2 * Copyright (c) 2002 Dieter Shirley
4 * dct_unquantize_h263_altivec:
5 * Copyright (c) 2003 Romain Dolbeau <romain@dolbeau.org>
7 * This file is part of FFmpeg.
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
26 #include "libavcodec/dsputil.h"
27 #include "libavcodec/mpegvideo.h"
29 #include "dsputil_ppc.h"
30 #include "util_altivec.h"
31 // Swaps two variables (used for altivec registers)
34 __typeof__(a) swap_temp=a; \
39 // transposes a matrix consisting of four vectors with four elements each
40 #define TRANSPOSE4(a,b,c,d) \
42 __typeof__(a) _trans_ach = vec_mergeh(a, c); \
43 __typeof__(a) _trans_acl = vec_mergel(a, c); \
44 __typeof__(a) _trans_bdh = vec_mergeh(b, d); \
45 __typeof__(a) _trans_bdl = vec_mergel(b, d); \
47 a = vec_mergeh(_trans_ach, _trans_bdh); \
48 b = vec_mergel(_trans_ach, _trans_bdh); \
49 c = vec_mergeh(_trans_acl, _trans_bdl); \
50 d = vec_mergel(_trans_acl, _trans_bdl); \
54 // Loads a four-byte value (int or float) from the target address
55 // into every element in the target vector. Only works if the
56 // target address is four-byte aligned (which should be always).
57 #define LOAD4(vec, address) \
59 __typeof__(vec)* _load_addr = (__typeof__(vec)*)(address); \
60 vector unsigned char _perm_vec = vec_lvsl(0,(address)); \
61 vec = vec_ld(0, _load_addr); \
62 vec = vec_perm(vec, vec, _perm_vec); \
63 vec = vec_splat(vec, 0); \
67 #define FOUROF(a) {a,a,a,a}
69 int dct_quantize_altivec(MpegEncContext
* s
,
71 int qscale
, int* overflow
)
74 vector
float row0
, row1
, row2
, row3
, row4
, row5
, row6
, row7
;
75 vector
float alt0
, alt1
, alt2
, alt3
, alt4
, alt5
, alt6
, alt7
;
76 const vector
float zero
= (const vector
float)FOUROF(0.);
77 // used after quantize step
80 // Load the data into the row/alt vectors
82 vector
signed short data0
, data1
, data2
, data3
, data4
, data5
, data6
, data7
;
84 data0
= vec_ld(0, data
);
85 data1
= vec_ld(16, data
);
86 data2
= vec_ld(32, data
);
87 data3
= vec_ld(48, data
);
88 data4
= vec_ld(64, data
);
89 data5
= vec_ld(80, data
);
90 data6
= vec_ld(96, data
);
91 data7
= vec_ld(112, data
);
93 // Transpose the data before we start
94 TRANSPOSE8(data0
, data1
, data2
, data3
, data4
, data5
, data6
, data7
);
96 // load the data into floating point vectors. We load
97 // the high half of each row into the main row vectors
98 // and the low half into the alt vectors.
