ordered chapters: seek to closest keyframe
[FFMpeg-mirror/ordered_chapters.git] / libavcodec / vc1.c
blob199dc6888729f0c155f14c3518ee99b5767a540f
1 /*
2 * VC-1 and WMV3 decoder
3 * Copyright (c) 2006-2007 Konstantin Shishkov
4 * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
6 * This file is part of FFmpeg.
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 /**
24 * @file libavcodec/vc1.c
25 * VC-1 and WMV3 decoder
28 #include "dsputil.h"
29 #include "avcodec.h"
30 #include "mpegvideo.h"
31 #include "vc1.h"
32 #include "vc1data.h"
33 #include "vc1acdata.h"
34 #include "msmpeg4data.h"
35 #include "unary.h"
36 #include "simple_idct.h"
37 #include "mathops.h"
38 #include "vdpau_internal.h"
40 #undef NDEBUG
41 #include <assert.h>
43 #define MB_INTRA_VLC_BITS 9
44 #define DC_VLC_BITS 9
45 #define AC_VLC_BITS 9
46 static const uint16_t table_mb_intra[64][2];
49 /**
50 * Init VC-1 specific tables and VC1Context members
51 * @param v The VC1Context to initialize
52 * @return Status
54 static int vc1_init_common(VC1Context *v)
56 static int done = 0;
57 int i = 0;
59 v->hrd_rate = v->hrd_buffer = NULL;
61 /* VLC tables */
62 if(!done)
64 done = 1;
65 init_vlc(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
66 ff_vc1_bfraction_bits, 1, 1,
67 ff_vc1_bfraction_codes, 1, 1, 1);
68 init_vlc(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
69 ff_vc1_norm2_bits, 1, 1,
70 ff_vc1_norm2_codes, 1, 1, 1);
71 init_vlc(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
72 ff_vc1_norm6_bits, 1, 1,
73 ff_vc1_norm6_codes, 2, 2, 1);
74 init_vlc(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
75 ff_vc1_imode_bits, 1, 1,
76 ff_vc1_imode_codes, 1, 1, 1);
77 for (i=0; i<3; i++)
79 init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
80 ff_vc1_ttmb_bits[i], 1, 1,
81 ff_vc1_ttmb_codes[i], 2, 2, 1);
82 init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
83 ff_vc1_ttblk_bits[i], 1, 1,
84 ff_vc1_ttblk_codes[i], 1, 1, 1);
85 init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
86 ff_vc1_subblkpat_bits[i], 1, 1,
87 ff_vc1_subblkpat_codes[i], 1, 1, 1);
89 for(i=0; i<4; i++)
91 init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
92 ff_vc1_4mv_block_pattern_bits[i], 1, 1,
93 ff_vc1_4mv_block_pattern_codes[i], 1, 1, 1);
94 init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
95 ff_vc1_cbpcy_p_bits[i], 1, 1,
96 ff_vc1_cbpcy_p_codes[i], 2, 2, 1);
97 init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
98 ff_vc1_mv_diff_bits[i], 1, 1,
99 ff_vc1_mv_diff_codes[i], 2, 2, 1);
101 for(i=0; i<8; i++)
102 init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
103 &vc1_ac_tables[i][0][1], 8, 4,
104 &vc1_ac_tables[i][0][0], 8, 4, 1);
105 init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
106 &ff_msmp4_mb_i_table[0][1], 4, 2,
107 &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
110 /* Other defaults */
111 v->pq = -1;
112 v->mvrange = 0; /* 7.1.1.18, p80 */
114 return 0;
117 /***********************************************************************/
119 * @defgroup vc1bitplane VC-1 Bitplane decoding
120 * @see 8.7, p56
121 * @{
125 * Imode types
126 * @{
128 enum Imode {
129 IMODE_RAW,
130 IMODE_NORM2,
131 IMODE_DIFF2,
132 IMODE_NORM6,
133 IMODE_DIFF6,
134 IMODE_ROWSKIP,
135 IMODE_COLSKIP
137 /** @} */ //imode defines
139 /** Decode rows by checking if they are skipped
140 * @param plane Buffer to store decoded bits
141 * @param[in] width Width of this buffer
142 * @param[in] height Height of this buffer
143 * @param[in] stride of this buffer
145 static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
146 int x, y;
148 for (y=0; y<height; y++){
149 if (!get_bits1(gb)) //rowskip
150 memset(plane, 0, width);
151 else
152 for (x=0; x<width; x++)
153 plane[x] = get_bits1(gb);
154 plane += stride;
158 /** Decode columns by checking if they are skipped
159 * @param plane Buffer to store decoded bits
160 * @param[in] width Width of this buffer
161 * @param[in] height Height of this buffer
162 * @param[in] stride of this buffer
163 * @todo FIXME: Optimize
165 static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
166 int x, y;
168 for (x=0; x<width; x++){
169 if (!get_bits1(gb)) //colskip
170 for (y=0; y<height; y++)
171 plane[y*stride] = 0;
172 else
173 for (y=0; y<height; y++)
174 plane[y*stride] = get_bits1(gb);
175 plane ++;
179 /** Decode a bitplane's bits
180 * @param data bitplane where to store the decode bits
181 * @param[out] raw_flag pointer to the flag indicating that this bitplane is not coded explicitly
182 * @param v VC-1 context for bit reading and logging
183 * @return Status
184 * @todo FIXME: Optimize
186 static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
188 GetBitContext *gb = &v->s.gb;
190 int imode, x, y, code, offset;
191 uint8_t invert, *planep = data;
192 int width, height, stride;
194 width = v->s.mb_width;
195 height = v->s.mb_height;
196 stride = v->s.mb_stride;
197 invert = get_bits1(gb);
198 imode = get_vlc2(gb, ff_vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
200 *raw_flag = 0;
201 switch (imode)
203 case IMODE_RAW:
204 //Data is actually read in the MB layer (same for all tests == "raw")
205 *raw_flag = 1; //invert ignored
206 return invert;
207 case IMODE_DIFF2:
208 case IMODE_NORM2:
209 if ((height * width) & 1)
211 *planep++ = get_bits1(gb);
212 offset = 1;
214 else offset = 0;
215 // decode bitplane as one long line
216 for (y = offset; y < height * width; y += 2) {
217 code = get_vlc2(gb, ff_vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
218 *planep++ = code & 1;
219 offset++;
220 if(offset == width) {
221 offset = 0;
222 planep += stride - width;
224 *planep++ = code >> 1;
225 offset++;
226 if(offset == width) {
227 offset = 0;
228 planep += stride - width;
231 break;
232 case IMODE_DIFF6:
233 case IMODE_NORM6:
234 if(!(height % 3) && (width % 3)) { // use 2x3 decoding
235 for(y = 0; y < height; y+= 3) {
236 for(x = width & 1; x < width; x += 2) {
237 code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
238 if(code < 0){
239 av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
240 return -1;
242 planep[x + 0] = (code >> 0) & 1;
243 planep[x + 1] = (code >> 1) & 1;
244 planep[x + 0 + stride] = (code >> 2) & 1;
245 planep[x + 1 + stride] = (code >> 3) & 1;
246 planep[x + 0 + stride * 2] = (code >> 4) & 1;
247 planep[x + 1 + stride * 2] = (code >> 5) & 1;
249 planep += stride * 3;
251 if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
252 } else { // 3x2
253 planep += (height & 1) * stride;
254 for(y = height & 1; y < height; y += 2) {
255 for(x = width % 3; x < width; x += 3) {
256 code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
257 if(code < 0){
258 av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
259 return -1;
261 planep[x + 0] = (code >> 0) & 1;
262 planep[x + 1] = (code >> 1) & 1;
263 planep[x + 2] = (code >> 2) & 1;
264 planep[x + 0 + stride] = (code >> 3) & 1;
265 planep[x + 1 + stride] = (code >> 4) & 1;
266 planep[x + 2 + stride] = (code >> 5) & 1;
268 planep += stride * 2;
270 x = width % 3;
271 if(x) decode_colskip(data , x, height , stride, &v->s.gb);
272 if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
274 break;
275 case IMODE_ROWSKIP:
276 decode_rowskip(data, width, height, stride, &v->s.gb);
277 break;
278 case IMODE_COLSKIP:
279 decode_colskip(data, width, height, stride, &v->s.gb);
280 break;
281 default: break;
284 /* Applying diff operator */
285 if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
287 planep = data;
288 planep[0] ^= invert;
289 for (x=1; x<width; x++)
290 planep[x] ^= planep[x-1];
291 for (y=1; y<height; y++)
293 planep += stride;
294 planep[0] ^= planep[-stride];
295 for (x=1; x<width; x++)
297 if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
298 else planep[x] ^= planep[x-1];
302 else if (invert)
304 planep = data;
305 for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
307 return (imode<<1) + invert;
310 /** @} */ //Bitplane group
312 #define FILTSIGN(a) ((a) >= 0 ? 1 : -1)
314 * VC-1 in-loop deblocking filter for one line
315 * @param src source block type
316 * @param stride block stride
317 * @param pq block quantizer
318 * @return whether other 3 pairs should be filtered or not
319 * @see 8.6
321 static int av_always_inline vc1_filter_line(uint8_t* src, int stride, int pq){
322 uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
324 int a0 = (2*(src[-2*stride] - src[ 1*stride]) - 5*(src[-1*stride] - src[ 0*stride]) + 4) >> 3;
325 int a0_sign = a0 >> 31; /* Store sign */
326 a0 = (a0 ^ a0_sign) - a0_sign; /* a0 = FFABS(a0); */
327 if(a0 < pq){
328 int a1 = FFABS((2*(src[-4*stride] - src[-1*stride]) - 5*(src[-3*stride] - src[-2*stride]) + 4) >> 3);
329 int a2 = FFABS((2*(src[ 0*stride] - src[ 3*stride]) - 5*(src[ 1*stride] - src[ 2*stride]) + 4) >> 3);
330 if(a1 < a0 || a2 < a0){
331 int clip = src[-1*stride] - src[ 0*stride];
332 int clip_sign = clip >> 31;
333 clip = ((clip ^ clip_sign) - clip_sign)>>1;
334 if(clip){
335 int a3 = FFMIN(a1, a2);
336 int d = 5 * (a3 - a0);
337 int d_sign = (d >> 31);
338 d = ((d ^ d_sign) - d_sign) >> 3;
339 d_sign ^= a0_sign;
341 if( d_sign ^ clip_sign )
342 d = 0;
343 else{
344 d = FFMIN(d, clip);
345 d = (d ^ d_sign) - d_sign; /* Restore sign */
346 src[-1*stride] = cm[src[-1*stride] - d];
347 src[ 0*stride] = cm[src[ 0*stride] + d];
349 return 1;
353 return 0;
357 * VC-1 in-loop deblocking filter
358 * @param src source block type
359 * @param step distance between horizontally adjacent elements
360 * @param stride distance between vertically adjacent elements
361 * @param len edge length to filter (4 or 8 pixels)
362 * @param pq block quantizer
363 * @see 8.6
365 static void vc1_loop_filter(uint8_t* src, int step, int stride, int len, int pq)
367 int i;
368 int filt3;
370 for(i = 0; i < len; i += 4){
371 filt3 = vc1_filter_line(src + 2*step, stride, pq);
372 if(filt3){
373 vc1_filter_line(src + 0*step, stride, pq);
374 vc1_filter_line(src + 1*step, stride, pq);
375 vc1_filter_line(src + 3*step, stride, pq);
377 src += step * 4;
381 static void vc1_loop_filter_iblk(MpegEncContext *s, int pq)
383 int i, j;
384 if(!s->first_slice_line)
385 vc1_loop_filter(s->dest[0], 1, s->linesize, 16, pq);
386 vc1_loop_filter(s->dest[0] + 8*s->linesize, 1, s->linesize, 16, pq);
387 for(i = !s->mb_x*8; i < 16; i += 8)
388 vc1_loop_filter(s->dest[0] + i, s->linesize, 1, 16, pq);
389 for(j = 0; j < 2; j++){
390 if(!s->first_slice_line)
391 vc1_loop_filter(s->dest[j+1], 1, s->uvlinesize, 8, pq);
392 if(s->mb_x)
393 vc1_loop_filter(s->dest[j+1], s->uvlinesize, 1, 8, pq);
397 /***********************************************************************/
398 /** VOP Dquant decoding
399 * @param v VC-1 Context
401 static int vop_dquant_decoding(VC1Context *v)
403 GetBitContext *gb = &v->s.gb;
404 int pqdiff;
406 //variable size
407 if (v->dquant == 2)
409 pqdiff = get_bits(gb, 3);
410 if (pqdiff == 7) v->altpq = get_bits(gb, 5);
411 else v->altpq = v->pq + pqdiff + 1;
413 else
415 v->dquantfrm = get_bits1(gb);
416 if ( v->dquantfrm )
418 v->dqprofile = get_bits(gb, 2);
419 switch (v->dqprofile)
421 case DQPROFILE_SINGLE_EDGE:
422 case DQPROFILE_DOUBLE_EDGES:
423 v->dqsbedge = get_bits(gb, 2);
424 break;
425 case DQPROFILE_ALL_MBS:
426 v->dqbilevel = get_bits1(gb);
427 if(!v->dqbilevel)
428 v->halfpq = 0;
429 default: break; //Forbidden ?
