Don't use unchecked data from the bitstream.
[FFMpeg-mirror/ordered_chapters.git] / libavcodec / dca.c
blob14aa9816a3095130bfa6bf92b7f997c23c53696f
1 /*
2 * DCA compatible decoder
3 * Copyright (C) 2004 Gildas Bazin
4 * Copyright (C) 2004 Benjamin Zores
5 * Copyright (C) 2006 Benjamin Larsson
6 * Copyright (C) 2007 Konstantin Shishkov
8 * This file is part of FFmpeg.
10 * FFmpeg is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public
12 * License as published by the Free Software Foundation; either
13 * version 2.1 of the License, or (at your option) any later version.
15 * FFmpeg is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * Lesser General Public License for more details.
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with FFmpeg; if not, write to the Free Software
22 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
25 /**
26 * @file dca.c
29 #include <math.h>
30 #include <stddef.h>
31 #include <stdio.h>
33 #include "avcodec.h"
34 #include "dsputil.h"
35 #include "bitstream.h"
36 #include "dcadata.h"
37 #include "dcahuff.h"
38 #include "dca.h"
40 //#define TRACE
42 #define DCA_PRIM_CHANNELS_MAX (5)
43 #define DCA_SUBBANDS (32)
44 #define DCA_ABITS_MAX (32) /* Should be 28 */
45 #define DCA_SUBSUBFAMES_MAX (4)
46 #define DCA_LFE_MAX (3)
48 enum DCAMode {
49 DCA_MONO = 0,
50 DCA_CHANNEL,
51 DCA_STEREO,
52 DCA_STEREO_SUMDIFF,
53 DCA_STEREO_TOTAL,
54 DCA_3F,
55 DCA_2F1R,
56 DCA_3F1R,
57 DCA_2F2R,
58 DCA_3F2R,
59 DCA_4F2R
62 #define DCA_DOLBY 101 /* FIXME */
64 #define DCA_CHANNEL_BITS 6
65 #define DCA_CHANNEL_MASK 0x3F
67 #define DCA_LFE 0x80
69 #define HEADER_SIZE 14
70 #define CONVERT_BIAS 384
72 #define DCA_MAX_FRAME_SIZE 16383
74 /** Bit allocation */
75 typedef struct {
76 int offset; ///< code values offset
77 int maxbits[8]; ///< max bits in VLC
78 int wrap; ///< wrap for get_vlc2()
79 VLC vlc[8]; ///< actual codes
80 } BitAlloc;
82 static BitAlloc dca_bitalloc_index; ///< indexes for samples VLC select
83 static BitAlloc dca_tmode; ///< transition mode VLCs
84 static BitAlloc dca_scalefactor; ///< scalefactor VLCs
85 static BitAlloc dca_smpl_bitalloc[11]; ///< samples VLCs
87 /** Pre-calculated cosine modulation coefs for the QMF */
88 static float cos_mod[544];
90 static av_always_inline int get_bitalloc(GetBitContext *gb, BitAlloc *ba, int idx)
92 return get_vlc2(gb, ba->vlc[idx].table, ba->vlc[idx].bits, ba->wrap) + ba->offset;
95 typedef struct {
96 AVCodecContext *avctx;
97 /* Frame header */
98 int frame_type; ///< type of the current frame
99 int samples_deficit; ///< deficit sample count
100 int crc_present; ///< crc is present in the bitstream
101 int sample_blocks; ///< number of PCM sample blocks
102 int frame_size; ///< primary frame byte size
103 int amode; ///< audio channels arrangement
104 int sample_rate; ///< audio sampling rate
105 int bit_rate; ///< transmission bit rate
107 int downmix; ///< embedded downmix enabled
108 int dynrange; ///< embedded dynamic range flag
109 int timestamp; ///< embedded time stamp flag
110 int aux_data; ///< auxiliary data flag
111 int hdcd; ///< source material is mastered in HDCD
112 int ext_descr; ///< extension audio descriptor flag
113 int ext_coding; ///< extended coding flag
114 int aspf; ///< audio sync word insertion flag
115 int lfe; ///< low frequency effects flag
116 int predictor_history; ///< predictor history flag
117 int header_crc; ///< header crc check bytes
118 int multirate_inter; ///< multirate interpolator switch
119 int version; ///< encoder software revision
120 int copy_history; ///< copy history
121 int source_pcm_res; ///< source pcm resolution
122 int front_sum; ///< front sum/difference flag
123 int surround_sum; ///< surround sum/difference flag
124 int dialog_norm; ///< dialog normalisation parameter
126 /* Primary audio coding header */
127 int subframes; ///< number of subframes
128 int total_channels; ///< number of channels including extensions
129 int prim_channels; ///< number of primary audio channels
130 int subband_activity[DCA_PRIM_CHANNELS_MAX]; ///< subband activity count
131 int vq_start_subband[DCA_PRIM_CHANNELS_MAX]; ///< high frequency vq start subband
132 int joint_intensity[DCA_PRIM_CHANNELS_MAX]; ///< joint intensity coding index
133 int transient_huffman[DCA_PRIM_CHANNELS_MAX]; ///< transient mode code book
134 int scalefactor_huffman[DCA_PRIM_CHANNELS_MAX]; ///< scale factor code book
135 int bitalloc_huffman[DCA_PRIM_CHANNELS_MAX]; ///< bit allocation quantizer select
136 int quant_index_huffman[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< quantization index codebook select
137 float scalefactor_adj[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< scale factor adjustment
139 /* Primary audio coding side information */
140 int subsubframes; ///< number of subsubframes
141 int partial_samples; ///< partial subsubframe samples count
142 int prediction_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< prediction mode (ADPCM used or not)
143 int prediction_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< prediction VQ coefs
