uvcbp
[POS_TOP
][k
] & (MASK_CUR
<< (ij
+2)) ? clip
[POS_TOP
] : 0;
631 rv40_h_loop_filter(C
, s
->uvlinesize
, i
*8,
634 alpha
, beta
, betaC
, 1, 1);
636 if(c_v_deblock
[k
] & (MASK_CUR
<< ij
) && !i
&& (mb_strong
[POS_CUR
] || mb_strong
[POS_LEFT
])){
637 clip_left
= uvcbp
[POS_LEFT
][k
] & (MASK_CUR
<< (2*j
+1)) ? clip
[POS_LEFT
] : 0;
638 rv40_v_loop_filter(C
, s
->uvlinesize
, j
*8,
641 alpha
, beta
, betaC
, 1, 1);
650 * Initialize decoder.
652 static av_cold
int rv40_decode_init(AVCodecContext
*avctx
)
654 RV34DecContext
*r
= avctx
->priv_data
;
657 ff_rv34_decode_init(avctx
);
658 if(!aic_top_vlc
.bits
)
660 r
->parse_slice_header
= rv40_parse_slice_header
;
661 r
->decode_intra_types
= rv40_decode_intra_types
;
662 r
->decode_mb_info
= rv40_decode_mb_info
;
663 r
->loop_filter
= rv40_loop_filter
;
664 r
->luma_dc_quant_i
= rv40_luma_dc_quant
[0];
665 r
->luma_dc_quant_p
= rv40_luma_dc_quant
[1];
669 AVCodec rv40_decoder
= {
673 sizeof(RV34DecContext
),
677 ff_rv34_decode_frame
,
678 CODEC_CAP_DR1
| CODEC_CAP_DELAY
,
679 .flush
= ff_mpeg_flush
,
680 .long_name
= NULL_IF_CONFIG_SMALL("RealVideo 4.0"),
681 .pix_fmts
= ff_pixfmt_list_420
,