ordered chapters: seek to closest keyframe
[FFMpeg-mirror/ordered_chapters.git] / libavcodec / dsputil.h
blobfdbd90a6c10677310af5f4ccc68d4aced4620022
1 /*
2 * DSP utils
3 * Copyright (c) 2000, 2001, 2002 Fabrice Bellard
4 * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
6 * This file is part of FFmpeg.
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 /**
24 * @file libavcodec/dsputil.h
25 * DSP utils.
26 * note, many functions in here may use MMX which trashes the FPU state, it is
27 * absolutely necessary to call emms_c() between dsp & float/double code
30 #ifndef AVCODEC_DSPUTIL_H
31 #define AVCODEC_DSPUTIL_H
33 #include "libavutil/intreadwrite.h"
34 #include "avcodec.h"
37 //#define DEBUG
38 /* dct code */
39 typedef short DCTELEM;
40 typedef int DWTELEM;
41 typedef short IDWTELEM;
43 void fdct_ifast (DCTELEM *data);
44 void fdct_ifast248 (DCTELEM *data);
45 void ff_jpeg_fdct_islow (DCTELEM *data);
46 void ff_fdct248_islow (DCTELEM *data);
48 void j_rev_dct (DCTELEM *data);
49 void j_rev_dct4 (DCTELEM *data);
50 void j_rev_dct2 (DCTELEM *data);
51 void j_rev_dct1 (DCTELEM *data);
52 void ff_wmv2_idct_c(DCTELEM *data);
54 void ff_fdct_mmx(DCTELEM *block);
55 void ff_fdct_mmx2(DCTELEM *block);
56 void ff_fdct_sse2(DCTELEM *block);
58 void ff_h264_idct8_add_c(uint8_t *dst, DCTELEM *block, int stride);
59 void ff_h264_idct_add_c(uint8_t *dst, DCTELEM *block, int stride);
60 void ff_h264_idct8_dc_add_c(uint8_t *dst, DCTELEM *block, int stride);
61 void ff_h264_idct_dc_add_c(uint8_t *dst, DCTELEM *block, int stride);
62 void ff_h264_lowres_idct_add_c(uint8_t *dst, int stride, DCTELEM *block);
63 void ff_h264_lowres_idct_put_c(uint8_t *dst, int stride, DCTELEM *block);
64 void ff_h264_idct_add16_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
65 void ff_h264_idct_add16intra_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
66 void ff_h264_idct8_add4_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
67 void ff_h264_idct_add8_c(uint8_t **dest, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
69 void ff_vector_fmul_add_add_c(float *dst, const float *src0, const float *src1,
70 const float *src2, int src3, int blocksize, int step);
71 void ff_vector_fmul_window_c(float *dst, const float *src0, const float *src1,
72 const float *win, float add_bias, int len);
73 void ff_float_to_int16_c(int16_t *dst, const float *src, long len);
74 void ff_float_to_int16_interleave_c(int16_t *dst, const float **src, long len, int channels);
76 /* encoding scans */
77 extern const uint8_t ff_alternate_horizontal_scan[64];
78 extern const uint8_t ff_alternate_vertical_scan[64];
79 extern const uint8_t ff_zigzag_direct[64];
80 extern const uint8_t ff_zigzag248_direct[64];
82 /* pixel operations */
83 #define MAX_NEG_CROP 1024
85 /* temporary */
86 extern uint32_t ff_squareTbl[512];
87 extern uint8_t ff_cropTbl[256 + 2 * MAX_NEG_CROP];
89 /* VP3 DSP functions */
90 void ff_vp3_idct_c(DCTELEM *block/* align 16*/);
91 void ff_vp3_idct_put_c(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
92 void ff_vp3_idct_add_c(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
94 void ff_vp3_v_loop_filter_c(uint8_t *src, int stride, int *bounding_values);
95 void ff_vp3_h_loop_filter_c(uint8_t *src, int stride, int *bounding_values);
97 /* 1/2^n downscaling functions from imgconvert.c */
98 void ff_img_copy_plane(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
99 void ff_shrink22(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
100 void ff_shrink44(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
101 void ff_shrink88(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
103 void ff_gmc_c(uint8_t *dst, uint8_t *src, int stride, int h, int ox, int oy,
104 int dxx, int dxy, int dyx, int dyy, int shift, int r, int width, int height);
106 /* minimum alignment rules ;)
107 If you notice errors in the align stuff, need more alignment for some ASM code
108 for some CPU or need to use a function with less aligned data then send a mail
109 to the ffmpeg-devel mailing list, ...
111 !warning These alignments might not match reality, (missing attribute((align))
112 stuff somewhere possible).
113 I (Michael) did not check them, these are just the alignments which I think
114 could be reached easily ...