144 int bitalloc[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< bit allocation index
145 int transition_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< transition mode (transients)
146 int scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][2]; ///< scale factors (2 if transient)
147 int joint_huff[DCA_PRIM_CHANNELS_MAX]; ///< joint subband scale factors codebook
148 int joint_scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< joint subband scale factors
149 int downmix_coef[DCA_PRIM_CHANNELS_MAX][2]; ///< stereo downmix coefficients
150 int dynrange_coef; ///< dynamic range coefficient
152 int high_freq_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< VQ encoded high frequency subbands
154 float lfe_data[2 * DCA_SUBSUBFAMES_MAX * DCA_LFE_MAX *
155 2 /*history */ ]; ///< Low frequency effect data
156 int lfe_scale_factor;
158 /* Subband samples history (for ADPCM) */
159 float subband_samples_hist[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][4];
160 float subband_fir_hist[DCA_PRIM_CHANNELS_MAX][512];
161 float subband_fir_noidea[DCA_PRIM_CHANNELS_MAX][64];
163 int output; ///< type of output
164 int bias; ///< output bias
166 DECLARE_ALIGNED_16(float, samples[1536]); /* 6 * 256 = 1536, might only need 5 */
167 DECLARE_ALIGNED_16(int16_t, tsamples[1536]);
169 uint8_t dca_buffer[DCA_MAX_FRAME_SIZE];
170 int dca_buffer_size; ///< how much data is in the dca_buffer
172 GetBitContext gb;
173 /* Current position in DCA frame */
174 int current_subframe;
175 int current_subsubframe;
177 int debug_flag; ///< used for suppressing repeated error messages output
178 DSPContext dsp;
179 } DCAContext;
181 static void dca_init_vlcs(void)
183 static int vlcs_initialized = 0;
184 int i, j;
186 if (vlcs_initialized)
187 return;
189 dca_bitalloc_index.offset = 1;
190 dca_bitalloc_index.wrap = 2;
191 for (i = 0; i < 5; i++)
192 init_vlc(&dca_bitalloc_index.vlc[i], bitalloc_12_vlc_bits[i], 12,
193 bitalloc_12_bits[i], 1, 1,
194 bitalloc_12_codes[i], 2, 2, 1);
195 dca_scalefactor.offset = -64;
196 dca_scalefactor.wrap = 2;
197 for (i = 0; i < 5; i++)
198 init_vlc(&dca_scalefactor.vlc[i], SCALES_VLC_BITS, 129,
199 scales_bits[i], 1, 1,
200 scales_codes[i], 2, 2, 1);
201 dca_tmode.offset = 0;
202 dca_tmode.wrap = 1;
203 for (i = 0; i < 4; i++)
204 init_vlc(&dca_tmode.vlc[i], tmode_vlc_bits[i], 4,
205 tmode_bits[i], 1, 1,
206 tmode_codes[i], 2, 2, 1);
208 for(i = 0; i < 10; i++)
209 for(j = 0; j < 7; j++){
210 if(!bitalloc_codes[i][j]) break;
211 dca_smpl_bitalloc[i+1].offset = bitalloc_offsets[i];
212 dca_smpl_bitalloc[i+1].wrap = 1 + (j > 4);
213 init_vlc(&dca_smpl_bitalloc[i+1].vlc[j], bitalloc_maxbits[i][j],
214 bitalloc_sizes[i],
215 bitalloc_bits[i][j], 1, 1,
216 bitalloc_codes[i][j], 2, 2, 1);
218 vlcs_initialized = 1;
221 static inline void get_array(GetBitContext *gb, int *dst, int len, int bits)
223 while(len--)
224 *dst++ = get_bits(gb, bits);
227 static int dca_parse_frame_header(DCAContext * s)
229 int i, j;
230 static const float adj_table[4] = { 1.0, 1.1250, 1.2500, 1.4375 };
231 static const int bitlen[11] = { 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3 };
232 static const int thr[11] = { 0, 1, 3, 3, 3, 3, 7, 7, 7, 7, 7 };
234 s->bias = CONVERT_BIAS;
236 init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);
238 /* Sync code */
239 get_bits(&s->gb, 32);
241 /* Frame header */
242 s->frame_type = get_bits(&s->gb, 1);
243 s->samples_deficit = get_bits(&s->gb, 5) + 1;
244 s->crc_present = get_bits(&s->gb, 1);
245 s->sample_blocks = get_bits(&s->gb, 7) + 1;
246 s->frame_size = get_bits(&s->gb, 14) + 1;
247 if (s->frame_size < 95)
248 return -1;
249 s->amode = get_bits(&s->gb, 6);
250 s->sample_rate = dca_sample_rates[get_bits(&s->gb, 4)];
251 if (!s->sample_rate)
252 return -1;
253 s->bit_rate = dca_bit_rates[get_bits(&s->gb, 5)];
254 if (!s->bit_rate)
255 return -1;
257 s->downmix = get_bits(&s->gb, 1);
258 s->dynrange = get_bits(&s->gb, 1);
259 s->timestamp = get_bits(&s->gb, 1);
260 s->aux_data = get_bits(&s->gb, 1);
261 s->hdcd = get_bits(&s->gb, 1);
262 s->ext_descr = get_bits(&s->gb, 3);
263 s->ext_coding = get_bits(&s->gb, 1);
264 s->aspf = get_bits(&s->gb, 1);
265 s->lfe = get_bits(&s->gb, 2);
266 s->predictor_history = get_bits(&s->gb, 1);
268 /* TODO: check CRC */
269 if (s->crc_present)
270 s->header_crc = get_bits(&s->gb, 16);
272 s->multirate_inter = get_bits(&s->gb, 1);
273 s->version = get_bits(&s->gb, 4);
274 s->copy_history = get_bits(&s->gb, 2);
275 s->source_pcm_res = get_bits(&s->gb, 3);
276 s->front_sum = get_bits(&s->gb, 1);
277 s->surround_sum = get_bits(&s->gb, 1);
278 s->dialog_norm = get_bits(&s->gb, 4);
280 /* FIXME: channels mixing levels */
281 s->output = s->amode;
282 if(s->lfe) s->output |= DCA_LFE;
284 #ifdef TRACE
285 av_log(s->avctx, AV_LOG_DEBUG, "frame type: %i\n", s->frame_type);
286 av_log(s->avctx, AV_LOG_DEBUG, "samples deficit: %i\n", s->samples_deficit);
287 av_log(s->avctx, AV_LOG_DEBUG, "crc present: %i\n", s->crc_present);
288 av_log(s->avctx, AV_LOG_DEBUG, "sample blocks: %i (%i samples)\n",
289 s->sample_blocks, s->sample_blocks * 32);