431 if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
433 pqdiff = get_bits(gb, 3);
434 if (pqdiff == 7) v->altpq = get_bits(gb, 5);
435 else v->altpq = v->pq + pqdiff + 1;
439 return 0;
442 /** Put block onto picture
444 static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
446 uint8_t *Y;
447 int ys, us, vs;
448 DSPContext *dsp = &v->s.dsp;
450 if(v->rangeredfrm) {
451 int i, j, k;
452 for(k = 0; k < 6; k++)
453 for(j = 0; j < 8; j++)
454 for(i = 0; i < 8; i++)
455 block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
458 ys = v->s.current_picture.linesize[0];
459 us = v->s.current_picture.linesize[1];
460 vs = v->s.current_picture.linesize[2];
461 Y = v->s.dest[0];
463 dsp->put_pixels_clamped(block[0], Y, ys);
464 dsp->put_pixels_clamped(block[1], Y + 8, ys);
465 Y += ys * 8;
466 dsp->put_pixels_clamped(block[2], Y, ys);
467 dsp->put_pixels_clamped(block[3], Y + 8, ys);
469 if(!(v->s.flags & CODEC_FLAG_GRAY)) {
470 dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
471 dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
475 /** Do motion compensation over 1 macroblock
476 * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
478 static void vc1_mc_1mv(VC1Context *v, int dir)
480 MpegEncContext *s = &v->s;
481 DSPContext *dsp = &v->s.dsp;
482 uint8_t *srcY, *srcU, *srcV;
483 int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
485 if(!v->s.last_picture.data[0])return;
487 mx = s->mv[dir][0][0];
488 my = s->mv[dir][0][1];
490 // store motion vectors for further use in B frames
491 if(s->pict_type == FF_P_TYPE) {
492 s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
493 s->current_picture.motion_val[1][s->block_index[0]][1] = my;
495 uvmx = (mx + ((mx & 3) == 3)) >> 1;
496 uvmy = (my + ((my & 3) == 3)) >> 1;
497 if(v->fastuvmc) {
498 uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
499 uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
501 if(!dir) {
502 srcY = s->last_picture.data[0];
503 srcU = s->last_picture.data[1];
504 srcV = s->last_picture.data[2];
505 } else {
506 srcY = s->next_picture.data[0];
507 srcU = s->next_picture.data[1];
508 srcV = s->next_picture.data[2];
511 src_x = s->mb_x * 16 + (mx >> 2);
512 src_y = s->mb_y * 16 + (my >> 2);
513 uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
514 uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
516 if(v->profile != PROFILE_ADVANCED){
517 src_x = av_clip( src_x, -16, s->mb_width * 16);
518 src_y = av_clip( src_y, -16, s->mb_height * 16);
519 uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
520 uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
521 }else{
522 src_x = av_clip( src_x, -17, s->avctx->coded_width);
523 src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
524 uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
525 uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
528 srcY += src_y * s->linesize + src_x;
529 srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
530 srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
532 /* for grayscale we should not try to read from unknown area */
533 if(s->flags & CODEC_FLAG_GRAY) {
534 srcU = s->edge_emu_buffer + 18 * s->linesize;
535 srcV = s->edge_emu_buffer + 18 * s->linesize;
538 if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
539 || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
540 || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
541 uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
543 srcY -= s->mspel * (1 + s->linesize);
544 ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
545 src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
546 srcY = s->edge_emu_buffer;
547 ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
548 uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
549 ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
550 uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
551 srcU = uvbuf;
552 srcV = uvbuf + 16;
553 /* if we deal with range reduction we need to scale source blocks */
554 if(v->rangeredfrm) {
555 int i, j;
556 uint8_t *src, *src2;
558 src = srcY;
559 for(j = 0; j < 17 + s->mspel*2; j++) {
560 for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
561 src += s->linesize;
563 src = srcU; src2 = srcV;
564 for(j = 0; j < 9; j++) {
565 for(i = 0; i < 9; i++) {
566 src[i] = ((src[i] - 128) >> 1) + 128;
567 src2[i] = ((src2[i] - 128) >> 1) + 128;
569 src += s->uvlinesize;
570 src2 += s->uvlinesize;
573 /* if we deal with intensity compensation we need to scale source blocks */
574 if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
575 int i, j;
576 uint8_t *src, *src2;
578 src = srcY;
579 for(j = 0; j < 17 + s->mspel*2; j++) {
580 for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
581 src += s->linesize;
583 src = srcU; src2 = srcV;
584 for(j = 0; j < 9; j++) {
585 for(i = 0; i < 9; i++) {
586 src[i] = v->lutuv[src[i]];
587 src2[i] = v->lutuv[src2[i]];
589 src += s->uvlinesize;
590 src2 += s->uvlinesize;
593 srcY += s->mspel * (1 + s->linesize);
596 if(s->mspel) {
597 dxy = ((my & 3) << 2) | (mx & 3);
598 dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
599 dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
600 srcY += s->linesize * 8;
601 dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
602 dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
603 } else { // hpel mc - always used for luma
604 dxy = (my & 2) | ((mx & 2) >> 1);
606 if(!v->rnd)
607 dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
608 else
609 dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
612 if(s->flags & CODEC_FLAG_GRAY) return;
613 /* Chroma MC always uses qpel bilinear */
614 uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
615 uvmx = (uvmx&3)<<1;
616 uvmy = (uvmy&3)<<1;
617 if(!v->rnd){
618 dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
619 dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
620 }else{
621 dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
622 dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
626 /** Do motion compensation for 4-MV macroblock - luminance block
628 static void vc1_mc_4mv_luma(VC1Context *v, int n)
630 MpegEncContext *s = &v->s;
631 DSPContext *dsp = &v->s.dsp;
632 uint8_t *srcY;
633 int dxy, mx, my, src_x, src_y;
634 int off;
636 if(!v->s.last_picture.data[0])return;
637 mx = s->mv[0][n][0];
638 my = s->mv[0][n][1];
639 srcY = s->last_picture.data[0];
641 off = s->linesize * 4 * (n&2) + (n&1) * 8;
643 src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
644 src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
646 if(v->profile != PROFILE_ADVANCED){
647 src_x = av_clip( src_x, -16, s->mb_width * 16);
648 src_y = av_clip( src_y, -16, s->mb_height * 16);
649 }else{
650 src_x = av_clip( src_x, -17, s->avctx->coded_width);
651 src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
654 srcY += src_y * s->linesize + src_x;
656 if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
657 || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
658 || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
659 srcY -= s->mspel * (1 + s->linesize);
660 ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
661 src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
662 srcY = s->edge_emu_buffer;
663 /* if we deal with range reduction we need to scale source blocks */
664 if(v->rangeredfrm) {
665 int i, j;
666 uint8_t *src;
668 src = srcY;
669 for(j = 0; j < 9 + s->mspel*2; j++) {
670 for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
671 src += s->linesize;
674 /* if we deal with intensity compensation we need to scale source blocks */
675 if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
676 int i, j;
677 uint8_t *src;
679 src = srcY;
680 for(j = 0; j < 9 + s->mspel*2; j++) {
681 for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
682 src += s->linesize;
685 srcY += s->mspel * (1 + s->linesize);
688 if(s->mspel) {
689 dxy = ((my & 3) << 2) | (mx & 3);
690 dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
691 } else { // hpel mc - always used for luma
692 dxy = (my & 2) | ((mx & 2) >> 1);
693 if(!v->rnd)
694 dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
695 else
696 dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
700 static inline int median4(int a, int b, int c, int d)
702 if(a < b) {
703 if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
704 else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
705 } else {
706 if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
707 else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
712 /** Do motion compensation for 4-MV macroblock - both chroma blocks
714 static void vc1_mc_4mv_chroma(VC1Context *v)
716 MpegEncContext *s = &v->s;
717 DSPContext *dsp = &v->s.dsp;
718 uint8_t *srcU, *srcV;
719 int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
720 int i, idx, tx = 0, ty = 0;
721 int mvx[4], mvy[4], intra[4];
722 static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
724 if(!v->s.last_picture.data[0])return;
725 if(s->flags & CODEC_FLAG_GRAY) return;
727 for(i = 0; i < 4; i++) {
728 mvx[i] = s->mv[0][i][0];
729 mvy[i] = s->mv[0][i][1];
730 intra[i] = v->mb_type[0][s->block_index[i]];
733 /* calculate chroma MV vector from four luma MVs */
734 idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
735 if(!idx) { // all blocks are inter
736 tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
737 ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
738 } else if(count[idx] == 1) { // 3 inter blocks
739 switch(idx) {
740 case 0x1:
741 tx = mid_pred(mvx[1], mvx[2], mvx[3]);
742 ty = mid_pred(mvy[1], mvy[2], mvy[3]);
743 break;
744 case 0x2:
745 tx = mid_pred(mvx[0], mvx[2], mvx[3]);
746 ty = mid_pred(mvy[0], mvy[2], mvy[3]);
747 break;
748 case 0x4:
749 tx = mid_pred(mvx[0], mvx[1], mvx[3]);
750 ty = mid_pred(mvy[0], mvy[1], mvy[3]);
751 break;
752 case 0x8:
753 tx = mid_pred(mvx[0], mvx[1], mvx[2]);
754 ty = mid_pred(mvy[0], mvy[1], mvy[2]);
755 break;
757 } else if(count[idx] == 2) {
758 int t1 = 0, t2 = 0;
759 for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
760 for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
761 tx = (mvx[t1] + mvx[t2]) / 2;
762 ty = (mvy[t1] + mvy[t2]) / 2;
763 } else {
764 s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
765 s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
766 return; //no need to do MC for inter blocks
769 s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
770 s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
771 uvmx = (tx + ((tx&3) == 3)) >> 1;
772 uvmy = (ty + ((ty&3) == 3)) >> 1;
773 if(v->fastuvmc) {
774 uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
775 uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
778 uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
779 uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
781 if(v->profile != PROFILE_ADVANCED){
782 uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
783 uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
784 }else{
785 uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
786 uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
789 srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
790 srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
791 if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
792 || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
793 || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
794 ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
795 uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
796 ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
797 uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
798 srcU = s->edge_emu_buffer;
799 srcV = s->edge_emu_buffer + 16;
801 /* if we deal with range reduction we need to scale source blocks */
802 if(v->rangeredfrm) {
803 int i, j;
804 uint8_t *src, *src2;
806 src = srcU; src2 = srcV;
807 for(j = 0; j < 9; j++) {
808 for(i = 0; i < 9; i++) {
809 src[i] = ((src[i] - 128) >> 1) + 128;
810 src2[i] = ((src2[i] - 128) >> 1) + 128;
812 src += s->uvlinesize;
813 src2 += s->uvlinesize;
816 /* if we deal with intensity compensation we need to scale source blocks */
817 if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
818 int i, j;
819 uint8_t *src, *src2;
821 src = srcU; src2 = srcV;
822 for(j = 0; j < 9; j++) {
823 for(i = 0; i < 9; i++) {
824 src[i] = v->lutuv[src[i]];
825 src2[i] = v->lutuv[src2[i]];
827 src += s->uvlinesize;
828 src2 += s->uvlinesize;
833 /* Chroma MC always uses qpel bilinear */
834 uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
835 uvmx = (uvmx&3)<<1;
836 uvmy = (uvmy&3)<<1;
837 if(!v->rnd){
838 dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
839 dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
840 }else{
841 dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
842 dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
846 static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
849 * Decode Simple/Main Profiles sequence header
850 * @see Figure 7-8, p16-17
851 * @param avctx Codec context
852 * @param gb GetBit context initialized from Codec context extra_data
853 * @return Status
855 static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
857 VC1Context *v = avctx->priv_data;
859 av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
860 v->profile = get_bits(gb, 2);
861 if (v->profile == PROFILE_COMPLEX)
863 av_log(avctx, AV_LOG_ERROR, "WMV3 Complex Profile is not fully supported\n");
866 if (v->profile == PROFILE_ADVANCED)
868 v->zz_8x4 = ff_vc1_adv_progressive_8x4_zz;
869 v->zz_4x8 = ff_vc1_adv_progressive_4x8_zz;
870 return decode_sequence_header_adv(v, gb);
872 else
874 v->zz_8x4 = wmv2_scantableA;
875 v->zz_4x8 = wmv2_scantableB;
876 v->res_sm = get_bits(gb, 2); //reserved
877 if (v->res_sm)
879 av_log(avctx, AV_LOG_ERROR,
880 "Reserved RES_SM=%i is forbidden\n", v->res_sm);
881 return -1;
885 // (fps-2)/4 (->30)
886 v->frmrtq_postproc = get_bits(gb, 3); //common
887 // (bitrate-32kbps)/64kbps
888 v->bitrtq_postproc = get_bits(gb, 5); //common
889 v->s.loop_filter = get_bits1(gb); //common
890 if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
892 av_log(avctx, AV_LOG_ERROR,
893 "LOOPFILTER shell not be enabled in simple profile\n");
895 if(v->s.avctx->skip_loop_filter >= AVDISCARD_ALL)
896 v->s.loop_filter = 0;
898 v->res_x8 = get_bits1(gb); //reserved
899 v->multires = get_bits1(gb);
900 v->res_fasttx = get_bits1(gb);
901 if (!v->res_fasttx)
903 v->s.dsp.vc1_inv_trans_8x8 = ff_simple_idct;
904 v->s.dsp.vc1_inv_trans_8x4 = ff_simple_idct84_add;
905 v->s.dsp.vc1_inv_trans_4x8 = ff_simple_idct48_add;
906 v->s.dsp.vc1_inv_trans_4x4 = ff_simple_idct44_add;
909 v->fastuvmc = get_bits1(gb); //common
910 if (!v->profile && !v->fastuvmc)
912 av_log(avctx, AV_LOG_ERROR,
913 "FASTUVMC unavailable in Simple Profile\n");
914 return -1;
916 v->extended_mv = get_bits1(gb); //common
917 if (!v->profile && v->extended_mv)
919 av_log(avctx, AV_LOG_ERROR,
920 "Extended MVs unavailable in Simple Profile\n");
921 return -1;
923 v->dquant = get_bits(gb, 2); //common
924 v->vstransform = get_bits1(gb); //common
926 v->res_transtab = get_bits1(gb);
927 if (v->res_transtab)
929 av_log(avctx, AV_LOG_ERROR,
930 "1 for reserved RES_TRANSTAB is forbidden\n");
931 return -1;
934 v->overlap = get_bits1(gb); //common
936 v->s.resync_marker = get_bits1(gb);
937 v->rangered = get_bits1(gb);
938 if (v->rangered && v->profile == PROFILE_SIMPLE)
940 av_log(avctx, AV_LOG_INFO,
941 "RANGERED should be set to 0 in simple profile\n");
944 v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
945 v->quantizer_mode = get_bits(gb, 2); //common
947 v->finterpflag = get_bits1(gb); //common
948 v->res_rtm_flag = get_bits1(gb); //reserved
949 if (!v->res_rtm_flag)
951 // av_log(avctx, AV_LOG_ERROR,
952 // "0 for reserved RES_RTM_FLAG is forbidden\n");
953 av_log(avctx, AV_LOG_ERROR,
954 "Old WMV3 version detected, only I-frames will be decoded\n");
955 //return -1;
957 //TODO: figure out what they mean (always 0x402F)
958 if(!v->res_fasttx) skip_bits(gb, 16);
959 av_log(avctx, AV_LOG_DEBUG,
960 "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
961 "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
962 "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
963 "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
964 v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
965 v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
966 v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
967 v->dquant, v->quantizer_mode, avctx->max_b_frames
969 return 0;
972 static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
974 v->res_rtm_flag = 1;
975 v->level = get_bits(gb, 3);
976 if(v->level >= 5)
