2 * AAC encoder psychoacoustic model
3 * Copyright (C) 2008 Konstantin Shishkov
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 * @file libavcodec/aacpsy.c
24 * AAC encoder psychoacoustic model
31 /***********************************
33 * thresholds linearization after their modifications for attaining given bitrate
34 * try other bitrate controlling mechanism (maybe use ratecontrol.c?)
35 * control quality for quality-based output
36 **********************************/
39 * constants for 3GPP AAC psychoacoustic model
42 #define PSY_3GPP_SPREAD_LOW 1.5f // spreading factor for ascending threshold spreading (15 dB/Bark)
43 #define PSY_3GPP_SPREAD_HI 3.0f // spreading factor for descending threshold spreading (30 dB/Bark)
45 #define PSY_3GPP_RPEMIN 0.01f
46 #define PSY_3GPP_RPELEV 2.0f
52 * information for single band used by 3GPP TS26.403-inspired psychoacoustic model
54 typedef struct Psy3gppBand
{
55 float energy
; ///< band energy
56 float ffac
; ///< form factor
57 float thr
; ///< energy threshold
58 float min_snr
; ///< minimal SNR
59 float thr_quiet
; ///< threshold in quiet
63 * single/pair channel context for psychoacoustic model
65 typedef struct Psy3gppChannel
{
66 Psy3gppBand band
[128]; ///< bands information
67 Psy3gppBand prev_band
[128]; ///< bands information from the previous frame
69 float win_energy
; ///< sliding average of channel energy
70 float iir_state
[2]; ///< hi-pass IIR filter state
71 uint8_t next_grouping
; ///< stored grouping scheme for the next frame (in case of 8 short window sequence)
72 enum WindowSequence next_window_seq
; ///< window sequence to be used in the next frame
76 * psychoacoustic model frame type-dependent coefficients
78 typedef struct Psy3gppCoeffs
{
79 float ath
[64]; ///< absolute threshold of hearing per bands
80 float barks
[64]; ///< Bark value for each spectral band in long frame
81 float spread_low
[64]; ///< spreading factor for low-to-high threshold spreading in long frame
82 float spread_hi
[64]; ///< spreading factor for high-to-low threshold spreading in long frame
86 * 3GPP TS26.403-inspired psychoacoustic model specific data
88 typedef struct Psy3gppContext
{
89 Psy3gppCoeffs psy_coef
[2];
94 * Calculate Bark value for given line.
96 static av_cold
float calc_bark(float f
)
98 return 13.3f
* atanf(0.00076f
* f
) + 3.5f
* atanf((f
/ 7500.0f
) * (f
/ 7500.0f
));
103 * Calculate ATH value for given frequency.
104 * Borrowed from Lame.
106 static av_cold
float ath(float f
, float add
)
109 return 3.64 * pow(f
, -0.8)
110 - 6.8 * exp(-0.6 * (f
- 3.4) * (f
- 3.4))
111 + 6.0 * exp(-0.15 * (f
- 8.7) * (f
- 8.7))
112 + (0.6 + 0.04 * add
) * 0.001 * f
* f
* f
* f
;
115 static av_cold
int psy_3gpp_init(FFPsyContext
*ctx
) {
116 Psy3gppContext
*pctx
;
119 float prev
, minscale
, minath
;
121 ctx
->model_priv_data