290 av_log(s->avctx, AV_LOG_DEBUG, "frame size: %i bytes\n", s->frame_size);
291 av_log(s->avctx, AV_LOG_DEBUG, "amode: %i (%i channels)\n",
292 s->amode, dca_channels[s->amode]);
293 av_log(s->avctx, AV_LOG_DEBUG, "sample rate: %i (%i Hz)\n",
294 s->sample_rate, dca_sample_rates[s->sample_rate]);
295 av_log(s->avctx, AV_LOG_DEBUG, "bit rate: %i (%i bits/s)\n",
296 s->bit_rate, dca_bit_rates[s->bit_rate]);
297 av_log(s->avctx, AV_LOG_DEBUG, "downmix: %i\n", s->downmix);
298 av_log(s->avctx, AV_LOG_DEBUG, "dynrange: %i\n", s->dynrange);
299 av_log(s->avctx, AV_LOG_DEBUG, "timestamp: %i\n", s->timestamp);
300 av_log(s->avctx, AV_LOG_DEBUG, "aux_data: %i\n", s->aux_data);
301 av_log(s->avctx, AV_LOG_DEBUG, "hdcd: %i\n", s->hdcd);
302 av_log(s->avctx, AV_LOG_DEBUG, "ext descr: %i\n", s->ext_descr);
303 av_log(s->avctx, AV_LOG_DEBUG, "ext coding: %i\n", s->ext_coding);
304 av_log(s->avctx, AV_LOG_DEBUG, "aspf: %i\n", s->aspf);
305 av_log(s->avctx, AV_LOG_DEBUG, "lfe: %i\n", s->lfe);
306 av_log(s->avctx, AV_LOG_DEBUG, "predictor history: %i\n",
307 s->predictor_history);
308 av_log(s->avctx, AV_LOG_DEBUG, "header crc: %i\n", s->header_crc);
309 av_log(s->avctx, AV_LOG_DEBUG, "multirate inter: %i\n",
310 s->multirate_inter);
311 av_log(s->avctx, AV_LOG_DEBUG, "version number: %i\n", s->version);
312 av_log(s->avctx, AV_LOG_DEBUG, "copy history: %i\n", s->copy_history);
313 av_log(s->avctx, AV_LOG_DEBUG,
314 "source pcm resolution: %i (%i bits/sample)\n",
315 s->source_pcm_res, dca_bits_per_sample[s->source_pcm_res]);
316 av_log(s->avctx, AV_LOG_DEBUG, "front sum: %i\n", s->front_sum);
317 av_log(s->avctx, AV_LOG_DEBUG, "surround sum: %i\n", s->surround_sum);
318 av_log(s->avctx, AV_LOG_DEBUG, "dialog norm: %i\n", s->dialog_norm);
319 av_log(s->avctx, AV_LOG_DEBUG, "\n");
320 #endif
322 /* Primary audio coding header */
323 s->subframes = get_bits(&s->gb, 4) + 1;
324 s->total_channels = get_bits(&s->gb, 3) + 1;
325 s->prim_channels = s->total_channels;
326 if (s->prim_channels > DCA_PRIM_CHANNELS_MAX)
327 s->prim_channels = DCA_PRIM_CHANNELS_MAX; /* We only support DTS core */
330 for (i = 0; i < s->prim_channels; i++) {
331 s->subband_activity[i] = get_bits(&s->gb, 5) + 2;
332 if (s->subband_activity[i] > DCA_SUBBANDS)
333 s->subband_activity[i] = DCA_SUBBANDS;
335 for (i = 0; i < s->prim_channels; i++) {
336 s->vq_start_subband[i] = get_bits(&s->gb, 5) + 1;
337 if (s->vq_start_subband[i] > DCA_SUBBANDS)
338 s->vq_start_subband[i] = DCA_SUBBANDS;
340 get_array(&s->gb, s->joint_intensity, s->prim_channels, 3);
341 get_array(&s->gb, s->transient_huffman, s->prim_channels, 2);
342 get_array(&s->gb, s->scalefactor_huffman, s->prim_channels, 3);
343 get_array(&s->gb, s->bitalloc_huffman, s->prim_channels, 3);
345 /* Get codebooks quantization indexes */
346 memset(s->quant_index_huffman, 0, sizeof(s->quant_index_huffman));
347 for (j = 1; j < 11; j++)
348 for (i = 0; i < s->prim_channels; i++)
349 s->quant_index_huffman[i][j] = get_bits(&s->gb, bitlen[j]);
351 /* Get scale factor adjustment */
352 for (j = 0; j < 11; j++)
353 for (i = 0; i < s->prim_channels; i++)
354 s->scalefactor_adj[i][j] = 1;
356 for (j = 1; j < 11; j++)
357 for (i = 0; i < s->prim_channels; i++)
358 if (s->quant_index_huffman[i][j] < thr[j])
359 s->scalefactor_adj[i][j] = adj_table[get_bits(&s->gb, 2)];
361 if (s->crc_present) {
362 /* Audio header CRC check */
363 get_bits(&s->gb, 16);
366 s->current_subframe = 0;
367 s->current_subsubframe = 0;
369 #ifdef TRACE
370 av_log(s->avctx, AV_LOG_DEBUG, "subframes: %i\n", s->subframes);
371 av_log(s->avctx, AV_LOG_DEBUG, "prim channels: %i\n", s->prim_channels);
372 for(i = 0; i < s->prim_channels; i++){
373 av_log(s->avctx, AV_LOG_DEBUG, "subband activity: %i\n", s->subband_activity[i]);
374 av_log(s->avctx, AV_LOG_DEBUG, "vq start subband: %i\n", s->vq_start_subband[i]);
375 av_log(s->avctx, AV_LOG_DEBUG, "joint intensity: %i\n", s->joint_intensity[i]);
376 av_log(s->avctx, AV_LOG_DEBUG, "transient mode codebook: %i\n", s->transient_huffman[i]);
377 av_log(s->avctx, AV_LOG_DEBUG, "scale factor codebook: %i\n", s->scalefactor_huffman[i]);
378 av_log(s->avctx, AV_LOG_DEBUG, "bit allocation quantizer: %i\n", s->bitalloc_huffman[i]);
379 av_log(s->avctx, AV_LOG_DEBUG, "quant index huff:");
380 for (j = 0; j < 11; j++)
381 av_log(s->avctx, AV_LOG_DEBUG, " %i",
382 s->quant_index_huffman[i][j]);
383 av_log(s->avctx, AV_LOG_DEBUG, "\n");
384 av_log(s->avctx, AV_LOG_DEBUG, "scalefac adj:");
385 for (j = 0; j < 11; j++)
386 av_log(s->avctx, AV_LOG_DEBUG, " %1.3f", s->scalefactor_adj[i][j]);
387 av_log(s->avctx, AV_LOG_DEBUG, "\n");
389 #endif
391 return 0;
395 static inline int get_scale(GetBitContext *gb, int level, int value)
397 if (level < 5) {
398 /* huffman encoded */
399 value += get_bitalloc(gb, &dca_scalefactor, level);
400 } else if(level < 8)
401 value = get_bits(gb, level + 1);
402 return value;
405 static int dca_subframe_header(DCAContext * s)
407 /* Primary audio coding side information */
408 int j, k;
410 s->subsubframes = get_bits(&s->gb, 2) + 1;
411 s->partial_samples = get_bits(&s->gb, 3);