978 av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
980 v->chromaformat = get_bits(gb, 2);
981 if (v->chromaformat != 1)
983 av_log(v->s.avctx, AV_LOG_ERROR,
984 "Only 4:2:0 chroma format supported\n");
985 return -1;
988 // (fps-2)/4 (->30)
989 v->frmrtq_postproc = get_bits(gb, 3); //common
990 // (bitrate-32kbps)/64kbps
991 v->bitrtq_postproc = get_bits(gb, 5); //common
992 v->postprocflag = get_bits1(gb); //common
994 v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
995 v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
996 v->s.avctx->width = v->s.avctx->coded_width;
997 v->s.avctx->height = v->s.avctx->coded_height;
998 v->broadcast = get_bits1(gb);
999 v->interlace = get_bits1(gb);
1000 v->tfcntrflag = get_bits1(gb);
1001 v->finterpflag = get_bits1(gb);
1002 skip_bits1(gb); // reserved
1004 v->s.h_edge_pos = v->s.avctx->coded_width;
1005 v->s.v_edge_pos = v->s.avctx->coded_height;
1007 av_log(v->s.avctx, AV_LOG_DEBUG,
1008 "Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
1009 "LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n"
1010 "TFCTRflag=%i, FINTERPflag=%i\n",
1011 v->level, v->frmrtq_postproc, v->bitrtq_postproc,
1012 v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace,
1013 v->tfcntrflag, v->finterpflag
1016 v->psf = get_bits1(gb);
1017 if(v->psf) { //PsF, 6.1.13
1018 av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
1019 return -1;
1021 v->s.max_b_frames = v->s.avctx->max_b_frames = 7;
1022 if(get_bits1(gb)) { //Display Info - decoding is not affected by it
1023 int w, h, ar = 0;
1024 av_log(v->s.avctx, AV_LOG_DEBUG, "Display extended info:\n");
1025 v->s.avctx->coded_width = w = get_bits(gb, 14) + 1;
1026 v->s.avctx->coded_height = h = get_bits(gb, 14) + 1;
1027 av_log(v->s.avctx, AV_LOG_DEBUG, "Display dimensions: %ix%i\n", w, h);
1028 if(get_bits1(gb))
1029 ar = get_bits(gb, 4);
1030 if(ar && ar < 14){
1031 v->s.avctx->sample_aspect_ratio = ff_vc1_pixel_aspect[ar];
1032 }else if(ar == 15){
1033 w = get_bits(gb, 8);
1034 h = get_bits(gb, 8);
1035 v->s.avctx->sample_aspect_ratio = (AVRational){w, h};
1037 av_log(v->s.avctx, AV_LOG_DEBUG, "Aspect: %i:%i\n", v->s.avctx->sample_aspect_ratio.num, v->s.avctx->sample_aspect_ratio.den);
1039 if(get_bits1(gb)){ //framerate stuff
1040 if(get_bits1(gb)) {
1041 v->s.avctx->time_base.num = 32;
1042 v->s.avctx->time_base.den = get_bits(gb, 16) + 1;
1043 } else {
1044 int nr, dr;
1045 nr = get_bits(gb, 8);
1046 dr = get_bits(gb, 4);
1047 if(nr && nr < 8 && dr && dr < 3){
1048 v->s.avctx->time_base.num = ff_vc1_fps_dr[dr - 1];
1049 v->s.avctx->time_base.den = ff_vc1_fps_nr[nr - 1] * 1000;
1054 if(get_bits1(gb)){
1055 v->color_prim = get_bits(gb, 8);
1056 v->transfer_char = get_bits(gb, 8);
1057 v->matrix_coef = get_bits(gb, 8);
1061 v->hrd_param_flag = get_bits1(gb);
1062 if(v->hrd_param_flag) {
1063 int i;
1064 v->hrd_num_leaky_buckets = get_bits(gb, 5);
1065 skip_bits(gb, 4); //bitrate exponent
1066 skip_bits(gb, 4); //buffer size exponent
1067 for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
1068 skip_bits(gb, 16); //hrd_rate[n]
1069 skip_bits(gb, 16); //hrd_buffer[n]
1072 return 0;
1075 static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
1077 VC1Context *v = avctx->priv_data;
1078 int i;
1080 av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
1081 v->broken_link = get_bits1(gb);
1082 v->closed_entry = get_bits1(gb);
1083 v->panscanflag = get_bits1(gb);
1084 v->refdist_flag = get_bits1(gb);
1085 v->s.loop_filter = get_bits1(gb);
1086 v->fastuvmc = get_bits1(gb);
1087 v->extended_mv = get_bits1(gb);
1088 v->dquant = get_bits(gb, 2);
1089 v->vstransform = get_bits1(gb);
1090 v->overlap = get_bits1(gb);
1091 v->quantizer_mode = get_bits(gb, 2);
1093 if(v->hrd_param_flag){
1094 for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
1095 skip_bits(gb, 8); //hrd_full[n]
1099 if(get_bits1(gb)){
1100 avctx->coded_width = (get_bits(gb, 12)+1)<<1;
1101 avctx->coded_height = (get_bits(gb, 12)+1)<<1;
1103 if(v->extended_mv)
1104 v->extended_dmv = get_bits1(gb);
1105 if((v->range_mapy_flag = get_bits1(gb))) {
1106 av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
1107 v->range_mapy = get_bits(gb, 3);
1109 if((v->range_mapuv_flag = get_bits1(gb))) {
1110 av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
1111 v->range_mapuv = get_bits(gb, 3);
1114 av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n"
1115 "BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n"
1116 "RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n"
1117 "DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n",
1118 v->broken_link, v->closed_entry, v->panscanflag, v->refdist_flag, v->s.loop_filter,
1119 v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode);
1121 return 0;
1124 static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
1126 int pqindex, lowquant, status;
1128 if(v->finterpflag) v->interpfrm = get_bits1(gb);
1129 skip_bits(gb, 2); //framecnt unused
1130 v->rangeredfrm = 0;
1131 if (v->rangered) v->rangeredfrm = get_bits1(gb);
1132 v->s.pict_type = get_bits1(gb);
1133 if (v->s.avctx->max_b_frames) {
1134 if (!v->s.pict_type) {
1135 if (get_bits1(gb)) v->s.pict_type = FF_I_TYPE;
1136 else v->s.pict_type = FF_B_TYPE;
1137 } else v->s.pict_type = FF_P_TYPE;
1138 } else v->s.pict_type = v->s.pict_type ? FF_P_TYPE : FF_I_TYPE;
1140 v->bi_type = 0;
1141 if(v->s.pict_type == FF_B_TYPE) {
1142 v->bfraction_lut_index = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
1143 v->bfraction = ff_vc1_bfraction_lut[v->bfraction_lut_index];
1144 if(v->bfraction == 0) {
1145 v->s.pict_type = FF_BI_TYPE;
1148 if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
1149 skip_bits(gb, 7); // skip buffer fullness
1151 /* calculate RND */
1152 if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
1153 v->rnd = 1;
1154 if(v->s.pict_type == FF_P_TYPE)
1155 v->rnd ^= 1;
1157 /* Quantizer stuff */
1158 pqindex = get_bits(gb, 5);
1159 if(!pqindex) return -1;
1160 if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
1161 v->pq = ff_vc1_pquant_table[0][pqindex];
1162 else
1163 v->pq = ff_vc1_pquant_table[1][pqindex];
1165 v->pquantizer = 1;
1166 if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
1167 v->pquantizer = pqindex < 9;
1168 if (v->quantizer_mode == QUANT_NON_UNIFORM)
1169 v->pquantizer = 0;
1170 v->pqindex = pqindex;
1171 if (pqindex < 9) v->halfpq = get_bits1(gb);
1172 else v->halfpq = 0;
1173 if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
1174 v->pquantizer = get_bits1(gb);
1175 v->dquantfrm = 0;
1176 if (v->extended_mv == 1) v->mvrange = get_unary(gb, 0, 3);
1177 v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
1178 v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
1179 v->range_x = 1 << (v->k_x - 1);
1180 v->range_y = 1 << (v->k_y - 1);
1181 if (v->multires && v->s.pict_type != FF_B_TYPE) v->respic = get_bits(gb, 2);
1183 if(v->res_x8 && (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)){
1184 v->x8_type = get_bits1(gb);
1185 }else v->x8_type = 0;
1186 //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
1187 // (v->s.pict_type == FF_P_TYPE) ? 'P' : ((v->s.pict_type == FF_I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
1189 if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_P_TYPE) v->use_ic = 0;
1191 switch(v->s.pict_type) {
1192 case FF_P_TYPE:
1193 if (v->pq < 5) v->tt_index = 0;
1194 else if(v->pq < 13) v->tt_index = 1;
1195 else v->tt_index = 2;
1197 lowquant = (v->pq > 12) ? 0 : 1;
1198 v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
1199 if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
1201 int scale, shift, i;
1202 v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
1203 v->lumscale = get_bits(gb, 6);
1204 v->lumshift = get_bits(gb, 6);
1205 v->use_ic = 1;
1206 /* fill lookup tables for intensity compensation */
1207 if(!v->lumscale) {
1208 scale = -64;
1209 shift = (255 - v->lumshift * 2) << 6;
1210 if(v->lumshift > 31)
1211 shift += 128 << 6;
1212 } else {
1213 scale = v->lumscale + 32;
1214 if(v->lumshift > 31)
1215 shift = (v->lumshift - 64) << 6;
1216 else
1217 shift = v->lumshift << 6;
1219 for(i = 0; i < 256; i++) {
1220 v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
1221 v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
1224 if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
1225 v->s.quarter_sample = 0;
1226 else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
1227 if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
1228 v->s.quarter_sample = 0;
1229 else
1230 v->s.quarter_sample = 1;
1231 } else
1232 v->s.quarter_sample = 1;
1233 v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
1235 if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
1236 v->mv_mode2 == MV_PMODE_MIXED_MV)
1237 || v->mv_mode == MV_PMODE_MIXED_MV)
1239 status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
1240 if (status < 0) return -1;
1241 av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
1242 "Imode: %i, Invert: %i\n", status>>1, status&1);
1243 } else {
1244 v->mv_type_is_raw = 0;
1245 memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
1247 status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
1248 if (status < 0) return -1;
1249 av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
1250 "Imode: %i, Invert: %i\n", status>>1, status&1);
1252 /* Hopefully this is correct for P frames */
1253 v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
1254 v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
1256 if (v->dquant)
1258 av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
1259 vop_dquant_decoding(v);
1262 v->ttfrm = 0; //FIXME Is that so ?
1263 if (v->vstransform)
1265 v->ttmbf = get_bits1(gb);
1266 if (v->ttmbf)
1268 v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
1270 } else {
1271 v->ttmbf = 1;
1272 v->ttfrm = TT_8X8;
1274 break;
1275 case FF_B_TYPE:
1276 if (v->pq < 5) v->tt_index = 0;
1277 else if(v->pq < 13) v->tt_index = 1;
1278 else v->tt_index = 2;
1280 lowquant = (v->pq > 12) ? 0 : 1;
1281 v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
1282 v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
1283 v->s.mspel = v->s.quarter_sample;
1285 status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
1286 if (status < 0) return -1;
1287 av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
1288 "Imode: %i, Invert: %i\n", status>>1, status&1);
1289 status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
1290 if (status < 0) return -1;
1291 av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
1292 "Imode: %i, Invert: %i\n", status>>1, status&1);
1294 v->s.mv_table_index = get_bits(gb, 2);
1295 v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
1297 if (v->dquant)
1299 av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
1300 vop_dquant_decoding(v);
1303 v->ttfrm = 0;
1304 if (v->vstransform)
1306 v->ttmbf = get_bits1(gb);
1307 if (v->ttmbf)
1309 v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
1311 } else {
1312 v->ttmbf = 1;
1313 v->ttfrm = TT_8X8;
1315 break;
1318 if(!v->x8_type)
1320 /* AC Syntax */
1321 v->c_ac_table_index = decode012(gb);
1322 if (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
1324 v->y_ac_table_index = decode012(gb);
1326 /* DC Syntax */
1327 v->s.dc_table_index = get_bits1(gb);
1330 if(v->s.pict_type == FF_BI_TYPE) {
1331 v->s.pict_type = FF_B_TYPE;
1332 v->bi_type = 1;
1334 return 0;
1337 static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
1339 int pqindex, lowquant;
1340 int status;
1342 v->p_frame_skipped = 0;
1344 if(v->interlace){
1345 v->fcm = decode012(gb);
1346 if(v->fcm) return -1; // interlaced frames/fields are not implemented
1348 switch(get_unary(gb, 0, 4)) {
1349 case 0:
1350 v->s.pict_type = FF_P_TYPE;
1351 break;
1352 case 1:
1353 v->s.pict_type = FF_B_TYPE;
1354 break;
1355 case 2:
1356 v->s.pict_type = FF_I_TYPE;
1357 break;
1358 case 3:
1359 v->s.pict_type = FF_BI_TYPE;
1360 break;
1361 case 4:
1362 v->s.pict_type = FF_P_TYPE; // skipped pic
1363 v->p_frame_skipped = 1;
1364 return 0;
1366 if(v->tfcntrflag)
1367 skip_bits(gb, 8);
1368 if(v->broadcast) {
1369 if(!v->interlace || v->psf) {
1370 v->rptfrm = get_bits(gb, 2);
1371 } else {
1372 v->tff = get_bits1(gb);
1373 v->rptfrm = get_bits1(gb);
1376 if(v->panscanflag) {
1377 //...
1379 v->rnd = get_bits1(gb);
1380 if(v->interlace)
1381 v->uvsamp = get_bits1(gb);
1382 if(v->finterpflag) v->interpfrm = get_bits1(gb);
1383 if(v->s.pict_type == FF_B_TYPE) {
1384 v->bfraction_lut_index = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
1385 v->bfraction = ff_vc1_bfraction_lut[v->bfraction_lut_index];
1386 if(v->bfraction == 0) {
1387 v->s.pict_type = FF_BI_TYPE; /* XXX: should not happen here */
1390 pqindex = get_bits(gb, 5);
1391 if(!pqindex) return -1;
1392 v->pqindex = pqindex;
1393 if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
1394 v->pq = ff_vc1_pquant_table[0][pqindex];
1395 else
1396 v->pq = ff_vc1_pquant_table[1][pqindex];
1398 v->pquantizer = 1;
1399 if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
1400 v->pquantizer = pqindex < 9;
1401 if (v->quantizer_mode == QUANT_NON_UNIFORM)
1402 v->pquantizer = 0;
1403 v->pqindex = pqindex;
1404 if (pqindex < 9) v->halfpq = get_bits1(gb);
1405 else v->halfpq = 0;
1406 if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
1407 v->pquantizer = get_bits1(gb);
1408 if(v->postprocflag)
1409 v->postproc = get_bits(gb, 2);
1411 if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_P_TYPE) v->use_ic = 0;
1413 switch(v->s.pict_type) {
1414 case FF_I_TYPE:
1415 case FF_BI_TYPE:
1416 status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
1417 if (status < 0) return -1;
1418 av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
1419 "Imode: %i, Invert: %i\n", status>>1, status&1);
1420 v->condover = CONDOVER_NONE;
1421 if(v->overlap && v->pq <= 8) {
1422 v->condover = decode012(gb);
1423 if(v->condover == CONDOVER_SELECT) {
1424 status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
1425 if (status < 0) return -1;
1426 av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
1427 "Imode: %i, Invert: %i\n", status>>1, status&1);
1430 break;
1431 case FF_P_TYPE:
1432 if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
1433 else v->mvrange = 0;
1434 v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
1435 v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
1436 v->range_x = 1 << (v->k_x - 1);
1437 v->range_y = 1 << (v->k_y - 1);
1439 if (v->pq < 5) v->tt_index = 0;
1440 else if(v->pq < 13) v->tt_index = 1;
1441 else v->tt_index = 2;
1443 lowquant = (v->pq > 12) ? 0 : 1;
1444 v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
1445 if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
1447 int scale, shift, i;
1448 v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
1449 v->lumscale = get_bits(gb, 6);
1450 v->lumshift = get_bits(gb, 6);
1451 /* fill lookup tables for intensity compensation */
1452 if(!v->lumscale) {
1453 scale = -64;
1454 shift = (255 - v->lumshift * 2) << 6;
1455 if(v->lumshift > 31)
1456 shift += 128 << 6;
1457 } else {
1458 scale = v->lumscale + 32;
1459 if(v->lumshift > 31)
1460 shift = (v->lumshift - 64) << 6;
1461 else
1462 shift = v->lumshift << 6;
1464 for(i = 0; i < 256; i++) {
1465 v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
1466 v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
1468 v->use_ic = 1;
1470 if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
1471 v->s.quarter_sample = 0;
1472 else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
1473 if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
1474 v->s.quarter_sample = 0;
1475 else
1476 v->s.quarter_sample = 1;
1477 } else
1478 v->s.quarter_sample = 1;
1479 v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
1481 if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
1482 v->mv_mode2 == MV_PMODE_MIXED_MV)
1483 || v->mv_mode == MV_PMODE_MIXED_MV)
1485 status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
1486 if (status < 0) return -1;
1487 av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
1488 "Imode: %i, Invert: %i\n", status>>1, status&1);
1489 } else {
1490 v->mv_type_is_raw = 0;
1491 memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
1493 status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
1494 if (status < 0) return -1;
1495 av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
1496 "Imode: %i, Invert: %i\n", status>>1, status&1);
1498 /* Hopefully this is correct for P frames */
1499 v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
1500 v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
1501 if (v->dquant)
1503 av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
1504 vop_dquant_decoding(v);
1507 v->ttfrm = 0; //FIXME Is that so ?