99 row0
= vec_ctf(vec_unpackh(data0
), 0);
100 alt0
= vec_ctf(vec_unpackl(data0
), 0);
101 row1
= vec_ctf(vec_unpackh(data1
), 0);
102 alt1
= vec_ctf(vec_unpackl(data1
), 0);
103 row2
= vec_ctf(vec_unpackh(data2
), 0);
104 alt2
= vec_ctf(vec_unpackl(data2
), 0);
105 row3
= vec_ctf(vec_unpackh(data3
), 0);
106 alt3
= vec_ctf(vec_unpackl(data3
), 0);
107 row4
= vec_ctf(vec_unpackh(data4
), 0);
108 alt4
= vec_ctf(vec_unpackl(data4
), 0);
109 row5
= vec_ctf(vec_unpackh(data5
), 0);
110 alt5
= vec_ctf(vec_unpackl(data5
), 0);
111 row6
= vec_ctf(vec_unpackh(data6
), 0);
112 alt6
= vec_ctf(vec_unpackl(data6
), 0);
113 row7
= vec_ctf(vec_unpackh(data7
), 0);
114 alt7
= vec_ctf(vec_unpackl(data7
), 0);
117 // The following block could exist as a separate an altivec dct
118 // function. However, if we put it inline, the DCT data can remain
119 // in the vector local variables, as floats, which we'll use during the
122 const vector
float vec_0_298631336
= (vector
float)FOUROF(0.298631336f
);
123 const vector
float vec_0_390180644
= (vector
float)FOUROF(-0.390180644f
);
124 const vector
float vec_0_541196100
= (vector
float)FOUROF(0.541196100f
);
125 const vector
float vec_0_765366865
= (vector
float)FOUROF(0.765366865f
);
126 const vector
float vec_0_899976223
= (vector
float)FOUROF(-0.899976223f
);
127 const vector
float vec_1_175875602
= (vector
float)FOUROF(1.175875602f
);
128 const vector
float vec_1_501321110
= (vector
float)FOUROF(1.501321110f
);
129 const vector
float vec_1_847759065
= (vector
float)FOUROF(-1.847759065f
);
130 const vector
float vec_1_961570560
= (vector
float)FOUROF(-1.961570560f
);
131 const vector
float vec_2_053119869
= (vector
float)FOUROF(2.053119869f
);
132 const vector
float vec_2_562915447
= (vector
float)FOUROF(-2.562915447f
);
133 const vector
float vec_3_072711026
= (vector
float)FOUROF(3.072711026f
);
136 int whichPass
, whichHalf
;
138 for(whichPass
= 1; whichPass
<=2; whichPass
++) {
139 for(whichHalf
= 1; whichHalf
<=2; whichHalf
++) {
140 vector
float tmp0
, tmp1
, tmp2
, tmp3
, tmp4
, tmp5
, tmp6
, tmp7
;
141 vector
float tmp10
, tmp11
, tmp12
, tmp13
;
142 vector
float z1
, z2
, z3
, z4
, z5
;
144 tmp0
= vec_add(row0
, row7
); // tmp0 = dataptr[0] + dataptr[7];
145 tmp7
= vec_sub(row0
, row7
); // tmp7 = dataptr[0] - dataptr[7];
146 tmp3
= vec_add(row3
, row4
); // tmp3 = dataptr[3] + dataptr[4];
147 tmp4
= vec_sub(row3
, row4
); // tmp4 = dataptr[3] - dataptr[4];
148 tmp1
= vec_add(row1
, row6
); // tmp1 = dataptr[1] + dataptr[6];
149 tmp6
= vec_sub(row1
, row6
); // tmp6 = dataptr[1] - dataptr[6];
150 tmp2
= vec_add(row2
, row5
); // tmp2 = dataptr[2] + dataptr[5];
151 tmp5
= vec_sub(row2
, row5
); // tmp5 = dataptr[2] - dataptr[5];
153 tmp10
= vec_add(tmp0
, tmp3
); // tmp10 = tmp0 + tmp3;
154 tmp13
= vec_sub(tmp0
, tmp3
); // tmp13 = tmp0 - tmp3;
155 tmp11
= vec_add(tmp1
, tmp2
); // tmp11 = tmp1 + tmp2;
156 tmp12
= vec_sub(tmp1
, tmp2
); // tmp12 = tmp1 - tmp2;
159 // dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
160 row0
= vec_add(tmp10
, tmp11
);
162 // dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
163 row4
= vec_sub(tmp10
, tmp11
);
166 // z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
167 z1
= vec_madd(vec_add(tmp12
, tmp13
), vec_0_541196100
, (vector
float)zero
);
169 // dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
170 // CONST_BITS-PASS1_BITS);
171 row2
= vec_madd(tmp13
, vec_0_765366865
, z1
);
173 // dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
174 // CONST_BITS-PASS1_BITS);
175 row6
= vec_madd(tmp12
, vec_1_847759065
, z1
);
177 z1
= vec_add(tmp4
, tmp7
); // z1 = tmp4 + tmp7;
178 z2
= vec_add(tmp5
, tmp6
); // z2 = tmp5 + tmp6;
179 z3
= vec_add(tmp4
, tmp6
); // z3 = tmp4 + tmp6;
180 z4
= vec_add(tmp5
, tmp7
); // z4 = tmp5 + tmp7;
182 // z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
183 z5
= vec_madd(vec_add(z3
, z4
), vec_1_175875602
, (vector
float)zero
);
185 // z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
186 z3
= vec_madd(z3
, vec_1_961570560
, z5
);
188 // z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
189 z4
= vec_madd(z4
, vec_0_390180644
, z5
);
191 // The following adds are rolled into the multiplies above
192 // z3 = vec_add(z3, z5); // z3 += z5;
193 // z4 = vec_add(z4, z5); // z4 += z5;
195 // z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
196 // Wow! It's actually more efficient to roll this multiply
197 // into the adds below, even thought the multiply gets done twice!