116 !future video codecs might need functions with less strict alignment
120 void get_pixels_c(DCTELEM *block, const uint8_t *pixels, int line_size);
121 void diff_pixels_c(DCTELEM *block, const uint8_t *s1, const uint8_t *s2, int stride);
122 void put_pixels_clamped_c(const DCTELEM *block, uint8_t *pixels, int line_size);
123 void add_pixels_clamped_c(const DCTELEM *block, uint8_t *pixels, int line_size);
124 void clear_blocks_c(DCTELEM *blocks);
127 /* add and put pixel (decoding) */
128 // blocksizes for op_pixels_func are 8x4,8x8 16x8 16x16
129 //h for op_pixels_func is limited to {width/2, width} but never larger than 16 and never smaller then 4
130 typedef void (*op_pixels_func)(uint8_t *block/*align width (8 or 16)*/, const uint8_t *pixels/*align 1*/, int line_size, int h);
131 typedef void (*tpel_mc_func)(uint8_t *block/*align width (8 or 16)*/, const uint8_t *pixels/*align 1*/, int line_size, int w, int h);
132 typedef void (*qpel_mc_func)(uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);
133 typedef void (*h264_chroma_mc_func)(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int srcStride, int h, int x, int y);
134 typedef void (*h264_weight_func)(uint8_t *block, int stride, int log2_denom, int weight, int offset);
135 typedef void (*h264_biweight_func)(uint8_t *dst, uint8_t *src, int stride, int log2_denom, int weightd, int weights, int offset);
137 #define DEF_OLD_QPEL(name)\
138 void ff_put_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);\
139 void ff_put_no_rnd_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);\
140 void ff_avg_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);
142 DEF_OLD_QPEL(qpel16_mc11_old_c)
143 DEF_OLD_QPEL(qpel16_mc31_old_c)
144 DEF_OLD_QPEL(qpel16_mc12_old_c)
145 DEF_OLD_QPEL(qpel16_mc32_old_c)
146 DEF_OLD_QPEL(qpel16_mc13_old_c)
147 DEF_OLD_QPEL(qpel16_mc33_old_c)
148 DEF_OLD_QPEL(qpel8_mc11_old_c)
149 DEF_OLD_QPEL(qpel8_mc31_old_c)
150 DEF_OLD_QPEL(qpel8_mc12_old_c)
151 DEF_OLD_QPEL(qpel8_mc32_old_c)
152 DEF_OLD_QPEL(qpel8_mc13_old_c)
153 DEF_OLD_QPEL(qpel8_mc33_old_c)
155 #define CALL_2X_PIXELS(a, b, n)\
156 static void a(uint8_t *block, const uint8_t *pixels, int line_size, int h){\
157 b(block , pixels , line_size, h);\
158 b(block+n, pixels+n, line_size, h);\
161 /* motion estimation */
162 // h is limited to {width/2, width, 2*width} but never larger than 16 and never smaller then 2
163 // although currently h<4 is not used as functions with width <8 are neither used nor implemented
164 typedef int (*me_cmp_func)(void /*MpegEncContext*/ *s, uint8_t *blk1/*align width (8 or 16)*/, uint8_t *blk2/*align 1*/, int line_size, int h)/* __attribute__ ((const))*/;
167 // for snow slices
168 typedef struct slice_buffer_s slice_buffer;
171 * Scantable.
173 typedef struct ScanTable{
174 const uint8_t *scantable;
175 uint8_t permutated[64];
176 uint8_t raster_end[64];
177 #if ARCH_PPC
178 /** Used by dct_quantize_altivec to find last-non-zero */
179 DECLARE_ALIGNED(16, uint8_t, inverse[64]);
180 #endif
181 } ScanTable;
183 void ff_init_scantable(uint8_t *, ScanTable *st, const uint8_t *src_scantable);
185 void ff_emulated_edge_mc(uint8_t *buf, uint8_t *src, int linesize,
186 int block_w, int block_h,
187 int src_x, int src_y, int w, int h);
190 * DSPContext.
192 typedef struct DSPContext {
193 /* pixel ops : interface with DCT */
194 void (*get_pixels)(DCTELEM *block/*align 16*/, const uint8_t *pixels/*align 8*/, int line_size);
195 void (*diff_pixels)(DCTELEM *block/*align 16*/, const uint8_t *s1/*align 8*/, const uint8_t *s2/*align 8*/, int stride);
196 void (*put_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
197 void (*put_signed_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
198 void (*add_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
199 void (*add_pixels8)(uint8_t *pixels, DCTELEM *block, int line_size);
200 void (*add_pixels4)(uint8_t *pixels, DCTELEM *block, int line_size);
201 int (*sum_abs_dctelem)(DCTELEM *block/*align 16*/);
203 * translational global motion compensation.
205 void (*gmc1)(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int srcStride, int h, int x16, int y16, int rounder);
207 * global motion compensation.