1508 if (v->vstransform)
1510 v->ttmbf = get_bits1(gb);
1511 if (v->ttmbf)
1513 v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
1515 } else {
1516 v->ttmbf = 1;
1517 v->ttfrm = TT_8X8;
1519 break;
1520 case FF_B_TYPE:
1521 if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
1522 else v->mvrange = 0;
1523 v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
1524 v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
1525 v->range_x = 1 << (v->k_x - 1);
1526 v->range_y = 1 << (v->k_y - 1);
1528 if (v->pq < 5) v->tt_index = 0;
1529 else if(v->pq < 13) v->tt_index = 1;
1530 else v->tt_index = 2;
1532 lowquant = (v->pq > 12) ? 0 : 1;
1533 v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
1534 v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
1535 v->s.mspel = v->s.quarter_sample;
1537 status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
1538 if (status < 0) return -1;
1539 av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
1540 "Imode: %i, Invert: %i\n", status>>1, status&1);
1541 status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
1542 if (status < 0) return -1;
1543 av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
1544 "Imode: %i, Invert: %i\n", status>>1, status&1);
1546 v->s.mv_table_index = get_bits(gb, 2);
1547 v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
1549 if (v->dquant)
1551 av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
1552 vop_dquant_decoding(v);
1555 v->ttfrm = 0;
1556 if (v->vstransform)
1558 v->ttmbf = get_bits1(gb);
1559 if (v->ttmbf)
1561 v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
1563 } else {
1564 v->ttmbf = 1;
1565 v->ttfrm = TT_8X8;
1567 break;
1570 /* AC Syntax */
1571 v->c_ac_table_index = decode012(gb);
1572 if (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
1574 v->y_ac_table_index = decode012(gb);
1576 /* DC Syntax */
1577 v->s.dc_table_index = get_bits1(gb);
1578 if ((v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE) && v->dquant) {
1579 av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
1580 vop_dquant_decoding(v);
1583 v->bi_type = 0;
1584 if(v->s.pict_type == FF_BI_TYPE) {
1585 v->s.pict_type = FF_B_TYPE;
1586 v->bi_type = 1;
1588 return 0;
1591 /***********************************************************************/
1593 * @defgroup vc1block VC-1 Block-level functions
1594 * @see 7.1.4, p91 and 8.1.1.7, p(1)04
1595 * @{
1599 * @def GET_MQUANT
1600 * @brief Get macroblock-level quantizer scale
1602 #define GET_MQUANT() \
1603 if (v->dquantfrm) \
1605 int edges = 0; \
1606 if (v->dqprofile == DQPROFILE_ALL_MBS) \
1608 if (v->dqbilevel) \
1610 mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
1612 else \
1614 mqdiff = get_bits(gb, 3); \
1615 if (mqdiff != 7) mquant = v->pq + mqdiff; \
1616 else mquant = get_bits(gb, 5); \
1619 if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
1620 edges = 1 << v->dqsbedge; \
1621 else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
1622 edges = (3 << v->dqsbedge) % 15; \
1623 else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
1624 edges = 15; \
1625 if((edges&1) && !s->mb_x) \
1626 mquant = v->altpq; \
1627 if((edges&2) && s->first_slice_line) \
1628 mquant = v->altpq; \
1629 if((edges&4) && s->mb_x == (s->mb_width - 1)) \
1630 mquant = v->altpq; \
1631 if((edges&8) && s->mb_y == (s->mb_height - 1)) \
1632 mquant = v->altpq; \
1636 * @def GET_MVDATA(_dmv_x, _dmv_y)
1637 * @brief Get MV differentials
1638 * @see MVDATA decoding from 8.3.5.2, p(1)20
1639 * @param _dmv_x Horizontal differential for decoded MV
1640 * @param _dmv_y Vertical differential for decoded MV
1642 #define GET_MVDATA(_dmv_x, _dmv_y) \
1643 index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
1644 VC1_MV_DIFF_VLC_BITS, 2); \
1645 if (index > 36) \
1647 mb_has_coeffs = 1; \
1648 index -= 37; \
1650 else mb_has_coeffs = 0; \
1651 s->mb_intra = 0; \
1652 if (!index) { _dmv_x = _dmv_y = 0; } \
1653 else if (index == 35) \
1655 _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
1656 _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
1658 else if (index == 36) \
1660 _dmv_x = 0; \
1661 _dmv_y = 0; \
1662 s->mb_intra = 1; \
1664 else \
1666 index1 = index%6; \
1667 if (!s->quarter_sample && index1 == 5) val = 1; \
1668 else val = 0; \
1669 if(size_table[index1] - val > 0) \
1670 val = get_bits(gb, size_table[index1] - val); \
1671 else val = 0; \
1672 sign = 0 - (val&1); \
1673 _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
1675 index1 = index/6; \
1676 if (!s->quarter_sample && index1 == 5) val = 1; \
1677 else val = 0; \
1678 if(size_table[index1] - val > 0) \
1679 val = get_bits(gb, size_table[index1] - val); \
1680 else val = 0; \
1681 sign = 0 - (val&1); \
1682 _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
1685 /** Predict and set motion vector
1687 static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
1689 int xy, wrap, off = 0;
1690 int16_t *A, *B, *C;
1691 int px, py;
1692 int sum;
1694 /* scale MV difference to be quad-pel */
1695 dmv_x <<= 1 - s->quarter_sample;
1696 dmv_y <<= 1 - s->quarter_sample;
1698 wrap = s->b8_stride;
1699 xy = s->block_index[n];
1701 if(s->mb_intra){
1702 s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
1703 s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
1704 s->current_picture.motion_val[1][xy][0] = 0;
1705 s->current_picture.motion_val[1][xy][1] = 0;
1706 if(mv1) { /* duplicate motion data for 1-MV block */
1707 s->current_picture.motion_val[0][xy + 1][0] = 0;
1708 s->current_picture.motion_val[0][xy + 1][1] = 0;
1709 s->current_picture.motion_val[0][xy + wrap][0] = 0;
1710 s->current_picture.motion_val[0][xy + wrap][1] = 0;
1711 s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
1712 s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
1713 s->current_picture.motion_val[1][xy + 1][0] = 0;
1714 s->current_picture.motion_val[1][xy + 1][1] = 0;
1715 s->current_picture.motion_val[1][xy + wrap][0] = 0;
1716 s->current_picture.motion_val[1][xy + wrap][1] = 0;
1717 s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
1718 s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
1720 return;
1723 C = s->current_picture.motion_val[0][xy - 1];
1724 A = s->current_picture.motion_val[0][xy - wrap];
1725 if(mv1)
1726 off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
1727 else {
1728 //in 4-MV mode different blocks have different B predictor position
1729 switch(n){
1730 case 0:
1731 off = (s->mb_x > 0) ? -1 : 1;
1732 break;
1733 case 1:
1734 off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
1735 break;
1736 case 2:
1737 off = 1;
1738 break;
1739 case 3:
1740 off = -1;
1743 B = s->current_picture.motion_val[0][xy - wrap + off];
1745 if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
1746 if(s->mb_width == 1) {
1747 px = A[0];
1748 py = A[1];
1749 } else {
1750 px = mid_pred(A[0], B[0], C[0]);
1751 py = mid_pred(A[1], B[1], C[1]);
1753 } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
1754 px = C[0];
1755 py = C[1];
1756 } else {
1757 px = py = 0;
1759 /* Pullback MV as specified in 8.3.5.3.4 */
1761 int qx, qy, X, Y;
1762 qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
1763 qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
1764 X = (s->mb_width << 6) - 4;
1765 Y = (s->mb_height << 6) - 4;
1766 if(mv1) {
1767 if(qx + px < -60) px = -60 - qx;
1768 if(qy + py < -60) py = -60 - qy;
1769 } else {
1770 if(qx + px < -28) px = -28 - qx;
1771 if(qy + py < -28) py = -28 - qy;
1773 if(qx + px > X) px = X - qx;
1774 if(qy + py > Y) py = Y - qy;
1776 /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
1777 if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
1778 if(is_intra[xy - wrap])
1779 sum = FFABS(px) + FFABS(py);
1780 else
1781 sum = FFABS(px - A[0]) + FFABS(py - A[1]);
1782 if(sum > 32) {
1783 if(get_bits1(&s->gb)) {
1784 px = A[0];
1785 py = A[1];
1786 } else {
1787 px = C[0];
1788 py = C[1];
1790 } else {
1791 if(is_intra[xy - 1])
1792 sum = FFABS(px) + FFABS(py);
1793 else
1794 sum = FFABS(px - C[0]) + FFABS(py - C[1]);
1795 if(sum > 32) {
1796 if(get_bits1(&s->gb)) {
1797 px = A[0];
1798 py = A[1];
1799 } else {
1800 px = C[0];
1801 py = C[1];
1806 /* store MV using signed modulus of MV range defined in 4.11 */
1807 s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
1808 s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
1809 if(mv1) { /* duplicate motion data for 1-MV block */
1810 s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
1811 s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
1812 s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
1813 s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
1814 s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
1815 s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
1819 /** Motion compensation for direct or interpolated blocks in B-frames
1821 static void vc1_interp_mc(VC1Context *v)
1823 MpegEncContext *s = &v->s;
1824 DSPContext *dsp = &v->s.dsp;
1825 uint8_t *srcY, *srcU, *srcV;
1826 int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
1828 if(!v->s.next_picture.data[0])return;
1830 mx = s->mv[1][0][0];
1831 my = s->mv[1][0][1];
1832 uvmx = (mx + ((mx & 3) == 3)) >> 1;
1833 uvmy = (my + ((my & 3) == 3)) >> 1;
1834 if(v->fastuvmc) {
1835 uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
1836 uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
1838 srcY = s->next_picture.data[0];
1839 srcU = s->next_picture.data[1];
1840 srcV = s->next_picture.data[2];
1842 src_x = s->mb_x * 16 + (mx >> 2);
1843 src_y = s->mb_y * 16 + (my >> 2);
1844 uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
1845 uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
1847 if(v->profile != PROFILE_ADVANCED){
1848 src_x = av_clip( src_x, -16, s->mb_width * 16);
1849 src_y = av_clip( src_y, -16, s->mb_height * 16);
1850 uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
1851 uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
1852 }else{
1853 src_x = av_clip( src_x, -17, s->avctx->coded_width);
1854 src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
1855 uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
1856 uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
1859 srcY += src_y * s->linesize + src_x;
1860 srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
1861 srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
1863 /* for grayscale we should not try to read from unknown area */
1864 if(s->flags & CODEC_FLAG_GRAY) {
1865 srcU = s->edge_emu_buffer + 18 * s->linesize;
1866 srcV = s->edge_emu_buffer + 18 * s->linesize;
1869 if(v->rangeredfrm
1870 || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
1871 || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
1872 uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
1874 srcY -= s->mspel * (1 + s->linesize);
1875 ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
1876 src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
1877 srcY = s->edge_emu_buffer;
1878 ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
1879 uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
1880 ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
1881 uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
1882 srcU = uvbuf;
1883 srcV = uvbuf + 16;
1884 /* if we deal with range reduction we need to scale source blocks */
1885 if(v->rangeredfrm) {
1886 int i, j;
1887 uint8_t *src, *src2;
1889 src = srcY;
1890 for(j = 0; j < 17 + s->mspel*2; j++) {
1891 for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
1892 src += s->linesize;
1894 src = srcU; src2 = srcV;
1895 for(j = 0; j < 9; j++) {
1896 for(i = 0; i < 9; i++) {
1897 src[i] = ((src[i] - 128) >> 1) + 128;
1898 src2[i] = ((src2[i] - 128) >> 1) + 128;
1900 src += s->uvlinesize;
1901 src2 += s->uvlinesize;
1904 srcY += s->mspel * (1 + s->linesize);
1907 mx >>= 1;
1908 my >>= 1;
1909 dxy = ((my & 1) << 1) | (mx & 1);
1911 dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
1913 if(s->flags & CODEC_FLAG_GRAY) return;
1914 /* Chroma MC always uses qpel blilinear */
1915 uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
1916 uvmx = (uvmx&3)<<1;
1917 uvmy = (uvmy&3)<<1;
1918 dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
1919 dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
1922 static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
1924 int n = bfrac;
1926 #if B_FRACTION_DEN==256
1927 if(inv)
1928 n -= 256;
1929 if(!qs)
1930 return 2 * ((value * n + 255) >> 9);
1931 return (value * n + 128) >> 8;
1932 #else
1933 if(inv)
1934 n -= B_FRACTION_DEN;
1935 if(!qs)
1936 return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
1937 return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
1938 #endif
1941 /** Reconstruct motion vector for B-frame and do motion compensation
1943 static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
1945 if(v->use_ic) {
1946 v->mv_mode2 = v->mv_mode;
1947 v->mv_mode = MV_PMODE_INTENSITY_COMP;
1949 if(direct) {
1950 vc1_mc_1mv(v, 0);
1951 vc1_interp_mc(v);
1952 if(v->use_ic) v->mv_mode = v->mv_mode2;
1953 return;
1955 if(mode == BMV_TYPE_INTERPOLATED) {
1956 vc1_mc_1mv(v, 0);
1957 vc1_interp_mc(v);
1958 if(v->use_ic) v->mv_mode = v->mv_mode2;
1959 return;
1962 if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
1963 vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
1964 if(v->use_ic) v->mv_mode = v->mv_mode2;
1967 static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
1969 MpegEncContext *s = &v->s;
1970 int xy, wrap, off = 0;
1971 int16_t *A, *B, *C;
1972 int px, py;
1973 int sum;
1974 int r_x, r_y;
1975 const uint8_t *is_intra = v->mb_type[0];
1977 r_x = v->range_x;
1978 r_y = v->range_y;
1979 /* scale MV difference to be quad-pel */
1980 dmv_x[0] <<= 1 - s->quarter_sample;
1981 dmv_y[0] <<= 1 - s->quarter_sample;
1982 dmv_x[1] <<= 1 - s->quarter_sample;
1983 dmv_y[1] <<= 1 - s->quarter_sample;
1985 wrap = s->b8_stride;
1986 xy = s->block_index[0];
1988 if(s->mb_intra) {
1989 s->current_picture.motion_val[0][xy][0] =
1990 s->current_picture.motion_val[0][xy][1] =
1991 s->current_picture.motion_val[1][xy][0] =
1992 s->current_picture.motion_val[1][xy][1] = 0;
1993 return;
1995 s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
1996 s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
1997 s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
1998 s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
2000 /* Pullback predicted motion vectors as specified in 8.4.5.4 */
2001 s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
2002 s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
2003 s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
2004 s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
2005 if(direct) {
2006 s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
2007 s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
2008 s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
2009 s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
2010 return;
2013 if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
2014 C = s->current_picture.motion_val[0][xy - 2];
2015 A = s->current_picture.motion_val[0][xy - wrap*2];
2016 off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
2017 B = s->current_picture.motion_val[0][xy - wrap*2 + off];
2019 if(!s->mb_x) C[0] = C[1] = 0;
2020 if(!s->first_slice_line) { // predictor A is not out of bounds
2021 if(s->mb_width == 1) {
2022 px = A[0];
2023 py = A[1];
2024 } else {
2025 px = mid_pred(A[0], B[0], C[0]);
2026 py = mid_pred(A[1], B[1], C[1]);
2028 } else if(s->mb_x) { // predictor C is not out of bounds
2029 px = C[0];
2030 py = C[1];
2031 } else {
2032 px = py = 0;
2034 /* Pullback MV as specified in 8.3.5.3.4 */
2036 int qx, qy, X, Y;
2037 if(v->profile < PROFILE_ADVANCED) {
2038 qx = (s->mb_x << 5);
2039 qy = (s->mb_y << 5);
2040 X = (s->mb_width << 5) - 4;
2041 Y = (s->mb_height << 5) - 4;
2042 if(qx + px < -28) px = -28 - qx;
2043 if(qy + py < -28) py = -28 - qy;
2044 if(qx + px > X) px = X - qx;
2045 if(qy + py > Y) py = Y - qy;
2046 } else {
2047 qx = (s->mb_x << 6);
2048 qy = (s->mb_y << 6);
2049 X = (s->mb_width << 6) - 4;
2050 Y = (s->mb_height << 6) - 4;
2051 if(qx + px < -60) px = -60 - qx;
2052 if(qy + py < -60) py = -60 - qy;
2053 if(qx + px > X) px = X - qx;
2054 if(qy + py > Y) py = Y - qy;
2057 /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
2058 if(0 && !s->first_slice_line && s->mb_x) {
2059 if(is_intra[xy - wrap])
2060 sum = FFABS(px) + FFABS(py);
2061 else
2062 sum = FFABS(px - A[0]) + FFABS(py - A[1]);
2063 if(sum > 32) {
2064 if(get_bits1(&s->gb)) {
2065 px = A[0];
2066 py = A[1];
2067 } else {
2068 px = C[0];
2069 py = C[1];
2071 } else {
2072 if(is_intra[xy - 2])
2073 sum = FFABS(px) + FFABS(py);
2074 else
2075 sum = FFABS(px - C[0]) + FFABS(py - C[1]);
2076 if(sum > 32) {
2077 if(get_bits1(&s->gb)) {
2078 px = A[0];
2079 py = A[1];
2080 } else {
2081 px = C[0];
2082 py = C[1];
2087 /* store MV using signed modulus of MV range defined in 4.11 */
2088 s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
2089 s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
2091 if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
2092 C = s->current_picture.motion_val[1][xy - 2];
2093 A = s->current_picture.motion_val[1][xy - wrap*2];
2094 off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
2095 B = s->current_picture.motion_val[1][xy - wrap*2 + off];
2097 if(!s->mb_x) C[0] = C[1] = 0;
2098 if(!s->first_slice_line) { // predictor A is not out of bounds
2099 if(s->mb_width == 1) {
2100 px = A[0];
2101 py = A[1];
2102 } else {
2103 px = mid_pred(A[0], B[0], C[0]);
2104 py = mid_pred(A[1], B[1], C[1]);
2106 } else if(s->mb_x) { // predictor C is not out of bounds
2107 px = C[0];
2108 py = C[1];
2109 } else {
2110 px = py = 0;
2112 /* Pullback MV as specified in 8.3.5.3.4 */