412 for (j = 0; j < s->prim_channels; j++) {
413 for (k = 0; k < s->subband_activity[j]; k++)
414 s->prediction_mode[j][k] = get_bits(&s->gb, 1);
417 /* Get prediction codebook */
418 for (j = 0; j < s->prim_channels; j++) {
419 for (k = 0; k < s->subband_activity[j]; k++) {
420 if (s->prediction_mode[j][k] > 0) {
421 /* (Prediction coefficient VQ address) */
422 s->prediction_vq[j][k] = get_bits(&s->gb, 12);
427 /* Bit allocation index */
428 for (j = 0; j < s->prim_channels; j++) {
429 for (k = 0; k < s->vq_start_subband[j]; k++) {
430 if (s->bitalloc_huffman[j] == 6)
431 s->bitalloc[j][k] = get_bits(&s->gb, 5);
432 else if (s->bitalloc_huffman[j] == 5)
433 s->bitalloc[j][k] = get_bits(&s->gb, 4);
434 else if (s->bitalloc_huffman[j] == 7) {
435 av_log(s->avctx, AV_LOG_ERROR,
436 "Invalid bit allocation index\n");
437 return -1;
438 } else {
439 s->bitalloc[j][k] =
440 get_bitalloc(&s->gb, &dca_bitalloc_index, s->bitalloc_huffman[j]);
443 if (s->bitalloc[j][k] > 26) {
444 // av_log(s->avctx,AV_LOG_DEBUG,"bitalloc index [%i][%i] too big (%i)\n",
445 // j, k, s->bitalloc[j][k]);
446 return -1;
451 /* Transition mode */
452 for (j = 0; j < s->prim_channels; j++) {
453 for (k = 0; k < s->subband_activity[j]; k++) {
454 s->transition_mode[j][k] = 0;
455 if (s->subsubframes > 1 &&
456 k < s->vq_start_subband[j] && s->bitalloc[j][k] > 0) {
457 s->transition_mode[j][k] =
458 get_bitalloc(&s->gb, &dca_tmode, s->transient_huffman[j]);
463 for (j = 0; j < s->prim_channels; j++) {
464 const uint32_t *scale_table;
465 int scale_sum;
467 memset(s->scale_factor[j], 0, s->subband_activity[j] * sizeof(s->scale_factor[0][0][0]) * 2);
469 if (s->scalefactor_huffman[j] == 6)
470 scale_table = scale_factor_quant7;
471 else
472 scale_table = scale_factor_quant6;
474 /* When huffman coded, only the difference is encoded */
475 scale_sum = 0;
477 for (k = 0; k < s->subband_activity[j]; k++) {
478 if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0) {
479 scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum);
480 s->scale_factor[j][k][0] = scale_table[scale_sum];
483 if (k < s->vq_start_subband[j] && s->transition_mode[j][k]) {
484 /* Get second scale factor */
485 scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum);
486 s->scale_factor[j][k][1] = scale_table[scale_sum];
491 /* Joint subband scale factor codebook select */
492 for (j = 0; j < s->prim_channels; j++) {
493 /* Transmitted only if joint subband coding enabled */
494 if (s->joint_intensity[j] > 0)
495 s->joint_huff[j] = get_bits(&s->gb, 3);
498 /* Scale factors for joint subband coding */
499 for (j = 0; j < s->prim_channels; j++) {
500 int source_channel;
502 /* Transmitted only if joint subband coding enabled */
503 if (s->joint_intensity[j] > 0) {
504 int scale = 0;
505 source_channel = s->joint_intensity[j] - 1;
507 /* When huffman coded, only the difference is encoded
508 * (is this valid as well for joint scales ???) */
510 for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++) {
511 scale = get_scale(&s->gb, s->joint_huff[j], 0);
512 scale += 64; /* bias */
513 s->joint_scale_factor[j][k] = scale; /*joint_scale_table[scale]; */
516 if (!s->debug_flag & 0x02) {
517 av_log(s->avctx, AV_LOG_DEBUG,
518 "Joint stereo coding not supported\n");
519 s->debug_flag |= 0x02;
524 /* Stereo downmix coefficients */
525 if (s->prim_channels > 2) {
526 if(s->downmix) {
527 for (j = 0; j < s->prim_channels; j++) {
528 s->downmix_coef[j][0] = get_bits(&s->gb, 7);
529 s->downmix_coef[j][1] = get_bits(&s->gb, 7);
531 } else {
532 int am = s->amode & DCA_CHANNEL_MASK;
533 for (j = 0; j < s->prim_channels; j++) {
534 s->downmix_coef[j][0] = dca_default_coeffs[am][j][0];
535 s->downmix_coef[j][1] = dca_default_coeffs[am][j][1];
540 /* Dynamic range coefficient */
541 if (s->dynrange)
542 s->dynrange_coef = get_bits(&s->gb, 8);
544 /* Side information CRC check word */
545 if (s->crc_present) {
546 get_bits(&s->gb, 16);
550 * Primary audio data arrays
553 /* VQ encoded high frequency subbands */
554 for (j = 0; j < s->prim_channels; j++)
555 for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
556 /* 1 vector -> 32 samples */
557 s->high_freq_vq[j][k] = get_bits(&s->gb, 10);
559 /* Low frequency effect data */
560 if (s->lfe) {
561 /* LFE samples */
562 int lfe_samples = 2 * s->lfe * s->subsubframes;
563 float lfe_scale;
565 for (j = lfe_samples; j < lfe_samples * 2; j++) {
566 /* Signed 8 bits int */
567 s->lfe_data[j] = get_sbits(&s->gb, 8);
570 /* Scale factor index */
571 s->lfe_scale_factor = scale_factor_quant7[get_bits(&s->gb, 8)];
573 /* Quantization step size * scale factor */
574 lfe_scale = 0.035 * s->lfe_scale_factor;
576 for (j = lfe_samples; j < lfe_samples * 2; j++)
577 s->lfe_data[j] *= lfe_scale;
580 #ifdef TRACE
581 av_log(s->avctx, AV_LOG_DEBUG, "subsubframes: %i\n", s->subsubframes);
582 av_log(s->avctx, AV_LOG_DEBUG, "partial samples: %i\n",
583 s->partial_samples);
584 for (j = 0; j < s->prim_channels; j++) {
585 av_log(s->avctx, AV_LOG_DEBUG, "prediction mode:");
586 for (k = 0; k < s->subband_activity[j]; k++)
587 av_log(s->avctx, AV_LOG_DEBUG, " %i", s->prediction_mode[j][k]);