209 void (*gmc )(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int stride, int h, int ox, int oy,
210 int dxx, int dxy, int dyx, int dyy, int shift, int r, int width, int height);
211 void (*clear_block)(DCTELEM *block/*align 16*/);
212 void (*clear_blocks)(DCTELEM *blocks/*align 16*/);
213 int (*pix_sum)(uint8_t * pix, int line_size);
214 int (*pix_norm1)(uint8_t * pix, int line_size);
215 // 16x16 8x8 4x4 2x2 16x8 8x4 4x2 8x16 4x8 2x4
217 me_cmp_func sad[5]; /* identical to pix_absAxA except additional void * */
218 me_cmp_func sse[5];
219 me_cmp_func hadamard8_diff[5];
220 me_cmp_func dct_sad[5];
221 me_cmp_func quant_psnr[5];
222 me_cmp_func bit[5];
223 me_cmp_func rd[5];
224 me_cmp_func vsad[5];
225 me_cmp_func vsse[5];
226 me_cmp_func nsse[5];
227 me_cmp_func w53[5];
228 me_cmp_func w97[5];
229 me_cmp_func dct_max[5];
230 me_cmp_func dct264_sad[5];
232 me_cmp_func me_pre_cmp[5];
233 me_cmp_func me_cmp[5];
234 me_cmp_func me_sub_cmp[5];
235 me_cmp_func mb_cmp[5];
236 me_cmp_func ildct_cmp[5]; //only width 16 used
237 me_cmp_func frame_skip_cmp[5]; //only width 8 used
239 int (*ssd_int8_vs_int16)(const int8_t *pix1, const int16_t *pix2,
240 int size);
243 * Halfpel motion compensation with rounding (a+b+1)>>1.
244 * this is an array[4][4] of motion compensation functions for 4
245 * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
246 * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
247 * @param block destination where the result is stored
248 * @param pixels source
249 * @param line_size number of bytes in a horizontal line of block
250 * @param h height
252 op_pixels_func put_pixels_tab[4][4];
255 * Halfpel motion compensation with rounding (a+b+1)>>1.
256 * This is an array[4][4] of motion compensation functions for 4
257 * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
258 * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
259 * @param block destination into which the result is averaged (a+b+1)>>1
260 * @param pixels source
261 * @param line_size number of bytes in a horizontal line of block
262 * @param h height
264 op_pixels_func avg_pixels_tab[4][4];
267 * Halfpel motion compensation with no rounding (a+b)>>1.
268 * this is an array[2][4] of motion compensation functions for 2
269 * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
270 * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
271 * @param block destination where the result is stored
272 * @param pixels source
273 * @param line_size number of bytes in a horizontal line of block
274 * @param h height
276 op_pixels_func put_no_rnd_pixels_tab[4][4];
279 * Halfpel motion compensation with no rounding (a+b)>>1.
280 * this is an array[2][4] of motion compensation functions for 2
281 * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
282 * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
283 * @param block destination into which the result is averaged (a+b)>>1
284 * @param pixels source
285 * @param line_size number of bytes in a horizontal line of block
286 * @param h height
288 op_pixels_func avg_no_rnd_pixels_tab[4][4];
290 void (*put_no_rnd_pixels_l2[2])(uint8_t *block/*align width (8 or 16)*/, const uint8_t *a/*align 1*/, const uint8_t *b/*align 1*/, int line_size, int h);
293 * Thirdpel motion compensation with rounding (a+b+1)>>1.
294 * this is an array[12] of motion compensation functions for the 9 thirdpe
295 * positions<br>
296 * *pixels_tab[ xthirdpel + 4*ythirdpel ]
297 * @param block destination where the result is stored
298 * @param pixels source
299 * @param line_size number of bytes in a horizontal line of block
300 * @param h height
302 tpel_mc_func put_tpel_pixels_tab[11]; //FIXME individual func ptr per width?
303 tpel_mc_func avg_tpel_pixels_tab[11]; //FIXME individual func ptr per width?
