ordered chapters: seek to closest keyframe
[FFMpeg-mirror/ordered_chapters.git] / libavcodec / alacenc.c
blob9fd5064514b76e15ab233f748c267b542f6719c0
1 /**
2 * ALAC audio encoder
3 * Copyright (c) 2008 Jaikrishnan Menon <realityman@gmx.net>
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 #include "avcodec.h"
23 #include "bitstream.h"
24 #include "dsputil.h"
25 #include "lpc.h"
27 #define DEFAULT_FRAME_SIZE 4096
28 #define DEFAULT_SAMPLE_SIZE 16
29 #define MAX_CHANNELS 8
30 #define ALAC_EXTRADATA_SIZE 36
31 #define ALAC_FRAME_HEADER_SIZE 55
32 #define ALAC_FRAME_FOOTER_SIZE 3
34 #define ALAC_ESCAPE_CODE 0x1FF
35 #define ALAC_MAX_LPC_ORDER 30
36 #define DEFAULT_MAX_PRED_ORDER 6
37 #define DEFAULT_MIN_PRED_ORDER 4
38 #define ALAC_MAX_LPC_PRECISION 9
39 #define ALAC_MAX_LPC_SHIFT 9
41 #define ALAC_CHMODE_LEFT_RIGHT 0
42 #define ALAC_CHMODE_LEFT_SIDE 1
43 #define ALAC_CHMODE_RIGHT_SIDE 2
44 #define ALAC_CHMODE_MID_SIDE 3
46 typedef struct RiceContext {
47 int history_mult;
48 int initial_history;
49 int k_modifier;
50 int rice_modifier;
51 } RiceContext;
53 typedef struct LPCContext {
54 int lpc_order;
55 int lpc_coeff[ALAC_MAX_LPC_ORDER+1];
56 int lpc_quant;
57 } LPCContext;
59 typedef struct AlacEncodeContext {
60 int compression_level;
61 int min_prediction_order;
62 int max_prediction_order;
63 int max_coded_frame_size;
64 int write_sample_size;
65 int32_t sample_buf[MAX_CHANNELS][DEFAULT_FRAME_SIZE];
66 int32_t predictor_buf[DEFAULT_FRAME_SIZE];
67 int interlacing_shift;
68 int interlacing_leftweight;
69 PutBitContext pbctx;
70 RiceContext rc;
71 LPCContext lpc[MAX_CHANNELS];
72 DSPContext dspctx;
73 AVCodecContext *avctx;
74 } AlacEncodeContext;
77 static void init_sample_buffers(AlacEncodeContext *s, int16_t *input_samples)
79 int ch, i;
81 for(ch=0;ch<s->avctx->channels;ch++) {
82 int16_t *sptr = input_samples + ch;
83 for(i=0;i<s->avctx->frame_size;i++) {
84 s->sample_buf[ch][i] = *sptr;
85 sptr += s->avctx->channels;
90 static void encode_scalar(AlacEncodeContext *s, int x, int k, int write_sample_size)
92 int divisor, q, r;
94 k = FFMIN(k, s->rc.k_modifier);
95 divisor = (1<<k) - 1;
96 q = x / divisor;
97 r = x % divisor;
99 if(q > 8) {
100 // write escape code and sample value directly
101 put_bits(&s->pbctx, 9, ALAC_ESCAPE_CODE);
102 put_bits(&s->pbctx, write_sample_size, x);
103 } else {
104 if(q)
105 put_bits(&s->pbctx, q, (1<<q) - 1);
106 put_bits(&s->pbctx, 1, 0);
108 if(k != 1) {
109 if(r > 0)
110 put_bits(&s->pbctx, k, r+1);
111 else
112 put_bits(&s->pbctx, k-1, 0);
117 static void write_frame_header(AlacEncodeContext *s, int is_verbatim)
119 put_bits(&s->pbctx, 3, s->avctx->channels-1); // No. of channels -1
120 put_bits(&s->pbctx, 16, 0); // Seems to be zero
121 put_bits(&s->pbctx, 1, 1); // Sample count is in the header
122 put_bits(&s->pbctx, 2, 0); // FIXME: Wasted bytes field
123 put_bits(&s->pbctx, 1, is_verbatim); // Audio block is verbatim
124 put_bits(&s->pbctx, 32, s->avctx->frame_size); // No. of samples in the frame
127 static void calc_predictor_params(AlacEncodeContext *s, int ch)
129 int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER];
130 int shift[MAX_LPC_ORDER];
131 int opt_order;
133 opt_order = ff_lpc_calc_coefs(&s->dspctx, s->sample_buf[ch], s->avctx->frame_size, s->min_prediction_order, s->max_prediction_order,