588 av_log(s->avctx, AV_LOG_DEBUG, "\n");
590 for (j = 0; j < s->prim_channels; j++) {
591 for (k = 0; k < s->subband_activity[j]; k++)
592 av_log(s->avctx, AV_LOG_DEBUG,
593 "prediction coefs: %f, %f, %f, %f\n",
594 (float) adpcm_vb[s->prediction_vq[j][k]][0] / 8192,
595 (float) adpcm_vb[s->prediction_vq[j][k]][1] / 8192,
596 (float) adpcm_vb[s->prediction_vq[j][k]][2] / 8192,
597 (float) adpcm_vb[s->prediction_vq[j][k]][3] / 8192);
599 for (j = 0; j < s->prim_channels; j++) {
600 av_log(s->avctx, AV_LOG_DEBUG, "bitalloc index: ");
601 for (k = 0; k < s->vq_start_subband[j]; k++)
602 av_log(s->avctx, AV_LOG_DEBUG, "%2.2i ", s->bitalloc[j][k]);
603 av_log(s->avctx, AV_LOG_DEBUG, "\n");
605 for (j = 0; j < s->prim_channels; j++) {
606 av_log(s->avctx, AV_LOG_DEBUG, "Transition mode:");
607 for (k = 0; k < s->subband_activity[j]; k++)
608 av_log(s->avctx, AV_LOG_DEBUG, " %i", s->transition_mode[j][k]);
609 av_log(s->avctx, AV_LOG_DEBUG, "\n");
611 for (j = 0; j < s->prim_channels; j++) {
612 av_log(s->avctx, AV_LOG_DEBUG, "Scale factor:");
613 for (k = 0; k < s->subband_activity[j]; k++) {
614 if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0)
615 av_log(s->avctx, AV_LOG_DEBUG, " %i", s->scale_factor[j][k][0]);
616 if (k < s->vq_start_subband[j] && s->transition_mode[j][k])
617 av_log(s->avctx, AV_LOG_DEBUG, " %i(t)", s->scale_factor[j][k][1]);
619 av_log(s->avctx, AV_LOG_DEBUG, "\n");
621 for (j = 0; j < s->prim_channels; j++) {
622 if (s->joint_intensity[j] > 0) {
623 int source_channel = s->joint_intensity[j] - 1;
624 av_log(s->avctx, AV_LOG_DEBUG, "Joint scale factor index:\n");
625 for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++)
626 av_log(s->avctx, AV_LOG_DEBUG, " %i", s->joint_scale_factor[j][k]);
627 av_log(s->avctx, AV_LOG_DEBUG, "\n");
630 if (s->prim_channels > 2 && s->downmix) {
631 av_log(s->avctx, AV_LOG_DEBUG, "Downmix coeffs:\n");
632 for (j = 0; j < s->prim_channels; j++) {
633 av_log(s->avctx, AV_LOG_DEBUG, "Channel 0,%d = %f\n", j, dca_downmix_coeffs[s->downmix_coef[j][0]]);
634 av_log(s->avctx, AV_LOG_DEBUG, "Channel 1,%d = %f\n", j, dca_downmix_coeffs[s->downmix_coef[j][1]]);
636 av_log(s->avctx, AV_LOG_DEBUG, "\n");
638 for (j = 0; j < s->prim_channels; j++)
639 for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
640 av_log(s->avctx, AV_LOG_DEBUG, "VQ index: %i\n", s->high_freq_vq[j][k]);
641 if(s->lfe){
642 int lfe_samples = 2 * s->lfe * s->subsubframes;
643 av_log(s->avctx, AV_LOG_DEBUG, "LFE samples:\n");
644 for (j = lfe_samples; j < lfe_samples * 2; j++)
645 av_log(s->avctx, AV_LOG_DEBUG, " %f", s->lfe_data[j]);
646 av_log(s->avctx, AV_LOG_DEBUG, "\n");
648 #endif
650 return 0;
653 static void qmf_32_subbands(DCAContext * s, int chans,
654 float samples_in[32][8], float *samples_out,
655 float scale, float bias)
657 const float *prCoeff;
658 int i, j, k;
659 float praXin[33], *raXin = &praXin[1];
661 float *subband_fir_hist = s->subband_fir_hist[chans];
662 float *subband_fir_hist2 = s->subband_fir_noidea[chans];
664 int chindex = 0, subindex;
666 praXin[0] = 0.0;
668 /* Select filter */
669 if (!s->multirate_inter) /* Non-perfect reconstruction */
670 prCoeff = fir_32bands_nonperfect;
671 else /* Perfect reconstruction */
672 prCoeff = fir_32bands_perfect;
674 /* Reconstructed channel sample index */
675 for (subindex = 0; subindex < 8; subindex++) {
676 float t1, t2, sum[16], diff[16];
678 /* Load in one sample from each subband and clear inactive subbands */
679 for (i = 0; i < s->subband_activity[chans]; i++)
680 raXin[i] = samples_in[i][subindex];
681 for (; i < 32; i++)
682 raXin[i] = 0.0;
684 /* Multiply by cosine modulation coefficients and
685 * create temporary arrays SUM and DIFF */
686 for (j = 0, k = 0; k < 16; k++) {
687 t1 = 0.0;
688 t2 = 0.0;
689 for (i = 0; i < 16; i++, j++){
690 t1 += (raXin[2 * i] + raXin[2 * i + 1]) * cos_mod[j];
691 t2 += (raXin[2 * i] + raXin[2 * i - 1]) * cos_mod[j + 256];
693 sum[k] = t1 + t2;
694 diff[k] = t1 - t2;
697 j = 512;
698 /* Store history */
699 for (k = 0; k < 16; k++)
700 subband_fir_hist[k] = cos_mod[j++] * sum[k];
701 for (k = 0; k < 16; k++)
702 subband_fir_hist[32-k-1] = cos_mod[j++] * diff[k];
704 /* Multiply by filter coefficients */
705 for (k = 31, i = 0; i < 32; i++, k--)
706 for (j = 0; j < 512; j += 64){
707 subband_fir_hist2[i] += prCoeff[i+j] * ( subband_fir_hist[i+j] - subband_fir_hist[j+k]);
708 subband_fir_hist2[i+32] += prCoeff[i+j+32]*(-subband_fir_hist[i+j] - subband_fir_hist[j+k]);
711 /* Create 32 PCM output samples */
712 for (i = 0; i < 32; i++)
713 samples_out[chindex++] = subband_fir_hist2[i] * scale + bias;
715 /* Update working arrays */
716 memmove(&subband_fir_hist[32], &subband_fir_hist[0], (512 - 32) * sizeof(float));
717 memmove(&subband_fir_hist2[0], &subband_fir_hist2[32], 32 * sizeof(float));
718 memset(&subband_fir_hist2[32], 0, 32 * sizeof(float));
722 static void lfe_interpolation_fir(int decimation_select,
723 int num_deci_sample, float *samples_in,
724 float *samples_out, float scale,
725 float bias)
727 /* samples_in: An array holding decimated samples.