305 qpel_mc_func put_qpel_pixels_tab[2][16];
306 qpel_mc_func avg_qpel_pixels_tab[2][16];
307 qpel_mc_func put_no_rnd_qpel_pixels_tab[2][16];
308 qpel_mc_func avg_no_rnd_qpel_pixels_tab[2][16];
309 qpel_mc_func put_mspel_pixels_tab[8];
312 * h264 Chroma MC
314 h264_chroma_mc_func put_h264_chroma_pixels_tab[3];
315 /* This is really one func used in VC-1 decoding */
316 h264_chroma_mc_func put_no_rnd_h264_chroma_pixels_tab[3];
317 h264_chroma_mc_func avg_h264_chroma_pixels_tab[3];
319 qpel_mc_func put_h264_qpel_pixels_tab[4][16];
320 qpel_mc_func avg_h264_qpel_pixels_tab[4][16];
322 qpel_mc_func put_2tap_qpel_pixels_tab[4][16];
323 qpel_mc_func avg_2tap_qpel_pixels_tab[4][16];
325 h264_weight_func weight_h264_pixels_tab[10];
326 h264_biweight_func biweight_h264_pixels_tab[10];
328 /* AVS specific */
329 qpel_mc_func put_cavs_qpel_pixels_tab[2][16];
330 qpel_mc_func avg_cavs_qpel_pixels_tab[2][16];
331 void (*cavs_filter_lv)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
332 void (*cavs_filter_lh)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
333 void (*cavs_filter_cv)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
334 void (*cavs_filter_ch)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
335 void (*cavs_idct8_add)(uint8_t *dst, DCTELEM *block, int stride);
337 me_cmp_func pix_abs[2][4];
339 /* huffyuv specific */
340 void (*add_bytes)(uint8_t *dst/*align 16*/, uint8_t *src/*align 16*/, int w);
341 void (*add_bytes_l2)(uint8_t *dst/*align 16*/, uint8_t *src1/*align 16*/, uint8_t *src2/*align 16*/, int w);
342 void (*diff_bytes)(uint8_t *dst/*align 16*/, uint8_t *src1/*align 16*/, uint8_t *src2/*align 1*/,int w);
344 * subtract huffyuv's variant of median prediction
345 * note, this might read from src1[-1], src2[-1]
347 void (*sub_hfyu_median_prediction)(uint8_t *dst, uint8_t *src1, uint8_t *src2, int w, int *left, int *left_top);
348 /* this might write to dst[w] */
349 void (*add_png_paeth_prediction)(uint8_t *dst, uint8_t *src, uint8_t *top, int w, int bpp);
350 void (*bswap_buf)(uint32_t *dst, const uint32_t *src, int w);
352 void (*h264_v_loop_filter_luma)(uint8_t *pix/*align 16*/, int stride, int alpha, int beta, int8_t *tc0);
353 void (*h264_h_loop_filter_luma)(uint8_t *pix/*align 4 */, int stride, int alpha, int beta, int8_t *tc0);
354 /* v/h_loop_filter_luma_intra: align 16 */
355 void (*h264_v_loop_filter_luma_intra)(uint8_t *pix, int stride, int alpha, int beta);
356 void (*h264_h_loop_filter_luma_intra)(uint8_t *pix, int stride, int alpha, int beta);
357 void (*h264_v_loop_filter_chroma)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta, int8_t *tc0);
358 void (*h264_h_loop_filter_chroma)(uint8_t *pix/*align 4*/, int stride, int alpha, int beta, int8_t *tc0);
359 void (*h264_v_loop_filter_chroma_intra)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta);
360 void (*h264_h_loop_filter_chroma_intra)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta);
361 // h264_loop_filter_strength: simd only. the C version is inlined in h264.c
362 void (*h264_loop_filter_strength)(int16_t bS[2][4][4], uint8_t nnz[40], int8_t ref[2][40], int16_t mv[2][40][2],
363 int bidir, int edges, int step, int mask_mv0, int mask_mv1, int field);
365 void (*h263_v_loop_filter)(uint8_t *src, int stride, int qscale);
366 void (*h263_h_loop_filter)(uint8_t *src, int stride, int qscale);
368 void (*h261_loop_filter)(uint8_t *src, int stride);
370 void (*x8_v_loop_filter)(uint8_t *src, int stride, int qscale);
371 void (*x8_h_loop_filter)(uint8_t *src, int stride, int qscale);
373 void (*vp3_v_loop_filter)(uint8_t *src, int stride, int *bounding_values);
374 void (*vp3_h_loop_filter)(uint8_t *src, int stride, int *bounding_values);
376 /* assume len is a multiple of 4, and arrays are 16-byte aligned */
377 void (*vorbis_inverse_coupling)(float *mag, float *ang, int blocksize);
378 void (*ac3_downmix)(float (*samples)[256], float (*matrix)[2], int out_ch, int in_ch, int len);
379 /* no alignment needed */
380 void (*flac_compute_autocorr)(const int32_t *data, int len, int lag, double *autoc);
381 /* assume len is a multiple of 8, and arrays are 16-byte aligned */
382 void (*vector_fmul)(float *dst, const float *src, int len);
383 void (*vector_fmul_reverse)(float *dst, const float *src0, const float *src1, int len);
384 /* assume len is a multiple of 8, and src arrays are 16-byte aligned */
385 void (*vector_fmul_add_add)(float *dst, const float *src0, const float *src1, const float *src2, int src3, int len, int step);
386 /* assume len is a multiple of 4, and arrays are 16-byte aligned */
387 void (*vector_fmul_window)(float *dst, const float *src0, const float *src1, const float *win, float add_bias, int len);
388 /* assume len is a multiple of 8, and arrays are 16-byte aligned */
389 void (*int32_to_float_fmul_scalar)(float *dst, const int *src, float mul, int len);
391 /* C version: convert floats from the range [384.0,386.0] to ints in [-32768,32767]
392 * simd versions: convert floats from [-32768.0,32767.0] without rescaling and arrays are 16byte aligned */
393 void (*float_to_int16)(int16_t *dst, const float *src, long len);
394 void (*float_to_int16_interleave)(int16_t *dst, const float **src, long len, int channels);
396 /* (I)DCT */
397 void (*fdct)(DCTELEM *block/* align 16*/);
398 void (*fdct248)(DCTELEM *block/* align 16*/);
400 /* IDCT really*/
401 void (*idct)(DCTELEM *block/* align 16*/);
404 * block -> idct -> clip to unsigned 8 bit -> dest.