134 ALAC_MAX_LPC_PRECISION, coefs, shift, 1, ORDER_METHOD_EST, ALAC_MAX_LPC_SHIFT, 1);
136 s->lpc[ch].lpc_order = opt_order;
137 s->lpc[ch].lpc_quant = shift[opt_order-1];
138 memcpy(s->lpc[ch].lpc_coeff, coefs[opt_order-1], opt_order*sizeof(int));
141 static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n)
143 int i, best;
144 int32_t lt, rt;
145 uint64_t sum[4];
146 uint64_t score[4];
148 /* calculate sum of 2nd order residual for each channel */
149 sum[0] = sum[1] = sum[2] = sum[3] = 0;
150 for(i=2; i<n; i++) {
151 lt = left_ch[i] - 2*left_ch[i-1] + left_ch[i-2];
152 rt = right_ch[i] - 2*right_ch[i-1] + right_ch[i-2];
153 sum[2] += FFABS((lt + rt) >> 1);
154 sum[3] += FFABS(lt - rt);
155 sum[0] += FFABS(lt);
156 sum[1] += FFABS(rt);
159 /* calculate score for each mode */
160 score[0] = sum[0] + sum[1];
161 score[1] = sum[0] + sum[3];
162 score[2] = sum[1] + sum[3];
163 score[3] = sum[2] + sum[3];
165 /* return mode with lowest score */
166 best = 0;
167 for(i=1; i<4; i++) {
168 if(score[i] < score[best]) {
169 best = i;
172 return best;
175 static void alac_stereo_decorrelation(AlacEncodeContext *s)
177 int32_t *left = s->sample_buf[0], *right = s->sample_buf[1];
178 int i, mode, n = s->avctx->frame_size;
179 int32_t tmp;
181 mode = estimate_stereo_mode(left, right, n);
183 switch(mode)
185 case ALAC_CHMODE_LEFT_RIGHT:
186 s->interlacing_leftweight = 0;
187 s->interlacing_shift = 0;
188 break;
190 case ALAC_CHMODE_LEFT_SIDE:
191 for(i=0; i<n; i++) {
192 right[i] = left[i] - right[i];
194 s->interlacing_leftweight = 1;
195 s->interlacing_shift = 0;
196 break;
198 case ALAC_CHMODE_RIGHT_SIDE:
199 for(i=0; i<n; i++) {
200 tmp = right[i];
201 right[i] = left[i] - right[i];
202 left[i] = tmp + (right[i] >> 31);
204 s->interlacing_leftweight = 1;
205 s->interlacing_shift = 31;
206 break;
208 default:
209 for(i=0; i<n; i++) {
210 tmp = left[i];
211 left[i] = (tmp + right[i]) >> 1;
212 right[i] = tmp - right[i];
214 s->interlacing_leftweight = 1;
215 s->interlacing_shift = 1;
216 break;
220 static void alac_linear_predictor(AlacEncodeContext *s, int ch)
222 int i;
223 LPCContext lpc = s->lpc[ch];
225 if(lpc.lpc_order == 31) {
226 s->predictor_buf[0] = s->sample_buf[ch][0];
228 for(i=1; i<s->avctx->frame_size; i++)
229 s->predictor_buf[i] = s->sample_buf[ch][i] - s->sample_buf[ch][i-1];
231 return;
234 // generalised linear predictor
236 if(lpc.lpc_order > 0) {
237 int32_t *samples = s->sample_buf[ch];
238 int32_t *residual = s->predictor_buf;
240 // generate warm-up samples
241 residual[0] = samples[0];
242 for(i=1;i<=lpc.lpc_order;i++)
243 residual[i] = samples[i] - samples[i-1];
245 // perform lpc on remaining samples
246 for(i = lpc.lpc_order + 1; i < s->avctx->frame_size; i++) {
247 int sum = 1 << (lpc.lpc_quant - 1), res_val, j;
249 for (j = 0; j < lpc.lpc_order; j++) {
250 sum += (samples[lpc.lpc_order-j] - samples[0]) *
251 lpc.lpc_coeff[j];
254 sum >>= lpc.lpc_quant;
255 sum += samples[0];
256 residual[i] = (samples[lpc.lpc_order+1] - sum) << (32 - s->write_sample_size) >>
257 (32 - s->write_sample_size);
258 res_val = residual[i];
260 if(res_val) {
261 int index = lpc.lpc_order - 1;
262 int neg = (res_val < 0);
264 while(index >= 0 && (neg ? (res_val < 0):(res_val > 0))) {
265 int val = samples[0] - samples[lpc.lpc_order - index];
266 int sign = (val ? FFSIGN(val) : 0);
268 if(neg)