2114 int qx, qy, X, Y;
2115 if(v->profile < PROFILE_ADVANCED) {
2116 qx = (s->mb_x << 5);
2117 qy = (s->mb_y << 5);
2118 X = (s->mb_width << 5) - 4;
2119 Y = (s->mb_height << 5) - 4;
2120 if(qx + px < -28) px = -28 - qx;
2121 if(qy + py < -28) py = -28 - qy;
2122 if(qx + px > X) px = X - qx;
2123 if(qy + py > Y) py = Y - qy;
2124 } else {
2125 qx = (s->mb_x << 6);
2126 qy = (s->mb_y << 6);
2127 X = (s->mb_width << 6) - 4;
2128 Y = (s->mb_height << 6) - 4;
2129 if(qx + px < -60) px = -60 - qx;
2130 if(qy + py < -60) py = -60 - qy;
2131 if(qx + px > X) px = X - qx;
2132 if(qy + py > Y) py = Y - qy;
2135 /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
2136 if(0 && !s->first_slice_line && s->mb_x) {
2137 if(is_intra[xy - wrap])
2138 sum = FFABS(px) + FFABS(py);
2139 else
2140 sum = FFABS(px - A[0]) + FFABS(py - A[1]);
2141 if(sum > 32) {
2142 if(get_bits1(&s->gb)) {
2143 px = A[0];
2144 py = A[1];
2145 } else {
2146 px = C[0];
2147 py = C[1];
2149 } else {
2150 if(is_intra[xy - 2])
2151 sum = FFABS(px) + FFABS(py);
2152 else
2153 sum = FFABS(px - C[0]) + FFABS(py - C[1]);
2154 if(sum > 32) {
2155 if(get_bits1(&s->gb)) {
2156 px = A[0];
2157 py = A[1];
2158 } else {
2159 px = C[0];
2160 py = C[1];
2165 /* store MV using signed modulus of MV range defined in 4.11 */
2167 s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
2168 s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
2170 s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
2171 s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
2172 s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
2173 s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
2176 /** Get predicted DC value for I-frames only
2177 * prediction dir: left=0, top=1
2178 * @param s MpegEncContext
2179 * @param overlap flag indicating that overlap filtering is used
2180 * @param pq integer part of picture quantizer
2181 * @param[in] n block index in the current MB
2182 * @param dc_val_ptr Pointer to DC predictor
2183 * @param dir_ptr Prediction direction for use in AC prediction
2185 static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
2186 int16_t **dc_val_ptr, int *dir_ptr)
2188 int a, b, c, wrap, pred, scale;
2189 int16_t *dc_val;
2190 static const uint16_t dcpred[32] = {
2191 -1, 1024, 512, 341, 256, 205, 171, 146, 128,
2192 114, 102, 93, 85, 79, 73, 68, 64,
2193 60, 57, 54, 51, 49, 47, 45, 43,
2194 41, 39, 38, 37, 35, 34, 33
2197 /* find prediction - wmv3_dc_scale always used here in fact */
2198 if (n < 4) scale = s->y_dc_scale;
2199 else scale = s->c_dc_scale;
2201 wrap = s->block_wrap[n];
2202 dc_val= s->dc_val[0] + s->block_index[n];
2204 /* B A
2205 * C X
2207 c = dc_val[ - 1];
2208 b = dc_val[ - 1 - wrap];
2209 a = dc_val[ - wrap];
2211 if (pq < 9 || !overlap)
2213 /* Set outer values */
2214 if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
2215 if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
2217 else
2219 /* Set outer values */
2220 if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
2221 if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
2224 if (abs(a - b) <= abs(b - c)) {
2225 pred = c;
2226 *dir_ptr = 1;//left
2227 } else {
2228 pred = a;
2229 *dir_ptr = 0;//top
2232 /* update predictor */
2233 *dc_val_ptr = &dc_val[0];
2234 return pred;
2238 /** Get predicted DC value
2239 * prediction dir: left=0, top=1
2240 * @param s MpegEncContext
2241 * @param overlap flag indicating that overlap filtering is used
2242 * @param pq integer part of picture quantizer
2243 * @param[in] n block index in the current MB
2244 * @param a_avail flag indicating top block availability
2245 * @param c_avail flag indicating left block availability
2246 * @param dc_val_ptr Pointer to DC predictor
2247 * @param dir_ptr Prediction direction for use in AC prediction
2249 static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
2250 int a_avail, int c_avail,
2251 int16_t **dc_val_ptr, int *dir_ptr)
2253 int a, b, c, wrap, pred, scale;
2254 int16_t *dc_val;
2255 int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2256 int q1, q2 = 0;
2258 /* find prediction - wmv3_dc_scale always used here in fact */
2259 if (n < 4) scale = s->y_dc_scale;
2260 else scale = s->c_dc_scale;
2262 wrap = s->block_wrap[n];
2263 dc_val= s->dc_val[0] + s->block_index[n];
2265 /* B A
2266 * C X
2268 c = dc_val[ - 1];
2269 b = dc_val[ - 1 - wrap];
2270 a = dc_val[ - wrap];
2271 /* scale predictors if needed */
2272 q1 = s->current_picture.qscale_table[mb_pos];
2273 if(c_avail && (n!= 1 && n!=3)) {
2274 q2 = s->current_picture.qscale_table[mb_pos - 1];
2275 if(q2 && q2 != q1)
2276 c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
2278 if(a_avail && (n!= 2 && n!=3)) {
2279 q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
2280 if(q2 && q2 != q1)
2281 a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
2283 if(a_avail && c_avail && (n!=3)) {
2284 int off = mb_pos;
2285 if(n != 1) off--;
2286 if(n != 2) off -= s->mb_stride;
2287 q2 = s->current_picture.qscale_table[off];
2288 if(q2 && q2 != q1)
2289 b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
2292 if(a_avail && c_avail) {
2293 if(abs(a - b) <= abs(b - c)) {
2294 pred = c;
2295 *dir_ptr = 1;//left
2296 } else {
2297 pred = a;
2298 *dir_ptr = 0;//top
2300 } else if(a_avail) {
2301 pred = a;
2302 *dir_ptr = 0;//top
2303 } else if(c_avail) {
2304 pred = c;
2305 *dir_ptr = 1;//left
2306 } else {
2307 pred = 0;
2308 *dir_ptr = 1;//left
2311 /* update predictor */
2312 *dc_val_ptr = &dc_val[0];
2313 return pred;
2316 /** @} */ // Block group
2319 * @defgroup vc1_std_mb VC1 Macroblock-level functions in Simple/Main Profiles
2320 * @see 7.1.4, p91 and 8.1.1.7, p(1)04
2321 * @{
2324 static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
2326 int xy, wrap, pred, a, b, c;
2328 xy = s->block_index[n];
2329 wrap = s->b8_stride;
2331 /* B C
2332 * A X
2334 a = s->coded_block[xy - 1 ];
2335 b = s->coded_block[xy - 1 - wrap];
2336 c = s->coded_block[xy - wrap];
2338 if (b == c) {
2339 pred = a;
2340 } else {
2341 pred = c;
2344 /* store value */
2345 *coded_block_ptr = &s->coded_block[xy];
2347 return pred;
2351 * Decode one AC coefficient
2352 * @param v The VC1 context
2353 * @param last Last coefficient
2354 * @param skip How much zero coefficients to skip
2355 * @param value Decoded AC coefficient value
2356 * @param codingset set of VLC to decode data
2357 * @see 8.1.3.4
2359 static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
2361 GetBitContext *gb = &v->s.gb;
2362 int index, escape, run = 0, level = 0, lst = 0;
2364 index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
2365 if (index != vc1_ac_sizes[codingset] - 1) {
2366 run = vc1_index_decode_table[codingset][index][0];
2367 level = vc1_index_decode_table[codingset][index][1];
2368 lst = index >= vc1_last_decode_table[codingset];
2369 if(get_bits1(gb))
2370 level = -level;
2371 } else {
2372 escape = decode210(gb);
2373 if (escape != 2) {
2374 index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
2375 run = vc1_index_decode_table[codingset][index][0];
2376 level = vc1_index_decode_table[codingset][index][1];
2377 lst = index >= vc1_last_decode_table[codingset];
2378 if(escape == 0) {
2379 if(lst)
2380 level += vc1_last_delta_level_table[codingset][run];
2381 else
2382 level += vc1_delta_level_table[codingset][run];
2383 } else {
2384 if(lst)
2385 run += vc1_last_delta_run_table[codingset][level] + 1;
2386 else
2387 run += vc1_delta_run_table[codingset][level] + 1;
2389 if(get_bits1(gb))
2390 level = -level;
2391 } else {
2392 int sign;
2393 lst = get_bits1(gb);
2394 if(v->s.esc3_level_length == 0) {
2395 if(v->pq < 8 || v->dquantfrm) { // table 59
2396 v->s.esc3_level_length = get_bits(gb, 3);
2397 if(!v->s.esc3_level_length)
2398 v->s.esc3_level_length = get_bits(gb, 2) + 8;
2399 } else { //table 60
2400 v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
2402 v->s.esc3_run_length = 3 + get_bits(gb, 2);
2404 run = get_bits(gb, v->s.esc3_run_length);
2405 sign = get_bits1(gb);
2406 level = get_bits(gb, v->s.esc3_level_length);
2407 if(sign)
2408 level = -level;
2412 *last = lst;
2413 *skip = run;
2414 *value = level;
2417 /** Decode intra block in intra frames - should be faster than decode_intra_block
2418 * @param v VC1Context
2419 * @param block block to decode
2420 * @param[in] n subblock index
2421 * @param coded are AC coeffs present or not
2422 * @param codingset set of VLC to decode data
2424 static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
2426 GetBitContext *gb = &v->s.gb;
2427 MpegEncContext *s = &v->s;
2428 int dc_pred_dir = 0; /* Direction of the DC prediction used */
2429 int run_diff, i;
2430 int16_t *dc_val;
2431 int16_t *ac_val, *ac_val2;
2432 int dcdiff;
2434 /* Get DC differential */
2435 if (n < 4) {
2436 dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2437 } else {
2438 dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2440 if (dcdiff < 0){
2441 av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
2442 return -1;
2444 if (dcdiff)
2446 if (dcdiff == 119 /* ESC index value */)
2448 /* TODO: Optimize */
2449 if (v->pq == 1) dcdiff = get_bits(gb, 10);
2450 else if (v->pq == 2) dcdiff = get_bits(gb, 9);
2451 else dcdiff = get_bits(gb, 8);
2453 else
2455 if (v->pq == 1)
2456 dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
2457 else if (v->pq == 2)
2458 dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
2460 if (get_bits1(gb))
2461 dcdiff = -dcdiff;
2464 /* Prediction */
2465 dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
2466 *dc_val = dcdiff;
2468 /* Store the quantized DC coeff, used for prediction */
2469 if (n < 4) {
2470 block[0] = dcdiff * s->y_dc_scale;
2471 } else {
2472 block[0] = dcdiff * s->c_dc_scale;
2474 /* Skip ? */
2475 run_diff = 0;
2476 i = 0;
2477 if (!coded) {
2478 goto not_coded;
2481 //AC Decoding
2482 i = 1;
2485 int last = 0, skip, value;
2486 const int8_t *zz_table;
2487 int scale;
2488 int k;
2490 scale = v->pq * 2 + v->halfpq;
2492 if(v->s.ac_pred) {
2493 if(!dc_pred_dir)
2494 zz_table = wmv1_scantable[2];
2495 else
2496 zz_table = wmv1_scantable[3];
2497 } else
2498 zz_table = wmv1_scantable[1];
2500 ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
2501 ac_val2 = ac_val;
2502 if(dc_pred_dir) //left
2503 ac_val -= 16;
2504 else //top
2505 ac_val -= 16 * s->block_wrap[n];
2507 while (!last) {
2508 vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
2509 i += skip;
2510 if(i > 63)
2511 break;
2512 block[zz_table[i++]] = value;
2515 /* apply AC prediction if needed */
2516 if(s->ac_pred) {
2517 if(dc_pred_dir) { //left
2518 for(k = 1; k < 8; k++)
2519 block[k << 3] += ac_val[k];
2520 } else { //top
2521 for(k = 1; k < 8; k++)
2522 block[k] += ac_val[k + 8];
2525 /* save AC coeffs for further prediction */
2526 for(k = 1; k < 8; k++) {
2527 ac_val2[k] = block[k << 3];
2528 ac_val2[k + 8] = block[k];
2531 /* scale AC coeffs */
2532 for(k = 1; k < 64; k++)
2533 if(block[k]) {
2534 block[k] *= scale;
2535 if(!v->pquantizer)
2536 block[k] += (block[k] < 0) ? -v->pq : v->pq;
2539 if(s->ac_pred) i = 63;
2542 not_coded:
2543 if(!coded) {
2544 int k, scale;
2545 ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
2546 ac_val2 = ac_val;
2548 scale = v->pq * 2 + v->halfpq;
2549 memset(ac_val2, 0, 16 * 2);
2550 if(dc_pred_dir) {//left
2551 ac_val -= 16;
2552 if(s->ac_pred)
2553 memcpy(ac_val2, ac_val, 8 * 2);
2554 } else {//top
2555 ac_val -= 16 * s->block_wrap[n];
2556 if(s->ac_pred)
2557 memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
2560 /* apply AC prediction if needed */
2561 if(s->ac_pred) {
2562 if(dc_pred_dir) { //left
2563 for(k = 1; k < 8; k++) {
2564 block[k << 3] = ac_val[k] * scale;
2565 if(!v->pquantizer && block[k << 3])
2566 block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
2568 } else { //top
2569 for(k = 1; k < 8; k++) {
2570 block[k] = ac_val[k + 8] * scale;
2571 if(!v->pquantizer && block[k])
2572 block[k] += (block[k] < 0) ? -v->pq : v->pq;
2575 i = 63;
2578 s->block_last_index[n] = i;
2580 return 0;
2583 /** Decode intra block in intra frames - should be faster than decode_intra_block
2584 * @param v VC1Context
2585 * @param block block to decode
2586 * @param[in] n subblock number
2587 * @param coded are AC coeffs present or not
2588 * @param codingset set of VLC to decode data
2589 * @param mquant quantizer value for this macroblock
2591 static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
2593 GetBitContext *gb = &v->s.gb;
2594 MpegEncContext *s = &v->s;
2595 int dc_pred_dir = 0; /* Direction of the DC prediction used */
2596 int run_diff, i;
2597 int16_t *dc_val;
2598 int16_t *ac_val, *ac_val2;
2599 int dcdiff;
2600 int a_avail = v->a_avail, c_avail = v->c_avail;
2601 int use_pred = s->ac_pred;
2602 int scale;
2603 int q1, q2 = 0;
2604 int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2606 /* Get DC differential */
2607 if (n < 4) {
2608 dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2609 } else {
2610 dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2612 if (dcdiff < 0){
2613 av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
2614 return -1;
2616 if (dcdiff)
2618 if (dcdiff == 119 /* ESC index value */)
2620 /* TODO: Optimize */
2621 if (mquant == 1) dcdiff = get_bits(gb, 10);
2622 else if (mquant == 2) dcdiff = get_bits(gb, 9);
2623 else dcdiff = get_bits(gb, 8);
2625 else
2627 if (mquant == 1)
2628 dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
2629 else if (mquant == 2)
2630 dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
2632 if (get_bits1(gb))
2633 dcdiff = -dcdiff;
2636 /* Prediction */
2637 dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
2638 *dc_val = dcdiff;
2640 /* Store the quantized DC coeff, used for prediction */
2641 if (n < 4) {
2642 block[0] = dcdiff * s->y_dc_scale;
2643 } else {
2644 block[0] = dcdiff * s->c_dc_scale;
2646 /* Skip ? */
2647 run_diff = 0;
2648 i = 0;
2650 //AC Decoding
2651 i = 1;
2653 /* check if AC is needed at all */
2654 if(!a_avail && !c_avail) use_pred = 0;
2655 ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
2656 ac_val2 = ac_val;
2658 scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
2660 if(dc_pred_dir) //left
2661 ac_val -= 16;
2662 else //top
2663 ac_val -= 16 * s->block_wrap[n];
2665 q1 = s->current_picture.qscale_table[mb_pos];
2666 if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
2667 if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
2668 if(dc_pred_dir && n==1) q2 = q1;
2669 if(!dc_pred_dir && n==2) q2 = q1;
2670 if(n==3) q2 = q1;
2672 if(coded) {
2673 int last = 0, skip, value;
2674 const int8_t *zz_table;
2675 int k;
2677 if(v->s.ac_pred) {
2678 if(!dc_pred_dir)
2679 zz_table = wmv1_scantable[2];
2680 else
2681 zz_table = wmv1_scantable[3];
2682 } else
2683 zz_table = wmv1_scantable[1];
2685 while (!last) {
2686 vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
2687 i += skip;
2688 if(i > 63)
2689 break;
2690 block[zz_table[i++]] = value;
2693 /* apply AC prediction if needed */
2694 if(use_pred) {
2695 /* scale predictors if needed*/
2696 if(q2 && q1!=q2) {
2697 q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2698 q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2700 if(dc_pred_dir) { //left
2701 for(k = 1; k < 8; k++)
2702 block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2703 } else { //top
2704 for(k = 1; k < 8; k++)
2705 block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2707 } else {
2708 if(dc_pred_dir) { //left
2709 for(k = 1; k < 8; k++)
2710 block[k << 3] += ac_val[k];
2711 } else { //top
2712 for(k = 1; k < 8; k++)
2713 block[k] += ac_val[k + 8];
2717 /* save AC coeffs for further prediction */
2718 for(k = 1; k < 8; k++) {
2719 ac_val2[k] = block[k << 3];
2720 ac_val2[k + 8] = block[k];
2723 /* scale AC coeffs */
2724 for(k = 1; k < 64; k++)
2725 if(block[k]) {
2726 block[k] *= scale;
2727 if(!v->pquantizer)
2728 block[k] += (block[k] < 0) ? -mquant : mquant;
2731 if(use_pred) i = 63;
2732 } else { // no AC coeffs
2733 int k;
2735 memset(ac_val2, 0, 16 * 2);
2736 if(dc_pred_dir) {//left
2737 if(use_pred) {
2738 memcpy(ac_val2, ac_val, 8 * 2);
2739 if(q2 && q1!=q2) {
2740 q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2741 q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2742 for(k = 1; k < 8; k++)
2743 ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2746 } else {//top
2747 if(use_pred) {
2748 memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
2749 if(q2 && q1!=q2) {
2750 q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2751 q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2752 for(k = 1; k < 8; k++)
2753 ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2758 /* apply AC prediction if needed */
2759 if(use_pred) {
2760 if(dc_pred_dir) { //left
2761 for(k = 1; k < 8; k++) {
2762 block[k << 3] = ac_val2[k] * scale;
2763 if(!v->pquantizer && block[k << 3])
2764 block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
2766 } else { //top
2767 for(k = 1; k < 8; k++) {
2768 block[k] = ac_val2[k + 8] * scale;
2769 if(!v->pquantizer && block[k])
2770 block[k] += (block[k] < 0) ? -mquant : mquant;
2773 i = 63;
2776 s->block_last_index[n] = i;
2778 return 0;
2781 /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
2782 * @param v VC1Context
2783 * @param block block to decode
2784 * @param[in] n subblock index
2785 * @param coded are AC coeffs present or not
2786 * @param mquant block quantizer
2787 * @param codingset set of VLC to decode data
2789 static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
2791 GetBitContext *gb = &v->s.gb;
2792 MpegEncContext *s = &v->s;
2793 int dc_pred_dir = 0; /* Direction of the DC prediction used */
2794 int run_diff, i;
2795 int16_t *dc_val;
2796 int16_t *ac_val, *ac_val2;
2797 int dcdiff;