405 * (-1392, 0, 0, ...) -> idct -> (-174, -174, ...) -> put -> (0, 0, ...)
406 * @param line_size size in bytes of a horizontal line of dest
408 void (*idct_put)(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
411 * block -> idct -> add dest -> clip to unsigned 8 bit -> dest.
412 * @param line_size size in bytes of a horizontal line of dest
414 void (*idct_add)(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
417 * idct input permutation.
418 * several optimized IDCTs need a permutated input (relative to the normal order of the reference
419 * IDCT)
420 * this permutation must be performed before the idct_put/add, note, normally this can be merged
421 * with the zigzag/alternate scan<br>
422 * an example to avoid confusion:
423 * - (->decode coeffs -> zigzag reorder -> dequant -> reference idct ->...)
424 * - (x -> referece dct -> reference idct -> x)
425 * - (x -> referece dct -> simple_mmx_perm = idct_permutation -> simple_idct_mmx -> x)
426 * - (->decode coeffs -> zigzag reorder -> simple_mmx_perm -> dequant -> simple_idct_mmx ->...)
428 uint8_t idct_permutation[64];
429 int idct_permutation_type;
430 #define FF_NO_IDCT_PERM 1
431 #define FF_LIBMPEG2_IDCT_PERM 2
432 #define FF_SIMPLE_IDCT_PERM 3
433 #define FF_TRANSPOSE_IDCT_PERM 4
434 #define FF_PARTTRANS_IDCT_PERM 5
435 #define FF_SSE2_IDCT_PERM 6
437 int (*try_8x8basis)(int16_t rem[64], int16_t weight[64], int16_t basis[64], int scale);
438 void (*add_8x8basis)(int16_t rem[64], int16_t basis[64], int scale);
439 #define BASIS_SHIFT 16
440 #define RECON_SHIFT 6
442 void (*draw_edges)(uint8_t *buf, int wrap, int width, int height, int w);
443 #define EDGE_WIDTH 16
445 /* h264 functions */
446 /* NOTE!!! if you implement any of h264_idct8_add, h264_idct8_add4 then you must implement all of them
447 NOTE!!! if you implement any of h264_idct_add, h264_idct_add16, h264_idct_add16intra, h264_idct_add8 then you must implement all of them
448 The reason for above, is that no 2 out of one list may use a different permutation.
450 void (*h264_idct_add)(uint8_t *dst/*align 4*/, DCTELEM *block/*align 16*/, int stride);
451 void (*h264_idct8_add)(uint8_t *dst/*align 8*/, DCTELEM *block/*align 16*/, int stride);
452 void (*h264_idct_dc_add)(uint8_t *dst/*align 4*/, DCTELEM *block/*align 16*/, int stride);
453 void (*h264_idct8_dc_add)(uint8_t *dst/*align 8*/, DCTELEM *block/*align 16*/, int stride);
454 void (*h264_dct)(DCTELEM block[4][4]);
455 void (*h264_idct_add16)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
456 void (*h264_idct8_add4)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
457 void (*h264_idct_add8)(uint8_t **dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
458 void (*h264_idct_add16intra)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
460 /* snow wavelet */
461 void (*vertical_compose97i)(IDWTELEM *b0, IDWTELEM *b1, IDWTELEM *b2, IDWTELEM *b3, IDWTELEM *b4, IDWTELEM *b5, int width);
462 void (*horizontal_compose97i)(IDWTELEM *b, int width);
463 void (*inner_add_yblock)(const uint8_t *obmc, const int obmc_stride, uint8_t * * block, int b_w, int b_h, int src_x, int src_y, int src_stride, slice_buffer * sb, int add, uint8_t * dst8);
465 void (*prefetch)(void *mem, int stride, int h);
467 void (*shrink[4])(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
469 /* vc1 functions */
470 void (*vc1_inv_trans_8x8)(DCTELEM *b);
471 void (*vc1_inv_trans_8x4)(uint8_t *dest, int line_size, DCTELEM *block);
472 void (*vc1_inv_trans_4x8)(uint8_t *dest, int line_size, DCTELEM *block);
473 void (*vc1_inv_trans_4x4)(uint8_t *dest, int line_size, DCTELEM *block);
474 void (*vc1_v_overlap)(uint8_t* src, int stride);
475 void (*vc1_h_overlap)(uint8_t* src, int stride);
476 /* put 8x8 block with bicubic interpolation and quarterpel precision
477 * last argument is actually round value instead of height
479 op_pixels_func put_vc1_mspel_pixels_tab[16];
481 /* intrax8 functions */
482 void (*x8_spatial_compensation[12])(uint8_t *src , uint8_t *dst, int linesize);
483 void (*x8_setup_spatial_compensation)(uint8_t *src, uint8_t *dst, int linesize,
484 int * range, int * sum, int edges);
486 /* ape functions */
488 * Add contents of the second vector to the first one.