198 // z2 = vec_madd(z2, vec_2_562915447, (vector float)zero);
200 // z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
201 // Same with this one...
202 // z1 = vec_madd(z1, vec_0_899976223, (vector float)zero);
204 // tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
205 // dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
206 row7
= vec_madd(tmp4
, vec_0_298631336
, vec_madd(z1
, vec_0_899976223
, z3
));
208 // tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
209 // dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
210 row5
= vec_madd(tmp5
, vec_2_053119869
, vec_madd(z2
, vec_2_562915447
, z4
));
212 // tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
213 // dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
214 row3
= vec_madd(tmp6
, vec_3_072711026
, vec_madd(z2
, vec_2_562915447
, z3
));
216 // tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
217 // dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
218 row1
= vec_madd(z1
, vec_0_899976223
, vec_madd(tmp7
, vec_1_501321110
, z4
));
220 // Swap the row values with the alts. If this is the first half,
221 // this sets up the low values to be acted on in the second half.
222 // If this is the second half, it puts the high values back in
223 // the row values where they are expected to be when we're done.
234 if (whichPass
== 1) {
235 // transpose the data for the second pass
237 // First, block transpose the upper right with lower left.
243 // Now, transpose each block of four
244 TRANSPOSE4(row0
, row1
, row2
, row3
);
245 TRANSPOSE4(row4
, row5
, row6
, row7
);
246 TRANSPOSE4(alt0
, alt1
, alt2
, alt3
);
247 TRANSPOSE4(alt4
, alt5
, alt6
, alt7
);
252 // perform the quantize step, using the floating point data
253 // still in the row/alt registers
256 const vector
signed int* qmat
;
257 vector
float bias
, negBias
;
260 vector
signed int baseVector
;
262 // We must cache element 0 in the intra case
263 // (it needs special handling).
264 baseVector
= vec_cts(vec_splat(row0
, 0), 0);
265 vec_ste(baseVector
, 0, &oldBaseValue
);
267 qmat
= (vector
signed int*)s
->q_intra_matrix
[qscale
];
268 biasAddr
= &(s
->intra_quant_bias
);
270 qmat
= (vector
signed int*)s
->q_inter_matrix
[qscale
];
271 biasAddr
= &(s
->inter_quant_bias
);
274 // Load the bias vector (We add 0.5 to the bias so that we're
275 // rounding when we convert to int, instead of flooring.)