2798 int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2799 int a_avail = v->a_avail, c_avail = v->c_avail;
2800 int use_pred = s->ac_pred;
2801 int scale;
2802 int q1, q2 = 0;
2804 /* XXX: Guard against dumb values of mquant */
2805 mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
2807 /* Set DC scale - y and c use the same */
2808 s->y_dc_scale = s->y_dc_scale_table[mquant];
2809 s->c_dc_scale = s->c_dc_scale_table[mquant];
2811 /* Get DC differential */
2812 if (n < 4) {
2813 dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2814 } else {
2815 dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2817 if (dcdiff < 0){
2818 av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
2819 return -1;
2821 if (dcdiff)
2823 if (dcdiff == 119 /* ESC index value */)
2825 /* TODO: Optimize */
2826 if (mquant == 1) dcdiff = get_bits(gb, 10);
2827 else if (mquant == 2) dcdiff = get_bits(gb, 9);
2828 else dcdiff = get_bits(gb, 8);
2830 else
2832 if (mquant == 1)
2833 dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
2834 else if (mquant == 2)
2835 dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
2837 if (get_bits1(gb))
2838 dcdiff = -dcdiff;
2841 /* Prediction */
2842 dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
2843 *dc_val = dcdiff;
2845 /* Store the quantized DC coeff, used for prediction */
2847 if (n < 4) {
2848 block[0] = dcdiff * s->y_dc_scale;
2849 } else {
2850 block[0] = dcdiff * s->c_dc_scale;
2852 /* Skip ? */
2853 run_diff = 0;
2854 i = 0;
2856 //AC Decoding
2857 i = 1;
2859 /* check if AC is needed at all and adjust direction if needed */
2860 if(!a_avail) dc_pred_dir = 1;
2861 if(!c_avail) dc_pred_dir = 0;
2862 if(!a_avail && !c_avail) use_pred = 0;
2863 ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
2864 ac_val2 = ac_val;
2866 scale = mquant * 2 + v->halfpq;
2868 if(dc_pred_dir) //left
2869 ac_val -= 16;
2870 else //top
2871 ac_val -= 16 * s->block_wrap[n];
2873 q1 = s->current_picture.qscale_table[mb_pos];
2874 if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
2875 if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
2876 if(dc_pred_dir && n==1) q2 = q1;
2877 if(!dc_pred_dir && n==2) q2 = q1;
2878 if(n==3) q2 = q1;
2880 if(coded) {
2881 int last = 0, skip, value;
2882 const int8_t *zz_table;
2883 int k;
2885 zz_table = wmv1_scantable[0];
2887 while (!last) {
2888 vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
2889 i += skip;
2890 if(i > 63)
2891 break;
2892 block[zz_table[i++]] = value;
2895 /* apply AC prediction if needed */
2896 if(use_pred) {
2897 /* scale predictors if needed*/
2898 if(q2 && q1!=q2) {
2899 q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2900 q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2902 if(dc_pred_dir) { //left
2903 for(k = 1; k < 8; k++)
2904 block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2905 } else { //top
2906 for(k = 1; k < 8; k++)
2907 block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2909 } else {
2910 if(dc_pred_dir) { //left
2911 for(k = 1; k < 8; k++)
2912 block[k << 3] += ac_val[k];
2913 } else { //top
2914 for(k = 1; k < 8; k++)
2915 block[k] += ac_val[k + 8];
2919 /* save AC coeffs for further prediction */
2920 for(k = 1; k < 8; k++) {
2921 ac_val2[k] = block[k << 3];
2922 ac_val2[k + 8] = block[k];
2925 /* scale AC coeffs */
2926 for(k = 1; k < 64; k++)
2927 if(block[k]) {
2928 block[k] *= scale;
2929 if(!v->pquantizer)
2930 block[k] += (block[k] < 0) ? -mquant : mquant;
2933 if(use_pred) i = 63;
2934 } else { // no AC coeffs
2935 int k;
2937 memset(ac_val2, 0, 16 * 2);
2938 if(dc_pred_dir) {//left
2939 if(use_pred) {
2940 memcpy(ac_val2, ac_val, 8 * 2);
2941 if(q2 && q1!=q2) {
2942 q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2943 q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2944 for(k = 1; k < 8; k++)
2945 ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2948 } else {//top
2949 if(use_pred) {
2950 memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
2951 if(q2 && q1!=q2) {
2952 q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2953 q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2954 for(k = 1; k < 8; k++)
2955 ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2960 /* apply AC prediction if needed */
2961 if(use_pred) {
2962 if(dc_pred_dir) { //left
2963 for(k = 1; k < 8; k++) {
2964 block[k << 3] = ac_val2[k] * scale;
2965 if(!v->pquantizer && block[k << 3])
2966 block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
2968 } else { //top
2969 for(k = 1; k < 8; k++) {
2970 block[k] = ac_val2[k + 8] * scale;
2971 if(!v->pquantizer && block[k])
2972 block[k] += (block[k] < 0) ? -mquant : mquant;
2975 i = 63;
2978 s->block_last_index[n] = i;
2980 return 0;
2983 /** Decode P block
2985 static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block,
2986 uint8_t *dst, int linesize, int skip_block, int apply_filter, int cbp_top, int cbp_left)
2988 MpegEncContext *s = &v->s;
2989 GetBitContext *gb = &s->gb;
2990 int i, j;
2991 int subblkpat = 0;
2992 int scale, off, idx, last, skip, value;
2993 int ttblk = ttmb & 7;
2994 int pat = 0;
2996 if(ttmb == -1) {
2997 ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
2999 if(ttblk == TT_4X4) {
3000 subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
3002 if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
3003 subblkpat = decode012(gb);
3004 if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
3005 if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
3006 if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
3008 scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
3010 // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
3011 if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
3012 subblkpat = 2 - (ttblk == TT_8X4_TOP);
3013 ttblk = TT_8X4;
3015 if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
3016 subblkpat = 2 - (ttblk == TT_4X8_LEFT);
3017 ttblk = TT_4X8;
3019 switch(ttblk) {
3020 case TT_8X8:
3021 pat = 0xF;
3022 i = 0;
3023 last = 0;
3024 while (!last) {
3025 vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
3026 i += skip;
3027 if(i > 63)
3028 break;
3029 idx = wmv1_scantable[0][i++];
3030 block[idx] = value * scale;
3031 if(!v->pquantizer)
3032 block[idx] += (block[idx] < 0) ? -mquant : mquant;
3034 if(!skip_block){
3035 s->dsp.vc1_inv_trans_8x8(block);
3036 s->dsp.add_pixels_clamped(block, dst, linesize);
3037 if(apply_filter && cbp_top & 0xC)
3038 vc1_loop_filter(dst, 1, linesize, 8, mquant);
3039 if(apply_filter && cbp_left & 0xA)
3040 vc1_loop_filter(dst, linesize, 1, 8, mquant);
3042 break;
3043 case TT_4X4:
3044 pat = ~subblkpat & 0xF;
3045 for(j = 0; j < 4; j++) {
3046 last = subblkpat & (1 << (3 - j));
3047 i = 0;
3048 off = (j & 1) * 4 + (j & 2) * 16;
3049 while (!last) {
3050 vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
3051 i += skip;
3052 if(i > 15)
3053 break;
3054 idx = ff_vc1_simple_progressive_4x4_zz[i++];
3055 block[idx + off] = value * scale;
3056 if(!v->pquantizer)
3057 block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
3059 if(!(subblkpat & (1 << (3 - j))) && !skip_block){
3060 s->dsp.vc1_inv_trans_4x4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off);
3061 if(apply_filter && (j&2 ? pat & (1<<(j-2)) : (cbp_top & (1 << (j + 2)))))
3062 vc1_loop_filter(dst + (j&1)*4 + (j&2)*2*linesize, 1, linesize, 4, mquant);
3063 if(apply_filter && (j&1 ? pat & (1<<(j-1)) : (cbp_left & (1 << (j + 1)))))
3064 vc1_loop_filter(dst + (j&1)*4 + (j&2)*2*linesize, linesize, 1, 4, mquant);
3067 break;
3068 case TT_8X4:
3069 pat = ~((subblkpat & 2)*6 + (subblkpat & 1)*3) & 0xF;
3070 for(j = 0; j < 2; j++) {
3071 last = subblkpat & (1 << (1 - j));
3072 i = 0;
3073 off = j * 32;
3074 while (!last) {
3075 vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
3076 i += skip;
3077 if(i > 31)
3078 break;
3079 idx = v->zz_8x4[i++]+off;
3080 block[idx] = value * scale;
3081 if(!v->pquantizer)
3082 block[idx] += (block[idx] < 0) ? -mquant : mquant;
3084 if(!(subblkpat & (1 << (1 - j))) && !skip_block){
3085 s->dsp.vc1_inv_trans_8x4(dst + j*4*linesize, linesize, block + off);
3086 if(apply_filter && j ? pat & 0x3 : (cbp_top & 0xC))
3087 vc1_loop_filter(dst + j*4*linesize, 1, linesize, 8, mquant);
3088 if(apply_filter && cbp_left & (2 << j))
3089 vc1_loop_filter(dst + j*4*linesize, linesize, 1, 4, mquant);
3092 break;
3093 case TT_4X8:
3094 pat = ~(subblkpat*5) & 0xF;
3095 for(j = 0; j < 2; j++) {
3096 last = subblkpat & (1 << (1 - j));
3097 i = 0;
3098 off = j * 4;
3099 while (!last) {
3100 vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
3101 i += skip;
3102 if(i > 31)
3103 break;
3104 idx = v->zz_4x8[i++]+off;
3105 block[idx] = value * scale;
3106 if(!v->pquantizer)
3107 block[idx] += (block[idx] < 0) ? -mquant : mquant;
3109 if(!(subblkpat & (1 << (1 - j))) && !skip_block){
3110 s->dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
3111 if(apply_filter && cbp_top & (2 << j))
3112 vc1_loop_filter(dst + j*4, 1, linesize, 4, mquant);
3113 if(apply_filter && j ? pat & 0x5 : (cbp_left & 0xA))
3114 vc1_loop_filter(dst + j*4, linesize, 1, 8, mquant);
3117 break;
3119 return pat;
3122 /** @} */ // Macroblock group
3124 static const int size_table [6] = { 0, 2, 3, 4, 5, 8 };
3125 static const int offset_table[6] = { 0, 1, 3, 7, 15, 31 };
3127 /** Decode one P-frame MB (in Simple/Main profile)
3129 static int vc1_decode_p_mb(VC1Context *v)
3131 MpegEncContext *s = &v->s;
3132 GetBitContext *gb = &s->gb;
3133 int i, j;
3134 int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
3135 int cbp; /* cbp decoding stuff */
3136 int mqdiff, mquant; /* MB quantization */
3137 int ttmb = v->ttfrm; /* MB Transform type */
3139 int mb_has_coeffs = 1; /* last_flag */
3140 int dmv_x, dmv_y; /* Differential MV components */
3141 int index, index1; /* LUT indexes */
3142 int val, sign; /* temp values */
3143 int first_block = 1;
3144 int dst_idx, off;
3145 int skipped, fourmv;
3146 int block_cbp = 0, pat;
3147 int apply_loop_filter;
3149 mquant = v->pq; /* Loosy initialization */
3151 if (v->mv_type_is_raw)
3152 fourmv = get_bits1(gb);
3153 else
3154 fourmv = v->mv_type_mb_plane[mb_pos];
3155 if (v->skip_is_raw)
3156 skipped = get_bits1(gb);
3157 else
3158 skipped = v->s.mbskip_table[mb_pos];
3160 s->dsp.clear_blocks(s->block[0]);
3162 apply_loop_filter = s->loop_filter && !(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY);
3163 if (!fourmv) /* 1MV mode */
3165 if (!skipped)
3167 GET_MVDATA(dmv_x, dmv_y);
3169 if (s->mb_intra) {
3170 s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
3171 s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
3173 s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
3174 vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
3176 /* FIXME Set DC val for inter block ? */
3177 if (s->mb_intra && !mb_has_coeffs)
3179 GET_MQUANT();
3180 s->ac_pred = get_bits1(gb);
3181 cbp = 0;
3183 else if (mb_has_coeffs)
3185 if (s->mb_intra) s->ac_pred = get_bits1(gb);
3186 cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3187 GET_MQUANT();
3189 else
3191 mquant = v->pq;
3192 cbp = 0;
3194 s->current_picture.qscale_table[mb_pos] = mquant;
3196 if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
3197 ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
3198 VC1_TTMB_VLC_BITS, 2);
3199 if(!s->mb_intra) vc1_mc_1mv(v, 0);
3200 dst_idx = 0;
3201 for (i=0; i<6; i++)
3203 s->dc_val[0][s->block_index[i]] = 0;
3204 dst_idx += i >> 2;
3205 val = ((cbp >> (5 - i)) & 1);
3206 off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
3207 v->mb_type[0][s->block_index[i]] = s->mb_intra;
3208 if(s->mb_intra) {
3209 /* check if prediction blocks A and C are available */
3210 v->a_avail = v->c_avail = 0;
3211 if(i == 2 || i == 3 || !s->first_slice_line)
3212 v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
3213 if(i == 1 || i == 3 || s->mb_x)
3214 v->c_avail = v->mb_type[0][s->block_index[i] - 1];
3216 vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
3217 if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
3218 s->dsp.vc1_inv_trans_8x8(s->block[i]);
3219 if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
3220 s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
3221 if(v->pq >= 9 && v->overlap) {
3222 if(v->c_avail)
3223 s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
3224 if(v->a_avail)
3225 s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
3227 if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
3228 int left_cbp, top_cbp;
3229 if(i & 4){
3230 left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
3231 top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
3232 }else{
3233 left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
3234 top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
3236 if(left_cbp & 0xC)
3237 vc1_loop_filter(s->dest[dst_idx] + off, 1, i & 4 ? s->uvlinesize : s->linesize, 8, mquant);
3238 if(top_cbp & 0xA)
3239 vc1_loop_filter(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, 1, 8, mquant);
3241 block_cbp |= 0xF << (i << 2);
3242 } else if(val) {
3243 int left_cbp = 0, top_cbp = 0, filter = 0;
3244 if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
3245 filter = 1;
3246 if(i & 4){
3247 left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
3248 top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
3249 }else{
3250 left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
3251 top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
3253 if(left_cbp & 0xC)
3254 vc1_loop_filter(s->dest[dst_idx] + off, 1, i & 4 ? s->uvlinesize : s->linesize, 8, mquant);
3255 if(top_cbp & 0xA)
3256 vc1_loop_filter(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, 1, 8, mquant);
3258 pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
3259 block_cbp |= pat << (i << 2);
3260 if(!v->ttmbf && ttmb < 8) ttmb = -1;
3261 first_block = 0;
3265 else //Skipped
3267 s->mb_intra = 0;
3268 for(i = 0; i < 6; i++) {
3269 v->mb_type[0][s->block_index[i]] = 0;
3270 s->dc_val[0][s->block_index[i]] = 0;
3272 s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
3273 s->current_picture.qscale_table[mb_pos] = 0;
3274 vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
3275 vc1_mc_1mv(v, 0);
3276 return 0;
3278 } //1MV mode
3279 else //4MV mode
3281 if (!skipped /* unskipped MB */)
3283 int intra_count = 0, coded_inter = 0;
3284 int is_intra[6], is_coded[6];
3285 /* Get CBPCY */
3286 cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3287 for (i=0; i<6; i++)
3289 val = ((cbp >> (5 - i)) & 1);
3290 s->dc_val[0][s->block_index[i]] = 0;
3291 s->mb_intra = 0;
3292 if(i < 4) {
3293 dmv_x = dmv_y = 0;
3294 s->mb_intra = 0;
3295 mb_has_coeffs = 0;
3296 if(val) {
3297 GET_MVDATA(dmv_x, dmv_y);
3299 vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
3300 if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
3301 intra_count += s->mb_intra;
3302 is_intra[i] = s->mb_intra;
3303 is_coded[i] = mb_has_coeffs;
3305 if(i&4){
3306 is_intra[i] = (intra_count >= 3);
3307 is_coded[i] = val;
3309 if(i == 4) vc1_mc_4mv_chroma(v);
3310 v->mb_type[0][s->block_index[i]] = is_intra[i];
3311 if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
3313 // if there are no coded blocks then don't do anything more
3314 if(!intra_count && !coded_inter) return 0;
3315 dst_idx = 0;
3316 GET_MQUANT();
3317 s->current_picture.qscale_table[mb_pos] = mquant;
3318 /* test if block is intra and has pred */
3320 int intrapred = 0;
3321 for(i=0; i<6; i++)
3322 if(is_intra[i]) {
3323 if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
3324 || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
3325 intrapred = 1;
3326 break;
3329 if(intrapred)s->ac_pred = get_bits1(gb);
3330 else s->ac_pred = 0;
3332 if (!v->ttmbf && coded_inter)
3333 ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
3334 for (i=0; i<6; i++)
3336 dst_idx += i >> 2;
3337 off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
3338 s->mb_intra = is_intra[i];
3339 if (is_intra[i]) {
3340 /* check if prediction blocks A and C are available */
3341 v->a_avail = v->c_avail = 0;
3342 if(i == 2 || i == 3 || !s->first_slice_line)
3343 v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
3344 if(i == 1 || i == 3 || s->mb_x)
3345 v->c_avail = v->mb_type[0][s->block_index[i] - 1];
3347 vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
3348 if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
3349 s->dsp.vc1_inv_trans_8x8(s->block[i]);
3350 if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
3351 s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
3352 if(v->pq >= 9 && v->overlap) {
3353 if(v->c_avail)
3354 s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
3355 if(v->a_avail)
3356 s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
3358 if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
3359 int left_cbp, top_cbp;
3360 if(i & 4){
3361 left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
3362 top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
3363 }else{
3364 left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
3365 top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
3367 if(left_cbp & 0xC)
3368 vc1_loop_filter(s->dest[dst_idx] + off, 1, i & 4 ? s->uvlinesize : s->linesize, 8, mquant);
3369 if(top_cbp & 0xA)
3370 vc1_loop_filter(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, 1, 8, mquant);
3372 block_cbp |= 0xF << (i << 2);
3373 } else if(is_coded[i]) {
3374 int left_cbp = 0, top_cbp = 0, filter = 0;
3375 if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
3376 filter = 1;
3377 if(i & 4){
3378 left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
3379 top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
3380 }else{
3381 left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
3382 top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