489 * @param len length of vectors, should be multiple of 16
491 void (*add_int16)(int16_t *v1/*align 16*/, int16_t *v2, int len);
493 * Add contents of the second vector to the first one.
494 * @param len length of vectors, should be multiple of 16
496 void (*sub_int16)(int16_t *v1/*align 16*/, int16_t *v2, int len);
498 * Calculate scalar product of two vectors.
499 * @param len length of vectors, should be multiple of 16
500 * @param shift number of bits to discard from product
502 int32_t (*scalarproduct_int16)(int16_t *v1, int16_t *v2/*align 16*/, int len, int shift);
504 /* rv30 functions */
505 qpel_mc_func put_rv30_tpel_pixels_tab[4][16];
506 qpel_mc_func avg_rv30_tpel_pixels_tab[4][16];
508 /* rv40 functions */
509 qpel_mc_func put_rv40_qpel_pixels_tab[4][16];
510 qpel_mc_func avg_rv40_qpel_pixels_tab[4][16];
511 h264_chroma_mc_func put_rv40_chroma_pixels_tab[3];
512 h264_chroma_mc_func avg_rv40_chroma_pixels_tab[3];
513 } DSPContext;
515 void dsputil_static_init(void);
516 void dsputil_init(DSPContext* p, AVCodecContext *avctx);
518 int ff_check_alignment(void);
521 * permute block according to permuatation.
522 * @param last last non zero element in scantable order
524 void ff_block_permute(DCTELEM *block, uint8_t *permutation, const uint8_t *scantable, int last);
526 void ff_set_cmp(DSPContext* c, me_cmp_func *cmp, int type);
528 #define BYTE_VEC32(c) ((c)*0x01010101UL)
530 static inline uint32_t rnd_avg32(uint32_t a, uint32_t b)
532 return (a | b) - (((a ^ b) & ~BYTE_VEC32(0x01)) >> 1);
535 static inline uint32_t no_rnd_avg32(uint32_t a, uint32_t b)
537 return (a & b) + (((a ^ b) & ~BYTE_VEC32(0x01)) >> 1);
540 static inline int get_penalty_factor(int lambda, int lambda2, int type){
541 switch(type&0xFF){
542 default:
543 case FF_CMP_SAD:
544 return lambda>>FF_LAMBDA_SHIFT;
545 case FF_CMP_DCT:
546 return (3*lambda)>>(FF_LAMBDA_SHIFT+1);
547 case FF_CMP_W53:
548 return (4*lambda)>>(FF_LAMBDA_SHIFT);
549 case FF_CMP_W97:
550 return (2*lambda)>>(FF_LAMBDA_SHIFT);
551 case FF_CMP_SATD:
552 case FF_CMP_DCT264:
553 return (2*lambda)>>FF_LAMBDA_SHIFT;
554 case FF_CMP_RD:
555 case FF_CMP_PSNR:
556 case FF_CMP_SSE:
557 case FF_CMP_NSSE:
558 return lambda2>>FF_LAMBDA_SHIFT;
559 case FF_CMP_BIT:
560 return 1;
565 * Empty mmx state.
566 * this must be called between any dsp function and float/double code.
567 * for example sin(); dsp->idct_put(); emms_c(); cos()
569 #define emms_c()
571 /* should be defined by architectures supporting
572 one or more MultiMedia extension */
573 int mm_support(void);
575 void dsputil_init_alpha(DSPContext* c, AVCodecContext *avctx);
576 void dsputil_init_arm(DSPContext* c, AVCodecContext *avctx);
577 void dsputil_init_bfin(DSPContext* c, AVCodecContext *avctx);
578 void dsputil_init_mlib(DSPContext* c, AVCodecContext *avctx);
579 void dsputil_init_mmi(DSPContext* c, AVCodecContext *avctx);
580 void dsputil_init_mmx(DSPContext* c, AVCodecContext *avctx);
581 void dsputil_init_ppc(DSPContext* c, AVCodecContext *avctx);
582 void dsputil_init_sh4(DSPContext* c, AVCodecContext *avctx);
583 void dsputil_init_vis(DSPContext* c, AVCodecContext *avctx);
585 #define DECLARE_ALIGNED_16(t, v) DECLARE_ALIGNED(16, t, v)
587 #if HAVE_MMX
589 #undef emms_c
591 extern int mm_flags;
593 void add_pixels_clamped_mmx(const DCTELEM *block, uint8_t *pixels, int line_size);
594 void put_pixels_clamped_mmx(const DCTELEM *block, uint8_t *pixels, int line_size);
595 void put_signed_pixels_clamped_mmx(const DCTELEM *block, uint8_t *pixels, int line_size);
597 static inline void emms(void)
599 __asm__ volatile ("emms;":::"memory");