277 vector
signed int biasInt
;
278 const vector
float negOneFloat
= (vector
float)FOUROF(-1.0f
);
279 LOAD4(biasInt
, biasAddr
);
280 bias
= vec_ctf(biasInt
, QUANT_BIAS_SHIFT
);
281 negBias
= vec_madd(bias
, negOneFloat
, zero
);
285 vector
float q0
, q1
, q2
, q3
, q4
, q5
, q6
, q7
;
287 q0
= vec_ctf(qmat
[0], QMAT_SHIFT
);
288 q1
= vec_ctf(qmat
[2], QMAT_SHIFT
);
289 q2
= vec_ctf(qmat
[4], QMAT_SHIFT
);
290 q3
= vec_ctf(qmat
[6], QMAT_SHIFT
);
291 q4
= vec_ctf(qmat
[8], QMAT_SHIFT
);
292 q5
= vec_ctf(qmat
[10], QMAT_SHIFT
);
293 q6
= vec_ctf(qmat
[12], QMAT_SHIFT
);
294 q7
= vec_ctf(qmat
[14], QMAT_SHIFT
);
296 row0
= vec_sel(vec_madd(row0
, q0
, negBias
), vec_madd(row0
, q0
, bias
),
297 vec_cmpgt(row0
, zero
));
298 row1
= vec_sel(vec_madd(row1
, q1
, negBias
), vec_madd(row1
, q1
, bias
),
299 vec_cmpgt(row1
, zero
));
300 row2
= vec_sel(vec_madd(row2
, q2
, negBias
), vec_madd(row2
, q2
, bias
),
301 vec_cmpgt(row2
, zero
));
302 row3
= vec_sel(vec_madd(row3
, q3
, negBias
), vec_madd(row3
, q3
, bias
),
303 vec_cmpgt(row3
, zero
));
304 row4
= vec_sel(vec_madd(row4
, q4
, negBias
), vec_madd(row4
, q4
, bias
),
305 vec_cmpgt(row4
, zero
));
306 row5
= vec_sel(vec_madd(row5
, q5
, negBias
), vec_madd(row5
, q5
, bias
),
307 vec_cmpgt(row5
, zero
));
308 row6
= vec_sel(vec_madd(row6
, q6
, negBias
), vec_madd(row6
, q6
, bias
),
309 vec_cmpgt(row6
, zero
));
310 row7
= vec_sel(vec_madd(row7
, q7
, negBias
), vec_madd(row7
, q7
, bias
),
311 vec_cmpgt(row7
, zero
));
313 q0
= vec_ctf(qmat
[1], QMAT_SHIFT
);
314 q1
= vec_ctf(qmat
[3], QMAT_SHIFT
);
315 q2
= vec_ctf(qmat
[5], QMAT_SHIFT
);
316 q3
= vec_ctf(qmat
[7], QMAT_SHIFT
);
317 q4
= vec_ctf(qmat
[9], QMAT_SHIFT
);
318 q5
= vec_ctf(qmat
[11], QMAT_SHIFT
);
319 q6
= vec_ctf(qmat
[13], QMAT_SHIFT
);
320 q7
= vec_ctf(qmat
[15], QMAT_SHIFT
);
322 alt0
= vec_sel(vec_madd(alt0
, q0
, negBias
), vec_madd(alt0
, q0
, bias
),
323 vec_cmpgt(alt0
, zero
));
324 alt1
= vec_sel(vec_madd(alt1
, q1
, negBias
), vec_madd(alt1
, q1
, bias
),
325 vec_cmpgt(alt1
, zero
));
326 alt2
= vec_sel(vec_madd(alt2
, q2
, negBias
), vec_madd(alt2
, q2
, bias
),
327 vec_cmpgt(alt2
, zero
));
328 alt3
= vec_sel(vec_madd(alt3
, q3
, negBias
), vec_madd(alt3
, q3
, bias
),
329 vec_cmpgt(alt3
, zero
));
330 alt4
= vec_sel(vec_madd(alt4
, q4
, negBias
), vec_madd(alt4
, q4
, bias
),
331 vec_cmpgt(alt4
, zero
));
332 alt5
= vec_sel(vec_madd(alt5
, q5
, negBias
), vec_madd(alt5
, q5
, bias
),
333 vec_cmpgt(alt5
, zero
));
334 alt6
= vec_sel(vec_madd(alt6
, q6
, negBias
), vec_madd(alt6
, q6
, bias
),
335 vec_cmpgt(alt6
, zero
));
336 alt7
= vec_sel(vec_madd(alt7
, q7
, negBias
), vec_madd(alt7
, q7
, bias
),
337 vec_cmpgt(alt7
, zero
));
343 // Store the data back into the original block
345 vector
signed short data0
, data1
, data2
, data3
, data4
, data5
, data6
, data7
;
347 data0
= vec_pack(vec_cts(row0
, 0), vec_cts(alt0
, 0));
348 data1
= vec_pack(vec_cts(row1
, 0), vec_cts(alt1
, 0));
349 data2
= vec_pack(vec_cts(row2
, 0), vec_cts(alt2
, 0));
350 data3
= vec_pack(vec_cts(row3