728 * Samples in current subframe starts from samples_in[0],
729 * while samples_in[-1], samples_in[-2], ..., stores samples
730 * from last subframe as history.
732 * samples_out: An array holding interpolated samples
735 int decifactor, k, j;
736 const float *prCoeff;
738 int interp_index = 0; /* Index to the interpolated samples */
739 int deciindex;
741 /* Select decimation filter */
742 if (decimation_select == 1) {
743 decifactor = 128;
744 prCoeff = lfe_fir_128;
745 } else {
746 decifactor = 64;
747 prCoeff = lfe_fir_64;
749 /* Interpolation */
750 for (deciindex = 0; deciindex < num_deci_sample; deciindex++) {
751 /* One decimated sample generates decifactor interpolated ones */
752 for (k = 0; k < decifactor; k++) {
753 float rTmp = 0.0;
754 //FIXME the coeffs are symetric, fix that
755 for (j = 0; j < 512 / decifactor; j++)
756 rTmp += samples_in[deciindex - j] * prCoeff[k + j * decifactor];
757 samples_out[interp_index++] = rTmp / scale + bias;
762 /* downmixing routines */
763 #define MIX_REAR1(samples, si1, rs, coef) \
764 samples[i] += samples[si1] * coef[rs][0]; \
765 samples[i+256] += samples[si1] * coef[rs][1];
767 #define MIX_REAR2(samples, si1, si2, rs, coef) \
768 samples[i] += samples[si1] * coef[rs][0] + samples[si2] * coef[rs+1][0]; \
769 samples[i+256] += samples[si1] * coef[rs][1] + samples[si2] * coef[rs+1][1];
771 #define MIX_FRONT3(samples, coef) \
772 t = samples[i]; \
773 samples[i] = t * coef[0][0] + samples[i+256] * coef[1][0] + samples[i+512] * coef[2][0]; \
774 samples[i+256] = t * coef[0][1] + samples[i+256] * coef[1][1] + samples[i+512] * coef[2][1];
776 #define DOWNMIX_TO_STEREO(op1, op2) \
777 for(i = 0; i < 256; i++){ \
778 op1 \
779 op2 \
782 static void dca_downmix(float *samples, int srcfmt,
783 int downmix_coef[DCA_PRIM_CHANNELS_MAX][2])
785 int i;
786 float t;
787 float coef[DCA_PRIM_CHANNELS_MAX][2];
789 for(i=0; i<DCA_PRIM_CHANNELS_MAX; i++) {
790 coef[i][0] = dca_downmix_coeffs[downmix_coef[i][0]];
791 coef[i][1] = dca_downmix_coeffs[downmix_coef[i][1]];
794 switch (srcfmt) {
795 case DCA_MONO:
796 case DCA_CHANNEL:
797 case DCA_STEREO_TOTAL:
798 case DCA_STEREO_SUMDIFF:
799 case DCA_4F2R:
800 av_log(NULL, 0, "Not implemented!\n");
801 break;
802 case DCA_STEREO:
803 break;
804 case DCA_3F:
805 DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),);
806 break;
807 case DCA_2F1R:
808 DOWNMIX_TO_STEREO(MIX_REAR1(samples, i + 512, 2, coef),);
809 break;
810 case DCA_3F1R:
811 DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
812 MIX_REAR1(samples, i + 768, 3, coef));
813 break;
814 case DCA_2F2R:
815 DOWNMIX_TO_STEREO(MIX_REAR2(samples, i + 512, i + 768, 2, coef),);
816 break;
817 case DCA_3F2R:
818 DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
819 MIX_REAR2(samples, i + 768, i + 1024, 3, coef));
820 break;
825 /* Very compact version of the block code decoder that does not use table
826 * look-up but is slightly slower */
827 static int decode_blockcode(int code, int levels, int *values)
829 int i;
830 int offset = (levels - 1) >> 1;
832 for (i = 0; i < 4; i++) {
833 values[i] = (code % levels) - offset;
834 code /= levels;
837 if (code == 0)
838 return 0;
839 else {
840 av_log(NULL, AV_LOG_ERROR, "ERROR: block code look-up failed\n");
841 return -1;
845 static const uint8_t abits_sizes[7] = { 7, 10, 12, 13, 15, 17, 19 };
846 static const uint8_t abits_levels[7] = { 3, 5, 7, 9, 13, 17, 25 };
848 static int dca_subsubframe(DCAContext * s)
850 int k, l;
851 int subsubframe = s->current_subsubframe;
853 const float *quant_step_table;
855 /* FIXME */
856 float subband_samples[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][8];
859 * Audio data
862 /* Select quantization step size table */
863 if (s->bit_rate == 0x1f)
864 quant_step_table = lossless_quant_d;
865 else
866 quant_step_table = lossy_quant_d;
868 for (k = 0; k < s->prim_channels; k++) {
869 for (l = 0; l < s->vq_start_subband[k]; l++) {
870 int m;
872 /* Select the mid-tread linear quantizer */
873 int abits = s->bitalloc[k][l];
875 float quant_step_size = quant_step_table[abits];
876 float rscale;
879 * Determine quantization index code book and its type
882 /* Select quantization index code book */
883 int sel = s->quant_index_huffman[k][abits];
886 * Extract bits from the bit stream
888 if(!abits){
889 memset(subband_samples[k][l], 0, 8 * sizeof(subband_samples[0][0][0]));
890 }else if(abits >= 11 || !dca_smpl_bitalloc[abits].vlc[sel].table){
891 if(abits <= 7){
892 /* Block code */
893 int block_code1, block_code2, size, levels;
894 int block[8];
896 size = abits_sizes[abits-1];