269 sign*=-1;
271 lpc.lpc_coeff[index] -= sign;
272 val *= sign;
273 res_val -= ((val >> lpc.lpc_quant) *
274 (lpc.lpc_order - index));
275 index--;
278 samples++;
283 static void alac_entropy_coder(AlacEncodeContext *s)
285 unsigned int history = s->rc.initial_history;
286 int sign_modifier = 0, i, k;
287 int32_t *samples = s->predictor_buf;
289 for(i=0;i < s->avctx->frame_size;) {
290 int x;
292 k = av_log2((history >> 9) + 3);
294 x = -2*(*samples)-1;
295 x ^= (x>>31);
297 samples++;
298 i++;
300 encode_scalar(s, x - sign_modifier, k, s->write_sample_size);
302 history += x * s->rc.history_mult
303 - ((history * s->rc.history_mult) >> 9);
305 sign_modifier = 0;
306 if(x > 0xFFFF)
307 history = 0xFFFF;
309 if((history < 128) && (i < s->avctx->frame_size)) {
310 unsigned int block_size = 0;
312 k = 7 - av_log2(history) + ((history + 16) >> 6);
314 while((*samples == 0) && (i < s->avctx->frame_size)) {
315 samples++;
316 i++;
317 block_size++;
319 encode_scalar(s, block_size, k, 16);
321 sign_modifier = (block_size <= 0xFFFF);
323 history = 0;
329 static void write_compressed_frame(AlacEncodeContext *s)
331 int i, j;
333 /* only simple mid/side decorrelation supported as of now */
334 if(s->avctx->channels == 2)
335 alac_stereo_decorrelation(s);
336 put_bits(&s->pbctx, 8, s->interlacing_shift);
337 put_bits(&s->pbctx, 8, s->interlacing_leftweight);
339 for(i=0;i<s->avctx->channels;i++) {
341 calc_predictor_params(s, i);
343 put_bits(&s->pbctx, 4, 0); // prediction type : currently only type 0 has been RE'd
344 put_bits(&s->pbctx, 4, s->lpc[i].lpc_quant);
346 put_bits(&s->pbctx, 3, s->rc.rice_modifier);
347 put_bits(&s->pbctx, 5, s->lpc[i].lpc_order);
348 // predictor coeff. table
349 for(j=0;j<s->lpc[i].lpc_order;j++) {
350 put_sbits(&s->pbctx, 16, s->lpc[i].lpc_coeff[j]);
354 // apply lpc and entropy coding to audio samples
356 for(i=0;i<s->avctx->channels;i++) {
357 alac_linear_predictor(s, i);
358 alac_entropy_coder(s);
362 static av_cold int alac_encode_init(AVCodecContext *avctx)
364 AlacEncodeContext *s = avctx->priv_data;
365 uint8_t *alac_extradata = av_mallocz(ALAC_EXTRADATA_SIZE+1);
367 avctx->frame_size = DEFAULT_FRAME_SIZE;
368 avctx->bits_per_coded_sample = DEFAULT_SAMPLE_SIZE;
370 if(avctx->sample_fmt != SAMPLE_FMT_S16) {
371 av_log(avctx, AV_LOG_ERROR, "only pcm_s16 input samples are supported\n");
372 return -1;
375 // Set default compression level
376 if(avctx->compression_level == FF_COMPRESSION_DEFAULT)
377 s->compression_level = 1;
378 else
379 s->compression_level = av_clip(avctx->compression_level, 0, 1);
381 // Initialize default Rice parameters
382 s->rc.history_mult = 40;
383 s->rc.initial_history = 10;
384 s->rc.k_modifier = 14;
385 s->rc.rice_modifier = 4;
387 s->max_coded_frame_size = (ALAC_FRAME_HEADER_SIZE + ALAC_FRAME_FOOTER_SIZE +
388 avctx->frame_size*avctx->channels*avctx->bits_per_coded_sample)>>3;
390 s->write_sample_size = avctx->bits_per_coded_sample + avctx->channels - 1; // FIXME: consider wasted_bytes
392 AV_WB32(alac_extradata, ALAC_EXTRADATA_SIZE);
393 AV_WB32(alac_extradata+4, MKBETAG('a','l','a','c'));
394 AV_WB32(alac_extradata+12, avctx->frame_size);
395 AV_WB8 (alac_extradata+17, avctx->bits_per_coded_sample);
396 AV_WB8 (alac_extradata+21, avctx->channels);
397 AV_WB32(alac_extradata+24, s->max_coded_frame_size);