, 0), vec_cts(alt3
, 0));
351 data4
= vec_pack(vec_cts(row4
, 0), vec_cts(alt4
, 0));
352 data5
= vec_pack(vec_cts(row5
, 0), vec_cts(alt5
, 0));
353 data6
= vec_pack(vec_cts(row6
, 0), vec_cts(alt6
, 0));
354 data7
= vec_pack(vec_cts(row7
, 0), vec_cts(alt7
, 0));
357 // Clamp for overflow
358 vector
signed int max_q_int
, min_q_int
;
359 vector
signed short max_q
, min_q
;
361 LOAD4(max_q_int
, &(s
->max_qcoeff
));
362 LOAD4(min_q_int
, &(s
->min_qcoeff
));
364 max_q
= vec_pack(max_q_int
, max_q_int
);
365 min_q
= vec_pack(min_q_int
, min_q_int
);
367 data0
= vec_max(vec_min(data0
, max_q
), min_q
);
368 data1
= vec_max(vec_min(data1
, max_q
), min_q
);
369 data2
= vec_max(vec_min(data2
, max_q
), min_q
);
370 data4
= vec_max(vec_min(data4
, max_q
), min_q
);
371 data5
= vec_max(vec_min(data5
, max_q
), min_q
);
372 data6
= vec_max(vec_min(data6
, max_q
), min_q
);
373 data7
= vec_max(vec_min(data7
, max_q
), min_q
);
377 vector
bool char zero_01
, zero_23
, zero_45
, zero_67
;
378 vector
signed char scanIndexes_01
, scanIndexes_23
, scanIndexes_45
, scanIndexes_67
;
379 vector
signed char negOne
= vec_splat_s8(-1);
380 vector
signed char* scanPtr
=
381 (vector
signed char*)(s
->intra_scantable
.inverse
);
382 signed char lastNonZeroChar
;
384 // Determine the largest non-zero index.
385 zero_01
= vec_pack(vec_cmpeq(data0
, (vector
signed short)zero
),
386 vec_cmpeq(data1
, (vector
signed short)zero
));
387 zero_23
= vec_pack(vec_cmpeq(data2
, (vector
signed short)zero
),
388 vec_cmpeq(data3
, (vector
signed short)zero
));
389 zero_45
= vec_pack(vec_cmpeq(data4
, (vector
signed short)zero
),
390 vec_cmpeq(data5
, (vector
signed short)zero
));
391 zero_67
= vec_pack(vec_cmpeq(data6
, (vector
signed short)zero
),
392 vec_cmpeq(data7
, (vector
signed short)zero
));
395 scanIndexes_01
= vec_sel(scanPtr
[0], negOne
, zero_01
);
396 scanIndexes_23
= vec_sel(scanPtr
[1], negOne
, zero_23
);
397 scanIndexes_45
= vec_sel(scanPtr
[2], negOne
, zero_45
);
398 scanIndexes_67
= vec_sel(scanPtr
[3], negOne
, zero_67
);
401 scanIndexes_01
= vec_max(scanIndexes_01
, scanIndexes_23
);
402 scanIndexes_45
= vec_max(scanIndexes_45
, scanIndexes_67
);
405 scanIndexes_01
= vec_max(scanIndexes_01
, scanIndexes_45
);
408 scanIndexes_01
= vec_max(vec_mergeh(scanIndexes_01
, negOne
),
409 vec_mergel(scanIndexes_01
, negOne
));
412 scanIndexes_01
= vec_max(vec_mergeh(scanIndexes_01
, negOne
),
413 vec_mergel(scanIndexes_01
, negOne
));
416 scanIndexes_01
= vec_max(vec_mergeh(scanIndexes_01
, negOne
),
417 vec_mergel(scanIndexes_01
, negOne
));
420 scanIndexes_01
= vec_max(vec_mergeh(scanIndexes_01
, negOne
),
421 vec_mergel(scanIndexes_01
, negOne
));
423 scanIndexes_01
= vec_splat(scanIndexes_01
, 0);
426 vec_ste(scanIndexes_01
, 0, &lastNonZeroChar
);
428 lastNonZero
= lastNonZeroChar
;
430 // While the data is still in vectors we check for the transpose IDCT permute
431 // and handle it using the vector unit if we can. This is the permute used
432 // by the altivec idct, so it is common when using the altivec dct.