603 #define emms_c() \
605 if (mm_flags & FF_MM_MMX)\
606 emms();\
609 void dsputil_init_pix_mmx(DSPContext* c, AVCodecContext *avctx);
611 #elif ARCH_ARM
613 extern int mm_flags;
615 #if HAVE_NEON
616 # define DECLARE_ALIGNED_8(t, v) DECLARE_ALIGNED(16, t, v)
617 # define STRIDE_ALIGN 16
618 #endif
620 #elif ARCH_PPC
622 extern int mm_flags;
624 #define DECLARE_ALIGNED_8(t, v) DECLARE_ALIGNED(16, t, v)
625 #define STRIDE_ALIGN 16
627 #elif HAVE_MMI
629 #define DECLARE_ALIGNED_8(t, v) DECLARE_ALIGNED(16, t, v)
630 #define STRIDE_ALIGN 16
632 #else
634 #define mm_flags 0
635 #define mm_support() 0
637 #endif
639 #ifndef DECLARE_ALIGNED_8
640 # define DECLARE_ALIGNED_8(t, v) DECLARE_ALIGNED(8, t, v)
641 #endif
643 #ifndef STRIDE_ALIGN
644 # define STRIDE_ALIGN 8
645 #endif
647 /* PSNR */
648 void get_psnr(uint8_t *orig_image[3], uint8_t *coded_image[3],
649 int orig_linesize[3], int coded_linesize,
650 AVCodecContext *avctx);
652 /* FFT computation */
654 /* NOTE: soon integer code will be added, so you must use the
655 FFTSample type */
656 typedef float FFTSample;
658 struct MDCTContext;
660 typedef struct FFTComplex {
661 FFTSample re, im;
662 } FFTComplex;
664 typedef struct FFTContext {
665 int nbits;
666 int inverse;
667 uint16_t *revtab;
668 FFTComplex *exptab;
669 FFTComplex *exptab1; /* only used by SSE code */
670 FFTComplex *tmp_buf;
671 void (*fft_permute)(struct FFTContext *s, FFTComplex *z);
672 void (*fft_calc)(struct FFTContext *s, FFTComplex *z);
673 void (*imdct_calc)(struct MDCTContext *s, FFTSample *output, const FFTSample *input);
674 void (*imdct_half)(struct MDCTContext *s, FFTSample *output, const FFTSample *input);
675 } FFTContext;
677 extern FFTSample* ff_cos_tabs[13];
680 * Sets up a complex FFT.
681 * @param nbits log2 of the length of the input array
682 * @param inverse if 0 perform the forward transform, if 1 perform the inverse
684 int ff_fft_init(FFTContext *s, int nbits, int inverse);
685 void ff_fft_permute_c(FFTContext *s, FFTComplex *z);
686 void ff_fft_permute_sse(FFTContext *s, FFTComplex *z);
687 void ff_fft_calc_c(FFTContext *s, FFTComplex *z);
688 void ff_fft_calc_sse(FFTContext *s, FFTComplex *z);
689 void ff_fft_calc_3dn(FFTContext *s, FFTComplex *z);
690 void ff_fft_calc_3dn2(FFTContext *s, FFTComplex *z);
691 void ff_fft_calc_altivec(FFTContext *s, FFTComplex *z);
694 * Do the permutation needed BEFORE calling ff_fft_calc().
696 static inline void ff_fft_permute(FFTContext *s, FFTComplex *z)
698 s->fft_permute(s, z);
701 * Do a complex FFT with the parameters defined in ff_fft_init(). The
702 * input data must be permuted before. No 1.0/sqrt(n) normalization is done.
704 static inline void ff_fft_calc(FFTContext *s, FFTComplex *z)
706 s->fft_calc(s, z);
708 void ff_fft_end(FFTContext *s);
710 /* MDCT computation */
712 typedef struct MDCTContext {
713 int n; /* size of MDCT (i.e. number of input data * 2) */
714 int nbits; /* n = 2^nbits */
715 /* pre/post rotation tables */
716 FFTSample *tcos;
717 FFTSample *tsin;
718 FFTContext fft;
719 } MDCTContext;
721 static inline void ff_imdct_calc(MDCTContext *s, FFTSample *output, const FFTSample *input)
723 s->fft.imdct_calc(s, output, input);
725 static inline void ff_imdct_half(MDCTContext *s, FFTSample *output, const FFTSample *input)
727 s->fft.imdct_half(s, output, input);
731 * Generate a Kaiser-Bessel Derived Window.
732 * @param window pointer to half window
733 * @param alpha determines window shape
734 * @param n size of half window
736 void ff_kbd_window_init(float *window, float alpha, int n);
739 * Generate a sine window.