= av_mallocz(sizeof(Psy3gppContext
));
122 pctx
= (Psy3gppContext
*) ctx
->model_priv_data
;
124 for (i
= 0; i
< 1024; i
++)
125 barks
[i
] = calc_bark(i
* ctx
->avctx
->sample_rate
/ 2048.0);
126 minath
= ath(3410, ATH_ADD
);
127 for (j
= 0; j
< 2; j
++) {
128 Psy3gppCoeffs
*coeffs
= &pctx
->psy_coef
[j
];
131 for (g
= 0; g
< ctx
->num_bands
[j
]; g
++) {
132 i
+= ctx
->bands
[j
][g
];
133 coeffs
->barks
[g
] = (barks
[i
- 1] + prev
) / 2.0;
136 for (g
= 0; g
< ctx
->num_bands
[j
] - 1; g
++) {
137 coeffs
->spread_low
[g
] = pow(10.0, -(coeffs
->barks
[g
+1] - coeffs
->barks
[g
]) * PSY_3GPP_SPREAD_LOW
);
138 coeffs
->spread_hi
[g
] = pow(10.0, -(coeffs
->barks
[g
+1] - coeffs
->barks
[g
]) * PSY_3GPP_SPREAD_HI
);
141 for (g
= 0; g
< ctx
->num_bands
[j
]; g
++) {
142 minscale
= ath(ctx
->avctx
->sample_rate
* start
/ 1024.0, ATH_ADD
);
143 for (i
= 1; i
< ctx
->bands
[j
][g
]; i
++)
144 minscale
= FFMIN(minscale
, ath(ctx
->avctx
->sample_rate
* (start
+ i
) / 1024.0 / 2.0, ATH_ADD
));
145 coeffs
->ath
[g
] = minscale
- minath
;
146 start
+= ctx
->bands
[j
][g
];
150 pctx
->ch
= av_mallocz(sizeof(Psy3gppChannel
) * ctx
->avctx
->channels
);
155 * IIR filter used in block switching decision
157 static float iir_filter(int in
, float state
[2])
161 ret
= 0.7548f
* (in
- state
[0]) + 0.5095f
* state
[1];
168 * window grouping information stored as bits (0 - new group, 1 - group continues)
170 static const uint8_t window_grouping
[9] = {
171 0xB6, 0x6C, 0xD8, 0xB2, 0x66, 0xC6, 0x96, 0x36, 0x36
175 * Tell encoder which window types to use.
176 * @see 3GPP TS26.403 5.4.1 "Blockswitching"
178 static FFPsyWindowInfo
psy_3gpp_window(FFPsyContext
*ctx
,
179 const int16_t *audio
, const int16_t *la
,
180 int channel
, int prev_type
)
183 int br
= ctx
->avctx
->bit_rate
/ ctx
->avctx
->channels
;
184 int attack_ratio
= br
<= 16000 ? 18 : 10;
185 Psy3gppContext
*pctx
= (Psy3gppContext
*) ctx
->model_priv_data
;
186 Psy3gppChannel
*pch
= &pctx
->ch
[channel
];
187 uint8_t grouping
= 0;
190 memset(&wi
, 0, sizeof(wi
));
193 int switch_to_eight
= 0;
194 float sum
= 0.0, sum2
= 0.0;
196 for (i
= 0; i
< 8; i
++) {
197 for (j
= 0; j
< 128; j
++) {
198 v
= iir_filter(audio
[(i
*128+j
)*ctx
->avctx
->channels
], pch
->iir_state
);
204 for (i
= 0; i
< 8; i
++) {
205 if (s
[i
] > pch
->win_energy
* attack_ratio
) {
211 pch
->win_energy
= pch
->win_energy
*7/8 + sum2
/64;
213 wi
.window_type
[1] = prev_type
;
215 case ONLY_LONG_SEQUENCE
:
216 wi
.window_type
[0] = switch_to_eight
? LONG_START_SEQUENCE
: ONLY_LONG_SEQUENCE
;
218 case LONG_START_SEQUENCE
:
219 wi
.window_type
[0] = EIGHT_SHORT_SEQUENCE
;
220 grouping
= pch
->next_grouping
;
222 case LONG_STOP_SEQUENCE
:
223 wi
.window_type
[0] = ONLY_LONG_SEQUENCE
;
225 case EIGHT_SHORT_SEQUENCE
:
226 wi
.window_type
[0] = switch_to_eight
? EIGHT_SHORT_SEQUENCE