434 if ((lastNonZero
> 0) && (s
->dsp
.idct_permutation_type
== FF_TRANSPOSE_IDCT_PERM
)) {
435 TRANSPOSE8(data0
, data1
, data2
, data3
, data4
, data5
, data6
, data7
);
438 vec_st(data0
, 0, data
);
439 vec_st(data1
, 16, data
);
440 vec_st(data2
, 32, data
);
441 vec_st(data3
, 48, data
);
442 vec_st(data4
, 64, data
);
443 vec_st(data5
, 80, data
);
444 vec_st(data6
, 96, data
);
445 vec_st(data7
, 112, data
);
449 // special handling of block[0]
453 oldBaseValue
/= s
->y_dc_scale
;
455 oldBaseValue
/= s
->c_dc_scale
;
458 // Divide by 8, rounding the result
459 data
[0] = (oldBaseValue
+ 4) >> 3;
462 // We handled the transpose permutation above and we don't
463 // need to permute the "no" permutation case.
464 if ((lastNonZero
> 0) &&
465 (s
->dsp
.idct_permutation_type
!= FF_TRANSPOSE_IDCT_PERM
) &&
466 (s
->dsp
.idct_permutation_type
!= FF_NO_IDCT_PERM
)) {
467 ff_block_permute(data
, s
->dsp
.idct_permutation
,
468 s
->intra_scantable
.scantable
, lastNonZero
);
474 /* AltiVec version of dct_unquantize_h263
475 this code assumes `block' is 16 bytes-aligned */
476 void dct_unquantize_h263_altivec(MpegEncContext
*s
,
477 DCTELEM
*block
, int n
, int qscale
)
479 POWERPC_PERF_DECLARE(altivec_dct_unquantize_h263_num
, 1);
480 int i
, level
, qmul
, qadd
;
483 assert(s
->block_last_index
[n
]>=0);
485 POWERPC_PERF_START_COUNT(altivec_dct_unquantize_h263_num
, 1);
487 qadd
= (qscale
- 1) | 1;
493 block
[0] = block
[0] * s
->y_dc_scale
;
495 block
[0] = block
[0] * s
->c_dc_scale
;
499 nCoeffs
= 63; //does not always use zigzag table
502 nCoeffs
= s
->intra_scantable
.raster_end
[ s
->block_last_index
[n
] ];
506 register const vector
signed short vczero
= (const vector
signed short)vec_splat_s16(0);
507 DECLARE_ALIGNED_16(short, qmul8
[]) =
509 qmul
, qmul
, qmul
, qmul
,
510 qmul
, qmul
, qmul
, qmul
512 DECLARE_ALIGNED_16(short, qadd8
[]) =
514 qadd
, qadd
, qadd
, qadd
,
515 qadd
, qadd
, qadd
, qadd
517 DECLARE_ALIGNED_16(short, nqadd8
[]) =
519 -qadd
, -qadd
, -qadd
, -qadd
,
520 -qadd
, -qadd
, -qadd
, -qadd
522 register vector
signed short blockv
, qmulv
, qaddv
, nqaddv
, temp1
;
523 register vector
bool short blockv_null
, blockv_neg
;
524 register short backup_0
= block
[0];
527 qmulv
= vec_ld(0, qmul8
);
528 qaddv
= vec_ld(0, qadd8
);
529 nqaddv
= vec_ld(0, nqadd8
);
531 #if 0 // block *is* 16 bytes-aligned, it seems.