897 levels = abits_levels[abits-1];
899 block_code1 = get_bits(&s->gb, size);
900 /* FIXME Should test return value */
901 decode_blockcode(block_code1, levels, block);
902 block_code2 = get_bits(&s->gb, size);
903 decode_blockcode(block_code2, levels, &block[4]);
904 for (m = 0; m < 8; m++)
905 subband_samples[k][l][m] = block[m];
906 }else{
907 /* no coding */
908 for (m = 0; m < 8; m++)
909 subband_samples[k][l][m] = get_sbits(&s->gb, abits - 3);
911 }else{
912 /* Huffman coded */
913 for (m = 0; m < 8; m++)
914 subband_samples[k][l][m] = get_bitalloc(&s->gb, &dca_smpl_bitalloc[abits], sel);
917 /* Deal with transients */
918 if (s->transition_mode[k][l] &&
919 subsubframe >= s->transition_mode[k][l])
920 rscale = quant_step_size * s->scale_factor[k][l][1];
921 else
922 rscale = quant_step_size * s->scale_factor[k][l][0];
924 rscale *= s->scalefactor_adj[k][sel];
926 for (m = 0; m < 8; m++)
927 subband_samples[k][l][m] *= rscale;
930 * Inverse ADPCM if in prediction mode
932 if (s->prediction_mode[k][l]) {
933 int n;
934 for (m = 0; m < 8; m++) {
935 for (n = 1; n <= 4; n++)
936 if (m >= n)
937 subband_samples[k][l][m] +=
938 (adpcm_vb[s->prediction_vq[k][l]][n - 1] *
939 subband_samples[k][l][m - n] / 8192);
940 else if (s->predictor_history)
941 subband_samples[k][l][m] +=
942 (adpcm_vb[s->prediction_vq[k][l]][n - 1] *
943 s->subband_samples_hist[k][l][m - n +
944 4] / 8192);
950 * Decode VQ encoded high frequencies
952 for (l = s->vq_start_subband[k]; l < s->subband_activity[k]; l++) {
953 /* 1 vector -> 32 samples but we only need the 8 samples
954 * for this subsubframe. */
955 int m;
957 if (!s->debug_flag & 0x01) {
958 av_log(s->avctx, AV_LOG_DEBUG, "Stream with high frequencies VQ coding\n");
959 s->debug_flag |= 0x01;
962 for (m = 0; m < 8; m++) {
963 subband_samples[k][l][m] =
964 high_freq_vq[s->high_freq_vq[k][l]][subsubframe * 8 +
966 * (float) s->scale_factor[k][l][0] / 16.0;
971 /* Check for DSYNC after subsubframe */
972 if (s->aspf || subsubframe == s->subsubframes - 1) {
973 if (0xFFFF == get_bits(&s->gb, 16)) { /* 0xFFFF */
974 #ifdef TRACE
975 av_log(s->avctx, AV_LOG_DEBUG, "Got subframe DSYNC\n");
976 #endif
977 } else {
978 av_log(s->avctx, AV_LOG_ERROR, "Didn't get subframe DSYNC\n");
982 /* Backup predictor history for adpcm */
983 for (k = 0; k < s->prim_channels; k++)
984 for (l = 0; l < s->vq_start_subband[k]; l++)
985 memcpy(s->subband_samples_hist[k][l], &subband_samples[k][l][4],
986 4 * sizeof(subband_samples[0][0][0]));
988 /* 32 subbands QMF */
989 for (k = 0; k < s->prim_channels; k++) {
990 /* static float pcm_to_double[8] =
991 {32768.0, 32768.0, 524288.0, 524288.0, 0, 8388608.0, 8388608.0};*/
992 qmf_32_subbands(s, k, subband_samples[k], &s->samples[256 * k],
993 2.0 / 3 /*pcm_to_double[s->source_pcm_res] */ ,
994 0 /*s->bias */ );
997 /* Down mixing */
999 if (s->prim_channels > dca_channels[s->output & DCA_CHANNEL_MASK]) {
1000 dca_downmix(s->samples, s->amode, s->downmix_coef);
1003 /* Generate LFE samples for this subsubframe FIXME!!! */
1004 if (s->output & DCA_LFE) {
1005 int lfe_samples = 2 * s->lfe * s->subsubframes;
1006 int i_channels = dca_channels[s->output & DCA_CHANNEL_MASK];
1008 lfe_interpolation_fir(s->lfe, 2 * s->lfe,
1009 s->lfe_data + lfe_samples +
1010 2 * s->lfe * subsubframe,
1011 &s->samples[256 * i_channels],
1012 256.0, 0 /* s->bias */);
1013 /* Outputs 20bits pcm samples */
1016 return 0;
1020 static int dca_subframe_footer(DCAContext * s)
1022 int aux_data_count = 0, i;
1023 int lfe_samples;
1026 * Unpack optional information
1029 if (s->timestamp)
1030 get_bits(&s->gb, 32);
1032 if (s->aux_data)
1033 aux_data_count = get_bits(&s->gb, 6);
1035 for (i = 0; i < aux_data_count; i++)
1036 get_bits(&s->gb, 8);
1038 if (s->crc_present && (s->downmix || s->dynrange))
1039 get_bits(&s->gb, 16);
1041 lfe_samples = 2 * s->lfe * s->subsubframes;
1042 for (i = 0; i < lfe_samples; i++) {
1043 s->lfe_data[i] = s->lfe_data[i + lfe_samples];
1046 return 0;
1050 * Decode a dca frame block
1052 * @param s pointer to the DCAContext
1055 static int dca_decode_block(DCAContext * s)
1058 /* Sanity check */
1059 if (s->current_subframe >= s->subframes) {
1060 av_log(s->avctx, AV_LOG_DEBUG, "check failed: %i>%i",
1061 s->current_subframe, s->subframes);
1062 return -1;
1065 if (!s->current_subsubframe) {
1066 #ifdef TRACE
1067 av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_header\n");
1068 #endif
1069 /* Read subframe header */
1070 if (dca_subframe_header(s))
1071 return -1;
1074 /* Read subsubframe */
1075 #ifdef TRACE
1076 av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subsubframe\n");