3384 if(left_cbp & 0xC)
3385 vc1_loop_filter(s->dest[dst_idx] + off, 1, i & 4 ? s->uvlinesize : s->linesize, 8, mquant);
3386 if(top_cbp & 0xA)
3387 vc1_loop_filter(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, 1, 8, mquant);
3389 pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
3390 block_cbp |= pat << (i << 2);
3391 if(!v->ttmbf && ttmb < 8) ttmb = -1;
3392 first_block = 0;
3395 return 0;
3397 else //Skipped MB
3399 s->mb_intra = 0;
3400 s->current_picture.qscale_table[mb_pos] = 0;
3401 for (i=0; i<6; i++) {
3402 v->mb_type[0][s->block_index[i]] = 0;
3403 s->dc_val[0][s->block_index[i]] = 0;
3405 for (i=0; i<4; i++)
3407 vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
3408 vc1_mc_4mv_luma(v, i);
3410 vc1_mc_4mv_chroma(v);
3411 s->current_picture.qscale_table[mb_pos] = 0;
3412 return 0;
3415 v->cbp[s->mb_x] = block_cbp;
3417 /* Should never happen */
3418 return -1;
3421 /** Decode one B-frame MB (in Main profile)
3423 static void vc1_decode_b_mb(VC1Context *v)
3425 MpegEncContext *s = &v->s;
3426 GetBitContext *gb = &s->gb;
3427 int i, j;
3428 int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
3429 int cbp = 0; /* cbp decoding stuff */
3430 int mqdiff, mquant; /* MB quantization */
3431 int ttmb = v->ttfrm; /* MB Transform type */
3432 int mb_has_coeffs = 0; /* last_flag */
3433 int index, index1; /* LUT indexes */
3434 int val, sign; /* temp values */
3435 int first_block = 1;
3436 int dst_idx, off;
3437 int skipped, direct;
3438 int dmv_x[2], dmv_y[2];
3439 int bmvtype = BMV_TYPE_BACKWARD;
3441 mquant = v->pq; /* Loosy initialization */
3442 s->mb_intra = 0;
3444 if (v->dmb_is_raw)
3445 direct = get_bits1(gb);
3446 else
3447 direct = v->direct_mb_plane[mb_pos];
3448 if (v->skip_is_raw)
3449 skipped = get_bits1(gb);
3450 else
3451 skipped = v->s.mbskip_table[mb_pos];
3453 s->dsp.clear_blocks(s->block[0]);
3454 dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
3455 for(i = 0; i < 6; i++) {
3456 v->mb_type[0][s->block_index[i]] = 0;
3457 s->dc_val[0][s->block_index[i]] = 0;
3459 s->current_picture.qscale_table[mb_pos] = 0;
3461 if (!direct) {
3462 if (!skipped) {
3463 GET_MVDATA(dmv_x[0], dmv_y[0]);
3464 dmv_x[1] = dmv_x[0];
3465 dmv_y[1] = dmv_y[0];
3467 if(skipped || !s->mb_intra) {
3468 bmvtype = decode012(gb);
3469 switch(bmvtype) {
3470 case 0:
3471 bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
3472 break;
3473 case 1:
3474 bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
3475 break;
3476 case 2:
3477 bmvtype = BMV_TYPE_INTERPOLATED;
3478 dmv_x[0] = dmv_y[0] = 0;
3482 for(i = 0; i < 6; i++)
3483 v->mb_type[0][s->block_index[i]] = s->mb_intra;
3485 if (skipped) {
3486 if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
3487 vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
3488 vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
3489 return;
3491 if (direct) {
3492 cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3493 GET_MQUANT();
3494 s->mb_intra = 0;
3495 mb_has_coeffs = 0;
3496 s->current_picture.qscale_table[mb_pos] = mquant;
3497 if(!v->ttmbf)
3498 ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
3499 dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
3500 vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
3501 vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
3502 } else {
3503 if(!mb_has_coeffs && !s->mb_intra) {
3504 /* no coded blocks - effectively skipped */
3505 vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
3506 vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
3507 return;
3509 if(s->mb_intra && !mb_has_coeffs) {
3510 GET_MQUANT();
3511 s->current_picture.qscale_table[mb_pos] = mquant;
3512 s->ac_pred = get_bits1(gb);
3513 cbp = 0;
3514 vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
3515 } else {
3516 if(bmvtype == BMV_TYPE_INTERPOLATED) {
3517 GET_MVDATA(dmv_x[0], dmv_y[0]);
3518 if(!mb_has_coeffs) {
3519 /* interpolated skipped block */
3520 vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
3521 vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
3522 return;
3525 vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
3526 if(!s->mb_intra) {
3527 vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
3529 if(s->mb_intra)
3530 s->ac_pred = get_bits1(gb);
3531 cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3532 GET_MQUANT();
3533 s->current_picture.qscale_table[mb_pos] = mquant;
3534 if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
3535 ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
3538 dst_idx = 0;
3539 for (i=0; i<6; i++)
3541 s->dc_val[0][s->block_index[i]] = 0;
3542 dst_idx += i >> 2;
3543 val = ((cbp >> (5 - i)) & 1);
3544 off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
3545 v->mb_type[0][s->block_index[i]] = s->mb_intra;
3546 if(s->mb_intra) {
3547 /* check if prediction blocks A and C are available */
3548 v->a_avail = v->c_avail = 0;
3549 if(i == 2 || i == 3 || !s->first_slice_line)
3550 v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
3551 if(i == 1 || i == 3 || s->mb_x)
3552 v->c_avail = v->mb_type[0][s->block_index[i] - 1];
3554 vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
3555 if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
3556 s->dsp.vc1_inv_trans_8x8(s->block[i]);
3557 if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
3558 s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
3559 } else if(val) {
3560 vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), 0, 0, 0);
3561 if(!v->ttmbf && ttmb < 8) ttmb = -1;
3562 first_block = 0;
3567 /** Decode blocks of I-frame
3569 static void vc1_decode_i_blocks(VC1Context *v)
3571 int k, j;
3572 MpegEncContext *s = &v->s;
3573 int cbp, val;
3574 uint8_t *coded_val;
3575 int mb_pos;
3577 /* select codingmode used for VLC tables selection */
3578 switch(v->y_ac_table_index){
3579 case 0:
3580 v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
3581 break;
3582 case 1:
3583 v->codingset = CS_HIGH_MOT_INTRA;
3584 break;
3585 case 2:
3586 v->codingset = CS_MID_RATE_INTRA;
3587 break;
3590 switch(v->c_ac_table_index){
3591 case 0:
3592 v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
3593 break;
3594 case 1:
3595 v->codingset2 = CS_HIGH_MOT_INTER;
3596 break;
3597 case 2:
3598 v->codingset2 = CS_MID_RATE_INTER;
3599 break;
3602 /* Set DC scale - y and c use the same */
3603 s->y_dc_scale = s->y_dc_scale_table[v->pq];
3604 s->c_dc_scale = s->c_dc_scale_table[v->pq];
3606 //do frame decode
3607 s->mb_x = s->mb_y = 0;
3608 s->mb_intra = 1;
3609 s->first_slice_line = 1;
3610 for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
3611 for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
3612 ff_init_block_index(s);
3613 ff_update_block_index(s);
3614 s->dsp.clear_blocks(s->block[0]);
3615 mb_pos = s->mb_x + s->mb_y * s->mb_width;
3616 s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
3617 s->current_picture.qscale_table[mb_pos] = v->pq;
3618 s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
3619 s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
3621 // do actual MB decoding and displaying
3622 cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
3623 v->s.ac_pred = get_bits1(&v->s.gb);
3625 for(k = 0; k < 6; k++) {
3626 val = ((cbp >> (5 - k)) & 1);
3628 if (k < 4) {
3629 int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
3630 val = val ^ pred;
3631 *coded_val = val;
3633 cbp |= val << (5 - k);
3635 vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
3637 s->dsp.vc1_inv_trans_8x8(s->block[k]);
3638 if(v->pq >= 9 && v->overlap) {
3639 for(j = 0; j < 64; j++) s->block[k][j] += 128;
3643 vc1_put_block(v, s->block);
3644 if(v->pq >= 9 && v->overlap) {
3645 if(s->mb_x) {
3646 s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
3647 s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
3648 if(!(s->flags & CODEC_FLAG_GRAY)) {
3649 s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
3650 s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
3653 s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
3654 s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
3655 if(!s->first_slice_line) {
3656 s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
3657 s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
3658 if(!(s->flags & CODEC_FLAG_GRAY)) {
3659 s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
3660 s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
3663 s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
3664 s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
3666 if(v->s.loop_filter) vc1_loop_filter_iblk(s, s->current_picture.qscale_table[mb_pos]);
3668 if(get_bits_count(&s->gb) > v->bits) {
3669 ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
3670 av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
3671 return;
3674 ff_draw_horiz_band(s, s->mb_y * 16, 16);
3675 s->first_slice_line = 0;
3677 ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
3680 /** Decode blocks of I-frame for advanced profile
3682 static void vc1_decode_i_blocks_adv(VC1Context *v)
3684 int k, j;
3685 MpegEncContext *s = &v->s;
3686 int cbp, val;
3687 uint8_t *coded_val;
3688 int mb_pos;
3689 int mquant = v->pq;
3690 int mqdiff;
3691 int overlap;
3692 GetBitContext *gb = &s->gb;
3694 /* select codingmode used for VLC tables selection */
3695 switch(v->y_ac_table_index){
3696 case 0:
3697 v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
3698 break;
3699 case 1:
3700 v->codingset = CS_HIGH_MOT_INTRA;
3701 break;
3702 case 2:
3703 v->codingset = CS_MID_RATE_INTRA;
3704 break;
3707 switch(v->c_ac_table_index){
3708 case 0:
3709 v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
3710 break;
3711 case 1:
3712 v->codingset2 = CS_HIGH_MOT_INTER;
3713 break;
3714 case 2:
3715 v->codingset2 = CS_MID_RATE_INTER;
3716 break;
3719 //do frame decode
3720 s->mb_x = s->mb_y = 0;
3721 s->mb_intra = 1;
3722 s->first_slice_line = 1;
3723 for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
3724 for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
3725 ff_init_block_index(s);
3726 ff_update_block_index(s);
3727 s->dsp.clear_blocks(s->block[0]);
3728 mb_pos = s->mb_x + s->mb_y * s->mb_stride;
3729 s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
3730 s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
3731 s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
3733 // do actual MB decoding and displaying
3734 cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
3735 if(v->acpred_is_raw)
3736 v->s.ac_pred = get_bits1(&v->s.gb);
3737 else
3738 v->s.ac_pred = v->acpred_plane[mb_pos];
3740 if(v->condover == CONDOVER_SELECT) {
3741 if(v->overflg_is_raw)
3742 overlap = get_bits1(&v->s.gb);
3743 else
3744 overlap = v->over_flags_plane[mb_pos];
3745 } else
3746 overlap = (v->condover == CONDOVER_ALL);
3748 GET_MQUANT();
3750 s->current_picture.qscale_table[mb_pos] = mquant;
3751 /* Set DC scale - y and c use the same */
3752 s->y_dc_scale = s->y_dc_scale_table[mquant];
3753 s->c_dc_scale = s->c_dc_scale_table[mquant];
3755 for(k = 0; k < 6; k++) {
3756 val = ((cbp >> (5 - k)) & 1);
3758 if (k < 4) {
3759 int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
3760 val = val ^ pred;
3761 *coded_val = val;
3763 cbp |= val << (5 - k);
3765 v->a_avail = !s->first_slice_line || (k==2 || k==3);
3766 v->c_avail = !!s->mb_x || (k==1 || k==3);
3768 vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
3770 s->dsp.vc1_inv_trans_8x8(s->block[k]);
3771 for(j = 0; j < 64; j++) s->block[k][j] += 128;
3774 vc1_put_block(v, s->block);
3775 if(overlap) {
3776 if(s->mb_x) {
3777 s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
3778 s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
3779 if(!(s->flags & CODEC_FLAG_GRAY)) {
3780 s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
3781 s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
3784 s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
3785 s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
3786 if(!s->first_slice_line) {
3787 s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
3788 s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
3789 if(!(s->flags & CODEC_FLAG_GRAY)) {
3790 s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
3791 s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
3794 s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
3795 s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
3797 if(v->s.loop_filter) vc1_loop_filter_iblk(s, s->current_picture.qscale_table[mb_pos]);
3799 if(get_bits_count(&s->gb) > v->bits) {
3800 ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
3801 av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
3802 return;
3805 ff_draw_horiz_band(s, s->mb_y * 16, 16);
3806 s->first_slice_line = 0;
3808 ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
3811 static void vc1_decode_p_blocks(VC1Context *v)
3813 MpegEncContext *s = &v->s;
3815 /* select codingmode used for VLC tables selection */
3816 switch(v->c_ac_table_index){
3817 case 0:
3818 v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
3819 break;
3820 case 1:
3821 v->codingset = CS_HIGH_MOT_INTRA;
3822 break;
3823 case 2:
3824 v->codingset = CS_MID_RATE_INTRA;
3825 break;
3828 switch(v->c_ac_table_index){
3829 case 0:
3830 v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
3831 break;
3832 case 1:
3833 v->codingset2 = CS_HIGH_MOT_INTER;
3834 break;
3835 case 2:
3836 v->codingset2 = CS_MID_RATE_INTER;
3837 break;
3840 s->first_slice_line = 1;
3841 memset(v->cbp_base, 0, sizeof(v->cbp_base[0])*2*s->mb_stride);
3842 for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
3843 for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
3844 ff_init_block_index(s);
3845 ff_update_block_index(s);
3846 s->dsp.clear_blocks(s->block[0]);
3848 vc1_decode_p_mb(v);
3849 if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
3850 ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
3851 av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
3852 return;
3855 memmove(v->cbp_base, v->cbp, sizeof(v->cbp_base[0])*s->mb_stride);
3856 ff_draw_horiz_band(s, s->mb_y * 16, 16);
3857 s->first_slice_line = 0;
3859 ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
3862 static void vc1_decode_b_blocks(VC1Context *v)
3864 MpegEncContext *s = &v->s;
3866 /* select codingmode used for VLC tables selection */
3867 switch(v->c_ac_table_index){
3868 case 0:
3869 v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
3870 break;
3871 case 1:
3872 v->codingset = CS_HIGH_MOT_INTRA;
3873 break;
3874 case 2:
3875 v->codingset = CS_MID_RATE_INTRA;
3876 break;
3879 switch(v->c_ac_table_index){
3880 case 0:
3881 v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
3882 break;
3883 case 1:
3884 v->codingset2 = CS_HIGH_MOT_INTER;
3885 break;
3886 case 2:
3887 v->codingset2 = CS_MID_RATE_INTER;
3888 break;
3891 s->first_slice_line = 1;
3892 for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
3893 for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
3894 ff_init_block_index(s);
3895 ff_update_block_index(s);
3896 s->dsp.clear_blocks(s->block[0]);
3898 vc1_decode_b_mb(v);
3899 if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
3900 ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
3901 av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
3902 return;
3904 if(v->s.loop_filter) vc1_loop_filter_iblk(s, s->current_picture.qscale_table[s->mb_x + s->mb_y *s->mb_stride]);
3906 ff_draw_horiz_band(s, s->mb_y * 16, 16);
3907 s->first_slice_line = 0;
3909 ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
3912 static void vc1_decode_skip_blocks(VC1Context *v)
3914 MpegEncContext *s = &v->s;
3916 ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
3917 s->first_slice_line = 1;
3918 for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
3919 s->mb_x = 0;
3920 ff_init_block_index(s);
3921 ff_update_block_index(s);
3922 memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
3923 memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
3924 memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
3925 ff_draw_horiz_band(s, s->mb_y * 16, 16);
3926 s->first_slice_line = 0;
3928 s->pict_type = FF_P_TYPE;
3931 static void vc1_decode_blocks(VC1Context *v)
3934 v->s.esc3_level_length = 0;
3935 if(v->x8_type){
3936 ff_intrax8_decode_picture(&v->x8, 2*v->pq+v->halfpq, v->pq*(!v->pquantizer) );
3937 }else{
3939 switch(v->s.pict_type) {
3940 case FF_I_TYPE:
3941 if(v->profile == PROFILE_ADVANCED)
3942 vc1_decode_i_blocks_adv(v);
3943 else
3944 vc1_decode_i_blocks(v);
3945 break;
3946 case FF_P_TYPE:
3947 if(v->p_frame_skipped)
3948 vc1_decode_skip_blocks(v);
3949 else
3950 vc1_decode_p_blocks(v);
3951 break;
3952 case FF_B_TYPE:
3953 if(v->bi_type){
3954 if(v->profile == PROFILE_ADVANCED)
3955 vc1_decode_i_blocks_adv(v);
3956 else
3957 vc1_decode_i_blocks(v);
3958 }else
3959 vc1_decode_b_blocks(v);
3960 break;
3965 /** Find VC-1 marker in buffer
3966 * @return position where next marker starts or end of buffer if no marker found
3968 static av_always_inline const uint8_t* find_next_marker(const uint8_t *src, const uint8_t *end)
3970 uint32_t mrk = 0xFFFFFFFF;
3972 if(end-src < 4) return end;
3973 while(src < end){
3974 mrk = (mrk << 8) | *src++;
3975 if(IS_MARKER(mrk))
3976 return src-4;
3978 return end;
3981 static av_always_inline int vc1_unescape_buffer(const uint8_t *src, int size, uint8_t *dst)
3983 int dsize = 0, i;
3985 if(size < 4){
3986 for(dsize = 0; dsize < size; dsize++) *dst++ = *src++;
3987 return size;
3989 for(i = 0; i < size; i++, src++) {
3990 if(src[0] == 3 && i >= 2 && !src[-1] && !src[-2] && i < size-1 && src[1] < 4) {
3991 dst[dsize++] = src[1];
3992 src++;
3993 i++;
3994 } else
3995 dst[dsize++] = *src;
3997 return dsize;
4000 /** Initialize a VC1/WMV3 decoder
4001 * @todo TODO: Handle VC-1 IDUs (Transport level?)