532 // first make sure block[j] is 16 bytes-aligned
533 for(j
= 0; (j
<= nCoeffs
) && ((((unsigned long)block
) + (j
<< 1)) & 0x0000000F) ; j
++) {
537 level
= level
* qmul
- qadd
;
539 level
= level
* qmul
+ qadd
;
546 // vectorize all the 16 bytes-aligned blocks
548 for(; (j
+ 7) <= nCoeffs
; j
+=8) {
549 blockv
= vec_ld(j
<< 1, block
);
550 blockv_neg
= vec_cmplt(blockv
, vczero
);
551 blockv_null
= vec_cmpeq(blockv
, vczero
);
552 // choose between +qadd or -qadd as the third operand
553 temp1
= vec_sel(qaddv
, nqaddv
, blockv_neg
);
554 // multiply & add (block{i,i+7} * qmul [+-] qadd)
555 temp1
= vec_mladd(blockv
, qmulv
, temp1
);
556 // put 0 where block[{i,i+7} used to have 0
557 blockv
= vec_sel(temp1
, blockv
, blockv_null
);
558 vec_st(blockv
, j
<< 1, block
);
561 // if nCoeffs isn't a multiple of 8, finish the job
562 // using good old scalar units.
563 // (we could do it using a truncated vector,
564 // but I'm not sure it's worth the hassle)
565 for(; j
<= nCoeffs
; j
++) {
569 level
= level
* qmul
- qadd
;
571 level
= level
* qmul
+ qadd
;
578 // cheat. this avoid special-casing the first iteration
582 POWERPC_PERF_STOP_COUNT(altivec_dct_unquantize_h263_num
, nCoeffs
== 63);
586 void idct_put_altivec(uint8_t *dest
, int line_size
, int16_t *block
);
587 void idct_add_altivec(uint8_t *dest
, int line_size
, int16_t *block
);
589 void MPV_common_init_altivec(MpegEncContext
*s
)
591 if ((mm_flags
& FF_MM_ALTIVEC
) == 0) return;
593 if (s
->avctx
->lowres
==0) {
594 if ((s
->avctx
->idct_algo
== FF_IDCT_AUTO
) ||
595 (s
->avctx
->idct_algo
== FF_IDCT_ALTIVEC
)) {
596 s
->dsp
.idct_put
= idct_put_altivec
;
597 s
->dsp
.idct_add
= idct_add_altivec
;
598 s
->dsp
.idct_permutation_type
= FF_TRANSPOSE_IDCT_PERM
;
602 // Test to make sure that the dct required alignments are met.
603 if ((((long)(s
->q_intra_matrix
) & 0x0f) != 0) ||
604 (((long)(s
->q_inter_matrix
) & 0x0f) != 0)) {
605 av_log(s
->avctx
, AV_LOG_INFO
, "Internal Error: q-matrix blocks must be 16-byte aligned "
606 "to use AltiVec DCT. Reverting to non-AltiVec version.\n");
610 if (((long)(s
->intra_scantable
.inverse
) & 0x0f) != 0) {
611 av_log(s
->avctx
, AV_LOG_INFO
, "Internal Error: scan table blocks must be 16-byte aligned "
612 "to use AltiVec DCT. Reverting to non-AltiVec version.\n");
617 if ((s
->avctx
->dct_algo
== FF_DCT_AUTO
) ||
618 (s
->avctx
->dct_algo
== FF_DCT_ALTIVEC
)) {
619 #if 0 /* seems to cause trouble under some circumstances */
620 s
->dct_quantize
= dct_quantize_altivec
;
622 s
->dct_unquantize_h263_intra
= dct_unquantize_h263_altivec
;
623 s
->dct_unquantize_h263_inter
= dct_unquantize_h263_altivec
;