1077 #endif
1078 if (dca_subsubframe(s))
1079 return -1;
1081 /* Update state */
1082 s->current_subsubframe++;
1083 if (s->current_subsubframe >= s->subsubframes) {
1084 s->current_subsubframe = 0;
1085 s->current_subframe++;
1087 if (s->current_subframe >= s->subframes) {
1088 #ifdef TRACE
1089 av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_footer\n");
1090 #endif
1091 /* Read subframe footer */
1092 if (dca_subframe_footer(s))
1093 return -1;
1096 return 0;
1100 * Convert bitstream to one representation based on sync marker
1102 static int dca_convert_bitstream(const uint8_t * src, int src_size, uint8_t * dst,
1103 int max_size)
1105 uint32_t mrk;
1106 int i, tmp;
1107 const uint16_t *ssrc = (const uint16_t *) src;
1108 uint16_t *sdst = (uint16_t *) dst;
1109 PutBitContext pb;
1111 if((unsigned)src_size > (unsigned)max_size) {
1112 av_log(NULL, AV_LOG_ERROR, "Input frame size larger then DCA_MAX_FRAME_SIZE!\n");
1113 return -1;
1116 mrk = AV_RB32(src);
1117 switch (mrk) {
1118 case DCA_MARKER_RAW_BE:
1119 memcpy(dst, src, FFMIN(src_size, max_size));
1120 return FFMIN(src_size, max_size);
1121 case DCA_MARKER_RAW_LE:
1122 for (i = 0; i < (FFMIN(src_size, max_size) + 1) >> 1; i++)
1123 *sdst++ = bswap_16(*ssrc++);
1124 return FFMIN(src_size, max_size);
1125 case DCA_MARKER_14B_BE:
1126 case DCA_MARKER_14B_LE:
1127 init_put_bits(&pb, dst, max_size);
1128 for (i = 0; i < (src_size + 1) >> 1; i++, src += 2) {
1129 tmp = ((mrk == DCA_MARKER_14B_BE) ? AV_RB16(src) : AV_RL16(src)) & 0x3FFF;
1130 put_bits(&pb, 14, tmp);
1132 flush_put_bits(&pb);
1133 return (put_bits_count(&pb) + 7) >> 3;
1134 default:
1135 return -1;
1140 * Main frame decoding function
1141 * FIXME add arguments
1143 static int dca_decode_frame(AVCodecContext * avctx,
1144 void *data, int *data_size,
1145 const uint8_t * buf, int buf_size)
1148 int i, j, k;
1149 int16_t *samples = data;
1150 DCAContext *s = avctx->priv_data;
1151 int channels;
1154 s->dca_buffer_size = dca_convert_bitstream(buf, buf_size, s->dca_buffer, DCA_MAX_FRAME_SIZE);
1155 if (s->dca_buffer_size == -1) {
1156 av_log(avctx, AV_LOG_ERROR, "Not a valid DCA frame\n");
1157 return -1;
1160 init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);
1161 if (dca_parse_frame_header(s) < 0) {
1162 //seems like the frame is corrupt, try with the next one
1163 *data_size=0;
1164 return buf_size;
1166 //set AVCodec values with parsed data
1167 avctx->sample_rate = s->sample_rate;
1168 avctx->bit_rate = s->bit_rate;
1170 channels = s->prim_channels + !!s->lfe;
1171 if(avctx->request_channels == 2 && s->prim_channels > 2) {
1172 channels = 2;
1173 s->output = DCA_STEREO;
1176 avctx->channels = channels;
1177 if(*data_size < (s->sample_blocks / 8) * 256 * sizeof(int16_t) * channels)
1178 return -1;
1179 *data_size = 0;
1180 for (i = 0; i < (s->sample_blocks / 8); i++) {
1181 dca_decode_block(s);
1182 s->dsp.float_to_int16(s->tsamples, s->samples, 256 * channels);
1183 /* interleave samples */
1184 for (j = 0; j < 256; j++) {
1185 for (k = 0; k < channels; k++)
1186 samples[k] = s->tsamples[j + k * 256];
1187 samples += channels;
1189 *data_size += 256 * sizeof(int16_t) * channels;
1192 return buf_size;
1198 * Build the cosine modulation tables for the QMF
1200 * @param s pointer to the DCAContext
1203 static void pre_calc_cosmod(DCAContext * s)
1205 int i, j, k;
1206 static int cosmod_initialized = 0;
1208 if(cosmod_initialized) return;
1209 for (j = 0, k = 0; k < 16; k++)
1210 for (i = 0; i < 16; i++)
1211 cos_mod[j++] = cos((2 * i + 1) * (2 * k + 1) * M_PI / 64);
1213 for (k = 0; k < 16; k++)
1214 for (i = 0; i < 16; i++)
1215 cos_mod[j++] = cos((i) * (2 * k + 1) * M_PI / 32);
1217 for (k = 0; k < 16; k++)
1218 cos_mod[j++] = 0.25 / (2 * cos((2 * k + 1) * M_PI / 128));
1220 for (k = 0; k < 16; k++)
1221 cos_mod[j++] = -0.25 / (2.0 * sin((2 * k + 1) * M_PI / 128));
1223 cosmod_initialized = 1;
1228 * DCA initialization
1230 * @param avctx pointer to the AVCodecContext
1233 static int dca_decode_init(AVCodecContext * avctx)
1235 DCAContext *s = avctx->priv_data;
1237 s->avctx = avctx;
1238 dca_init_vlcs();
1239 pre_calc_cosmod(s);
1241 dsputil_init(&s->dsp, avctx);
1243 /* allow downmixing to stereo */
1244 if (avctx->channels > 0 && avctx->request_channels < avctx->channels &&
1245 avctx->request_channels == 2) {
1246 avctx->channels = avctx->request_channels;
1249 return 0;
1253 AVCodec dca_decoder = {
1254 .name = "dca",
1255 .type = CODEC_TYPE_AUDIO,
1256 .id = CODEC_ID_DTS,
1257 .priv_data_size = sizeof(DCAContext),
1258 .init = dca_decode_init,
1259 .decode = dca_decode_frame,