4002 * @todo TODO: Decypher remaining bits in extra_data
4004 static av_cold int vc1_decode_init(AVCodecContext *avctx)
4006 VC1Context *v = avctx->priv_data;
4007 MpegEncContext *s = &v->s;
4008 GetBitContext gb;
4010 if (!avctx->extradata_size || !avctx->extradata) return -1;
4011 if (!(avctx->flags & CODEC_FLAG_GRAY))
4012 avctx->pix_fmt = PIX_FMT_YUV420P;
4013 else
4014 avctx->pix_fmt = PIX_FMT_GRAY8;
4015 v->s.avctx = avctx;
4016 avctx->flags |= CODEC_FLAG_EMU_EDGE;
4017 v->s.flags |= CODEC_FLAG_EMU_EDGE;
4019 if(avctx->idct_algo==FF_IDCT_AUTO){
4020 avctx->idct_algo=FF_IDCT_WMV2;
4023 if(ff_h263_decode_init(avctx) < 0)
4024 return -1;
4025 if (vc1_init_common(v) < 0) return -1;
4027 avctx->coded_width = avctx->width;
4028 avctx->coded_height = avctx->height;
4029 if (avctx->codec_id == CODEC_ID_WMV3)
4031 int count = 0;
4033 // looks like WMV3 has a sequence header stored in the extradata
4034 // advanced sequence header may be before the first frame
4035 // the last byte of the extradata is a version number, 1 for the
4036 // samples we can decode
4038 init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
4040 if (decode_sequence_header(avctx, &gb) < 0)
4041 return -1;
4043 count = avctx->extradata_size*8 - get_bits_count(&gb);
4044 if (count>0)
4046 av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
4047 count, get_bits(&gb, count));
4049 else if (count < 0)
4051 av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
4053 } else { // VC1/WVC1
4054 const uint8_t *start = avctx->extradata;
4055 uint8_t *end = avctx->extradata + avctx->extradata_size;
4056 const uint8_t *next;
4057 int size, buf2_size;
4058 uint8_t *buf2 = NULL;
4059 int seq_initialized = 0, ep_initialized = 0;
4061 if(avctx->extradata_size < 16) {
4062 av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
4063 return -1;
4066 buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
4067 if(start[0]) start++; // in WVC1 extradata first byte is its size
4068 next = start;
4069 for(; next < end; start = next){
4070 next = find_next_marker(start + 4, end);
4071 size = next - start - 4;
4072 if(size <= 0) continue;
4073 buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
4074 init_get_bits(&gb, buf2, buf2_size * 8);
4075 switch(AV_RB32(start)){
4076 case VC1_CODE_SEQHDR:
4077 if(decode_sequence_header(avctx, &gb) < 0){
4078 av_free(buf2);
4079 return -1;
4081 seq_initialized = 1;
4082 break;
4083 case VC1_CODE_ENTRYPOINT:
4084 if(decode_entry_point(avctx, &gb) < 0){
4085 av_free(buf2);
4086 return -1;
4088 ep_initialized = 1;
4089 break;
4092 av_free(buf2);
4093 if(!seq_initialized || !ep_initialized){
4094 av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
4095 return -1;
4098 avctx->has_b_frames= !!(avctx->max_b_frames);
4099 s->low_delay = !avctx->has_b_frames;
4101 s->mb_width = (avctx->coded_width+15)>>4;
4102 s->mb_height = (avctx->coded_height+15)>>4;
4104 /* Allocate mb bitplanes */
4105 v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
4106 v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
4107 v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
4108 v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
4110 v->cbp_base = av_malloc(sizeof(v->cbp_base[0]) * 2 * s->mb_stride);
4111 v->cbp = v->cbp_base + s->mb_stride;
4113 /* allocate block type info in that way so it could be used with s->block_index[] */
4114 v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
4115 v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
4116 v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
4117 v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
4119 /* Init coded blocks info */
4120 if (v->profile == PROFILE_ADVANCED)
4122 // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
4123 // return -1;
4124 // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
4125 // return -1;
4128 ff_intrax8_common_init(&v->x8,s);
4129 return 0;
4133 /** Decode a VC1/WMV3 frame
4134 * @todo TODO: Handle VC-1 IDUs (Transport level?)
4136 static int vc1_decode_frame(AVCodecContext *avctx,
4137 void *data, int *data_size,
4138 const uint8_t *buf, int buf_size)
4140 VC1Context *v = avctx->priv_data;
4141 MpegEncContext *s = &v->s;
4142 AVFrame *pict = data;
4143 uint8_t *buf2 = NULL;
4144 const uint8_t *buf_vdpau = buf;
4146 /* no supplementary picture */
4147 if (buf_size == 0) {
4148 /* special case for last picture */
4149 if (s->low_delay==0 && s->next_picture_ptr) {
4150 *pict= *(AVFrame*)s->next_picture_ptr;
4151 s->next_picture_ptr= NULL;
4153 *data_size = sizeof(AVFrame);
4156 return 0;
4159 /* We need to set current_picture_ptr before reading the header,
4160 * otherwise we cannot store anything in there. */
4161 if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
4162 int i= ff_find_unused_picture(s, 0);
4163 s->current_picture_ptr= &s->picture[i];
4166 if (s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU){
4167 if (v->profile < PROFILE_ADVANCED)
4168 avctx->pix_fmt = PIX_FMT_VDPAU_WMV3;
4169 else
4170 avctx->pix_fmt = PIX_FMT_VDPAU_VC1;
4173 //for advanced profile we may need to parse and unescape data
4174 if (avctx->codec_id == CODEC_ID_VC1) {
4175 int buf_size2 = 0;
4176 buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
4178 if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
4179 const uint8_t *start, *end, *next;
4180 int size;
4182 next = buf;
4183 for(start = buf, end = buf + buf_size; next < end; start = next){
4184 next = find_next_marker(start + 4, end);
4185 size = next - start - 4;
4186 if(size <= 0) continue;
4187 switch(AV_RB32(start)){
4188 case VC1_CODE_FRAME:
4189 if (s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
4190 buf_vdpau = start;
4191 buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
4192 break;
4193 case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
4194 buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
4195 init_get_bits(&s->gb, buf2, buf_size2*8);
4196 decode_entry_point(avctx, &s->gb);
4197 break;
4198 case VC1_CODE_SLICE:
4199 av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
4200 av_free(buf2);
4201 return -1;
4204 }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
4205 const uint8_t *divider;
4207 divider = find_next_marker(buf, buf + buf_size);
4208 if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
4209 av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
4210 av_free(buf2);
4211 return -1;
4214 buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
4215 // TODO
4216 av_free(buf2);return -1;
4217 }else{
4218 buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
4220 init_get_bits(&s->gb, buf2, buf_size2*8);
4221 } else
4222 init_get_bits(&s->gb, buf, buf_size*8);
4223 // do parse frame header
4224 if(v->profile < PROFILE_ADVANCED) {
4225 if(vc1_parse_frame_header(v, &s->gb) == -1) {
4226 av_free(buf2);
4227 return -1;
4229 } else {
4230 if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
4231 av_free(buf2);
4232 return -1;
4236 if(s->pict_type != FF_I_TYPE && !v->res_rtm_flag){
4237 av_free(buf2);
4238 return -1;
4241 // for hurry_up==5
4242 s->current_picture.pict_type= s->pict_type;
4243 s->current_picture.key_frame= s->pict_type == FF_I_TYPE;
4245 /* skip B-frames if we don't have reference frames */
4246 if(s->last_picture_ptr==NULL && (s->pict_type==FF_B_TYPE || s->dropable)){
4247 av_free(buf2);
4248 return -1;//buf_size;
4250 /* skip b frames if we are in a hurry */
4251 if(avctx->hurry_up && s->pict_type==FF_B_TYPE) return -1;//buf_size;
4252 if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==FF_B_TYPE)
4253 || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=FF_I_TYPE)
4254 || avctx->skip_frame >= AVDISCARD_ALL) {
4255 av_free(buf2);
4256 return buf_size;
4258 /* skip everything if we are in a hurry>=5 */
4259 if(avctx->hurry_up>=5) {
4260 av_free(buf2);
4261 return -1;//buf_size;
4264 if(s->next_p_frame_damaged){
4265 if(s->pict_type==FF_B_TYPE)
4266 return buf_size;
4267 else
4268 s->next_p_frame_damaged=0;
4271 if(MPV_frame_start(s, avctx) < 0) {
4272 av_free(buf2);
4273 return -1;
4276 s->me.qpel_put= s->dsp.put_qpel_pixels_tab;
4277 s->me.qpel_avg= s->dsp.avg_qpel_pixels_tab;
4279 if ((CONFIG_VC1_VDPAU_DECODER || CONFIG_WMV3_VDPAU_DECODER)
4280 &&s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
4281 ff_vdpau_vc1_decode_picture(s, buf_vdpau, (buf + buf_size) - buf_vdpau);
4282 else {
4283 ff_er_frame_start(s);
4285 v->bits = buf_size * 8;
4286 vc1_decode_blocks(v);
4287 //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
4288 // if(get_bits_count(&s->gb) > buf_size * 8)
4289 // return -1;
4290 ff_er_frame_end(s);
4293 MPV_frame_end(s);
4295 assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
4296 assert(s->current_picture.pict_type == s->pict_type);
4297 if (s->pict_type == FF_B_TYPE || s->low_delay) {
4298 *pict= *(AVFrame*)s->current_picture_ptr;
4299 } else if (s->last_picture_ptr != NULL) {
4300 *pict= *(AVFrame*)s->last_picture_ptr;
4303 if(s->last_picture_ptr || s->low_delay){
4304 *data_size = sizeof(AVFrame);
4305 ff_print_debug_info(s, pict);
4308 /* Return the Picture timestamp as the frame number */
4309 /* we subtract 1 because it is added on utils.c */
4310 avctx->frame_number = s->picture_number - 1;
4312 av_free(buf2);
4313 return buf_size;
4317 /** Close a VC1/WMV3 decoder
4318 * @warning Initial try at using MpegEncContext stuff
4320 static av_cold int vc1_decode_end(AVCodecContext *avctx)
4322 VC1Context *v = avctx->priv_data;
4324 av_freep(&v->hrd_rate);
4325 av_freep(&v->hrd_buffer);
4326 MPV_common_end(&v->s);
4327 av_freep(&v->mv_type_mb_plane);
4328 av_freep(&v->direct_mb_plane);
4329 av_freep(&v->acpred_plane);
4330 av_freep(&v->over_flags_plane);
4331 av_freep(&v->mb_type_base);
4332 av_freep(&v->cbp_base);
4333 ff_intrax8_common_end(&v->x8);
4334 return 0;
4338 AVCodec vc1_decoder = {
4339 "vc1",
4340 CODEC_TYPE_VIDEO,
4341 CODEC_ID_VC1,
4342 sizeof(VC1Context),
4343 vc1_decode_init,
4344 NULL,
4345 vc1_decode_end,
4346 vc1_decode_frame,
4347 CODEC_CAP_DELAY,
4348 NULL,
4349 .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1"),
4352 AVCodec wmv3_decoder = {
4353 "wmv3",
4354 CODEC_TYPE_VIDEO,
4355 CODEC_ID_WMV3,
4356 sizeof(VC1Context),
4357 vc1_decode_init,
4358 NULL,
4359 vc1_decode_end,
4360 vc1_decode_frame,
4361 CODEC_CAP_DELAY,
4362 NULL,
4363 .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9"),
4366 #if CONFIG_WMV3_VDPAU_DECODER
4367 AVCodec wmv3_vdpau_decoder = {
4368 "wmv3_vdpau",
4369 CODEC_TYPE_VIDEO,
4370 CODEC_ID_WMV3,
4371 sizeof(VC1Context),
4372 vc1_decode_init,
4373 NULL,
4374 vc1_decode_end,
4375 vc1_decode_frame,
4376 CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
4377 NULL,
4378 .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9 VDPAU"),
4380 #endif
4382 #if CONFIG_VC1_VDPAU_DECODER
4383 AVCodec vc1_vdpau_decoder = {
4384 "vc1_vdpau",
4385 CODEC_TYPE_VIDEO,
4386 CODEC_ID_VC1,
4387 sizeof(VC1Context),
4388 vc1_decode_init,
4389 NULL,
4390 vc1_decode_end,
4391 vc1_decode_frame,
4392 CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
4393 NULL,
4394 .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1 VDPAU"),
4396 #endif