398 AV_WB32(alac_extradata+28, avctx->sample_rate*avctx->channels*avctx->bits_per_coded_sample); // average bitrate
399 AV_WB32(alac_extradata+32, avctx->sample_rate);
401 // Set relevant extradata fields
402 if(s->compression_level > 0) {
403 AV_WB8(alac_extradata+18, s->rc.history_mult);
404 AV_WB8(alac_extradata+19, s->rc.initial_history);
405 AV_WB8(alac_extradata+20, s->rc.k_modifier);
408 s->min_prediction_order = DEFAULT_MIN_PRED_ORDER;
409 if(avctx->min_prediction_order >= 0) {
410 if(avctx->min_prediction_order < MIN_LPC_ORDER ||
411 avctx->min_prediction_order > ALAC_MAX_LPC_ORDER) {
412 av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n", avctx->min_prediction_order);
413 return -1;
416 s->min_prediction_order = avctx->min_prediction_order;
419 s->max_prediction_order = DEFAULT_MAX_PRED_ORDER;
420 if(avctx->max_prediction_order >= 0) {
421 if(avctx->max_prediction_order < MIN_LPC_ORDER ||
422 avctx->max_prediction_order > ALAC_MAX_LPC_ORDER) {
423 av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n", avctx->max_prediction_order);
424 return -1;
427 s->max_prediction_order = avctx->max_prediction_order;
430 if(s->max_prediction_order < s->min_prediction_order) {
431 av_log(avctx, AV_LOG_ERROR, "invalid prediction orders: min=%d max=%d\n",
432 s->min_prediction_order, s->max_prediction_order);
433 return -1;
436 avctx->extradata = alac_extradata;
437 avctx->extradata_size = ALAC_EXTRADATA_SIZE;
439 avctx->coded_frame = avcodec_alloc_frame();
440 avctx->coded_frame->key_frame = 1;
442 s->avctx = avctx;
443 dsputil_init(&s->dspctx, avctx);
445 return 0;
448 static int alac_encode_frame(AVCodecContext *avctx, uint8_t *frame,
449 int buf_size, void *data)
451 AlacEncodeContext *s = avctx->priv_data;
452 PutBitContext *pb = &s->pbctx;
453 int i, out_bytes, verbatim_flag = 0;
455 if(avctx->frame_size > DEFAULT_FRAME_SIZE) {
456 av_log(avctx, AV_LOG_ERROR, "input frame size exceeded\n");
457 return -1;
460 if(buf_size < 2*s->max_coded_frame_size) {
461 av_log(avctx, AV_LOG_ERROR, "buffer size is too small\n");
462 return -1;
465 verbatim:
466 init_put_bits(pb, frame, buf_size);
468 if((s->compression_level == 0) || verbatim_flag) {
469 // Verbatim mode
470 int16_t *samples = data;
471 write_frame_header(s, 1);
472 for(i=0; i<avctx->frame_size*avctx->channels; i++) {
473 put_sbits(pb, 16, *samples++);
475 } else {
476 init_sample_buffers(s, data);
477 write_frame_header(s, 0);
478 write_compressed_frame(s);
481 put_bits(pb, 3, 7);
482 flush_put_bits(pb);
483 out_bytes = put_bits_count(pb) >> 3;
485 if(out_bytes > s->max_coded_frame_size) {
486 /* frame too large. use verbatim mode */
487 if(verbatim_flag || (s->compression_level == 0)) {
488 /* still too large. must be an error. */
489 av_log(avctx, AV_LOG_ERROR, "error encoding frame\n");
490 return -1;
492 verbatim_flag = 1;
493 goto verbatim;
496 return out_bytes;
499 static av_cold int alac_encode_close(AVCodecContext *avctx)
501 av_freep(&avctx->extradata);
502 avctx->extradata_size = 0;
503 av_freep(&avctx->coded_frame);
504 return 0;
507 AVCodec alac_encoder = {
508 "alac",
509 CODEC_TYPE_AUDIO,
510 CODEC_ID_ALAC,
511 sizeof(AlacEncodeContext),
512 alac_encode_init,
513 alac_encode_frame,
514 alac_encode_close,
515 .capabilities = CODEC_CAP_SMALL_LAST_FRAME,
516 .long_name = NULL_IF_CONFIG_SMALL("ALAC (Apple Lossless Audio Codec)"),