: LONG_STOP_SEQUENCE
;
227 grouping
= switch_to_eight
? pch
->next_grouping
: 0;
230 pch
->next_grouping
= window_grouping
[attack_n
];
232 for (i
= 0; i
< 3; i
++)
233 wi
.window_type
[i
] = prev_type
;
234 grouping
= (prev_type
== EIGHT_SHORT_SEQUENCE
) ? window_grouping
[0] : 0;
238 if (wi
.window_type
[0] != EIGHT_SHORT_SEQUENCE
) {
244 for (i
= 0; i
< 8; i
++) {
245 if (!((grouping
>> i
) & 1))
247 wi
.grouping
[lastgrp
]++;
255 * Calculate band thresholds as suggested in 3GPP TS26.403
257 static void psy_3gpp_analyze(FFPsyContext
*ctx
, int channel
,
258 const float *coefs
, FFPsyWindowInfo
*wi
)
260 Psy3gppContext
*pctx
= (Psy3gppContext
*) ctx
->model_priv_data
;
261 Psy3gppChannel
*pch
= &pctx
->ch
[channel
];
264 const int num_bands
= ctx
->num_bands
[wi
->num_windows
== 8];
265 const uint8_t* band_sizes
= ctx
->bands
[wi
->num_windows
== 8];
266 Psy3gppCoeffs
*coeffs
= &pctx
->psy_coef
[wi
->num_windows
== 8];
268 //calculate energies, initial thresholds and related values - 5.4.2 "Threshold Calculation"
269 for (w
= 0; w
< wi
->num_windows
*16; w
+= 16) {
270 for (g
= 0; g
< num_bands
; g
++) {
271 Psy3gppBand
*band
= &pch
->band
[w
+g
];
273 for (i
= 0; i
< band_sizes
[g
]; i
++)
274 band
->energy
+= coefs
[start
+i
] * coefs
[start
+i
];
275 band
->energy
*= 1.0f
/ (512*512);
276 band
->thr
= band
->energy
* 0.001258925f
;
277 start
+= band_sizes
[g
];
279 ctx
->psy_bands
[channel
*PSY_MAX_BANDS
+w
+g
].energy
= band
->energy
;
282 //modify thresholds - spread, threshold in quiet - 5.4.3 "Spreaded Energy Calculation"
283 for (w
= 0; w
< wi
->num_windows
*16; w
+= 16) {
284 Psy3gppBand
*band
= &pch
->band
[w
];
285 for (g
= 1; g
< num_bands
; g
++)
286 band
[g
].thr
= FFMAX(band
[g
].thr
, band
[g
-1].thr
* coeffs
->spread_low
[g
-1]);
287 for (g
= num_bands
- 2; g
>= 0; g
--)
288 band
[g
].thr
= FFMAX(band
[g
].thr
, band
[g
+1].thr
* coeffs
->spread_hi
[g
]);
289 for (g
= 0; g
< num_bands
; g
++) {
290 band
[g
].thr_quiet
= FFMAX(band
[g
].thr
, coeffs
->ath
[g
]);
291 if (wi
->num_windows
!= 8 && wi
->window_type
[1] != EIGHT_SHORT_SEQUENCE
)
292 band
[g
].thr_quiet
= FFMAX(PSY_3GPP_RPEMIN
*band
[g
].thr_quiet
,
293 FFMIN(band
[g
].thr_quiet
,
294 PSY_3GPP_RPELEV
*pch
->prev_band
[w
+g
].thr_quiet
));
295 band
[g
].thr
= FFMAX(band
[g
].thr
, band
[g
].thr_quiet
* 0.25);
297 ctx
->psy_bands
[channel
*PSY_MAX_BANDS
+w
+g
].threshold
= band
[g
].thr
;
300 memcpy(pch
->prev_band
, pch
->band
, sizeof(pch
->band
));
303 static av_cold
void psy_3gpp_end(FFPsyContext
*apc
)
305 Psy3gppContext
*pctx
= (Psy3gppContext
*) apc
->model_priv_data
;
307 av_freep(&apc
->model_priv_data
);
311 const FFPsyModel ff_aac_psy_model
=
313 .name
= "3GPP TS 26.403-inspired model",
314 .init
= psy_3gpp_init
,
315 .window
= psy_3gpp_window
,
316 .analyze
= psy_3gpp_analyze
,