740 * @param window pointer to half window
741 * @param n size of half window
743 void ff_sine_window_init(float *window, int n);
744 extern float ff_sine_128 [ 128];
745 extern float ff_sine_256 [ 256];
746 extern float ff_sine_512 [ 512];
747 extern float ff_sine_1024[1024];
748 extern float ff_sine_2048[2048];
749 extern float ff_sine_4096[4096];
750 extern float *ff_sine_windows[6];
752 int ff_mdct_init(MDCTContext *s, int nbits, int inverse);
753 void ff_imdct_calc_c(MDCTContext *s, FFTSample *output, const FFTSample *input);
754 void ff_imdct_half_c(MDCTContext *s, FFTSample *output, const FFTSample *input);
755 void ff_imdct_calc_3dn(MDCTContext *s, FFTSample *output, const FFTSample *input);
756 void ff_imdct_half_3dn(MDCTContext *s, FFTSample *output, const FFTSample *input);
757 void ff_imdct_calc_3dn2(MDCTContext *s, FFTSample *output, const FFTSample *input);
758 void ff_imdct_half_3dn2(MDCTContext *s, FFTSample *output, const FFTSample *input);
759 void ff_imdct_calc_sse(MDCTContext *s, FFTSample *output, const FFTSample *input);
760 void ff_imdct_half_sse(MDCTContext *s, FFTSample *output, const FFTSample *input);
761 void ff_mdct_calc(MDCTContext *s, FFTSample *out, const FFTSample *input);
762 void ff_mdct_end(MDCTContext *s);
764 /* Real Discrete Fourier Transform */
766 enum RDFTransformType {
767 RDFT,
768 IRDFT,
769 RIDFT,
770 IRIDFT,
773 typedef struct {
774 int nbits;
775 int inverse;
776 int sign_convention;
778 /* pre/post rotation tables */
779 FFTSample *tcos;
780 FFTSample *tsin;
781 FFTContext fft;
782 } RDFTContext;
785 * Sets up a real FFT.
786 * @param nbits log2 of the length of the input array
787 * @param trans the type of transform
789 int ff_rdft_init(RDFTContext *s, int nbits, enum RDFTransformType trans);
790 void ff_rdft_calc(RDFTContext *s, FFTSample *data);
791 void ff_rdft_end(RDFTContext *s);
793 #define WRAPPER8_16(name8, name16)\
794 static int name16(void /*MpegEncContext*/ *s, uint8_t *dst, uint8_t *src, int stride, int h){\
795 return name8(s, dst , src , stride, h)\
796 +name8(s, dst+8 , src+8 , stride, h);\
799 #define WRAPPER8_16_SQ(name8, name16)\
800 static int name16(void /*MpegEncContext*/ *s, uint8_t *dst, uint8_t *src, int stride, int h){\
801 int score=0;\
802 score +=name8(s, dst , src , stride, 8);\
803 score +=name8(s, dst+8 , src+8 , stride, 8);\
804 if(h==16){\
805 dst += 8*stride;\
806 src += 8*stride;\
807 score +=name8(s, dst , src , stride, 8);\
808 score +=name8(s, dst+8 , src+8 , stride, 8);\
810 return score;\
814 static inline void copy_block2(uint8_t *dst, uint8_t *src, int dstStride, int srcStride, int h)
816 int i;
817 for(i=0; i<h; i++)
819 AV_WN16(dst , AV_RN16(src ));
820 dst+=dstStride;
821 src+=srcStride;
825 static inline void copy_block4(uint8_t *dst, uint8_t *src, int dstStride, int srcStride, int h)
827 int i;
828 for(i=0; i<h; i++)
830 AV_WN32(dst , AV_RN32(src ));
831 dst+=dstStride;
832 src+=srcStride;
836 static inline void copy_block8(uint8_t *dst, uint8_t *src, int dstStride, int srcStride, int h)
838 int i;
839 for(i=0; i<h; i++)
841 AV_WN32(dst , AV_RN32(src ));
842 AV_WN32(dst+4 , AV_RN32(src+4 ));
843 dst+=dstStride;
844 src+=srcStride;
848 static inline void copy_block9(uint8_t *dst, uint8_t *src, int dstStride, int srcStride, int h)
850 int i;
851 for(i=0; i<h; i++)
853 AV_WN32(dst , AV_RN32(src ));
854 AV_WN32(dst+4 , AV_RN32(src+4 ));
855 dst[8]= src[8];
856 dst+=dstStride;
857 src+=srcStride;
861 static inline void copy_block16(uint8_t *dst, uint8_t *src, int dstStride, int srcStride, int h)
863 int i;
864 for(i=0; i<h; i++)
866 AV_WN32(dst , AV_RN32(src ));
867 AV_WN32(dst+4 , AV_RN32(src+4 ));
868 AV_WN32(dst+8 , AV_RN32(src+8 ));
869 AV_WN32(dst+12, AV_RN32(src+12));
870 dst+=dstStride;
871 src+=srcStride;
875 static inline void copy_block17(uint8_t *dst, uint8_t *src, int dstStride, int srcStride, int h)
877 int i;
878 for(i=0; i<h; i++)
880 AV_WN32(dst , AV_RN32(src ));
881 AV_WN32(dst+4 , AV_RN32(src+4 ));
882 AV_WN32(dst+8 , AV_RN32(src+8 ));
883 AV_WN32(dst+12, AV_RN32(src+12));
884 dst[16]= src[16];
885 dst+=dstStride;
886 src+=srcStride;
890 #endif /* AVCODEC_DSPUTIL_H */