Use add_*flags only after compiler-specific configuration
[FFMpeg-mirror/ordered_chapters.git] / libavcodec / vp3.c
blob47e83f2154acf38a763ae4c97714d9359b828fc2
1 /*
2 * Copyright (C) 2003-2004 the ffmpeg project
4 * This file is part of FFmpeg.
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 /**
22 * @file libavcodec/vp3.c
23 * On2 VP3 Video Decoder
25 * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
26 * For more information about the VP3 coding process, visit:
27 * http://wiki.multimedia.cx/index.php?title=On2_VP3
29 * Theora decoder by Alex Beregszaszi
32 #include <stdio.h>
33 #include <stdlib.h>
34 #include <string.h>
35 #include <unistd.h>
37 #include "avcodec.h"
38 #include "dsputil.h"
39 #include "get_bits.h"
41 #include "vp3data.h"
42 #include "xiph.h"
44 #define FRAGMENT_PIXELS 8
46 typedef struct Coeff {
47 struct Coeff *next;
48 DCTELEM coeff;
49 uint8_t index;
50 } Coeff;
52 //FIXME split things out into their own arrays
53 typedef struct Vp3Fragment {
54 Coeff *next_coeff;
55 /* address of first pixel taking into account which plane the fragment
56 * lives on as well as the plane stride */
57 int first_pixel;
58 /* this is the macroblock that the fragment belongs to */
59 uint16_t macroblock;
60 uint8_t coding_method;
61 int8_t motion_x;
62 int8_t motion_y;
63 uint8_t qpi;
64 } Vp3Fragment;
66 #define SB_NOT_CODED 0
67 #define SB_PARTIALLY_CODED 1
68 #define SB_FULLY_CODED 2
70 #define MODE_INTER_NO_MV 0
71 #define MODE_INTRA 1
72 #define MODE_INTER_PLUS_MV 2
73 #define MODE_INTER_LAST_MV 3
74 #define MODE_INTER_PRIOR_LAST 4
75 #define MODE_USING_GOLDEN 5
76 #define MODE_GOLDEN_MV 6
77 #define MODE_INTER_FOURMV 7
78 #define CODING_MODE_COUNT 8
80 /* special internal mode */
81 #define MODE_COPY 8
83 /* There are 6 preset schemes, plus a free-form scheme */
84 static const int ModeAlphabet[6][CODING_MODE_COUNT] =
86 /* scheme 1: Last motion vector dominates */
87 { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
88 MODE_INTER_PLUS_MV, MODE_INTER_NO_MV,
89 MODE_INTRA, MODE_USING_GOLDEN,
90 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
92 /* scheme 2 */
93 { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
94 MODE_INTER_NO_MV, MODE_INTER_PLUS_MV,
95 MODE_INTRA, MODE_USING_GOLDEN,
96 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
98 /* scheme 3 */
99 { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV,
100 MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
101 MODE_INTRA, MODE_USING_GOLDEN,
102 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
104 /* scheme 4 */
105 { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV,
106 MODE_INTER_NO_MV, MODE_INTER_PRIOR_LAST,
107 MODE_INTRA, MODE_USING_GOLDEN,
108 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
110 /* scheme 5: No motion vector dominates */
111 { MODE_INTER_NO_MV, MODE_INTER_LAST_MV,
112 MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
113 MODE_INTRA, MODE_USING_GOLDEN,
114 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
116 /* scheme 6 */
117 { MODE_INTER_NO_MV, MODE_USING_GOLDEN,
118 MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
119 MODE_INTER_PLUS_MV, MODE_INTRA,
120 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
124 #define MIN_DEQUANT_VAL 2
126 typedef struct Vp3DecodeContext {
127 AVCodecContext *avctx;
128 int theora, theora_tables;
129 int version;
130 int width, height;
131 AVFrame golden_frame;
132 AVFrame last_frame;
133 AVFrame current_frame;
134 int keyframe;
135 DSPContext dsp;
136 int flipped_image;
138 int qps[3];
139 int nqps;
140 int last_qps[3];
142 int superblock_count;
143 int y_superblock_width;
144 int y_superblock_height;
145 int c_superblock_width;
146 int c_superblock_height;
147 int u_superblock_start;
148 int v_superblock_start;
149 unsigned char *superblock_coding;
151 int macroblock_count;
152 int macroblock_width;
153 int macroblock_height;
155 int fragment_count;
156 int fragment_width;
157 int fragment_height;
159 Vp3Fragment *all_fragments;
160 uint8_t *coeff_counts;
161 Coeff *coeffs;
162 Coeff *next_coeff;
163 int fragment_start[3];
165 ScanTable scantable;
167 /* tables */
168 uint16_t coded_dc_scale_factor[64];
169 uint32_t coded_ac_scale_factor[64];
170 uint8_t base_matrix[384][64];
171 uint8_t qr_count[2][3];
172 uint8_t qr_size [2][3][64];
173 uint16_t qr_base[2][3][64];
175 /* this is a list of indexes into the all_fragments array indicating
176 * which of the fragments are coded */
177 int *coded_fragment_list;
178 int coded_fragment_list_index;
179 int pixel_addresses_initialized;
181 VLC dc_vlc[16];
182 VLC ac_vlc_1[16];
183 VLC ac_vlc_2[16];
184 VLC ac_vlc_3[16];
185 VLC ac_vlc_4[16];
187 VLC superblock_run_length_vlc;
188 VLC fragment_run_length_vlc;
189 VLC mode_code_vlc;
190 VLC motion_vector_vlc;
192 /* these arrays need to be on 16-byte boundaries since SSE2 operations
193 * index into them */
194 DECLARE_ALIGNED_16(int16_t, qmat[3][2][3][64]); //<qmat[qpi][is_inter][plane]
196 /* This table contains superblock_count * 16 entries. Each set of 16
197 * numbers corresponds to the fragment indexes 0..15 of the superblock.
198 * An entry will be -1 to indicate that no entry corresponds to that
199 * index. */
200 int *superblock_fragments;
202 /* This table contains superblock_count * 4 entries. Each set of 4
203 * numbers corresponds to the macroblock indexes 0..3 of the superblock.
204 * An entry will be -1 to indicate that no entry corresponds to that
205 * index. */
206 int *superblock_macroblocks;
208 /* This table contains macroblock_count * 6 entries. Each set of 6
209 * numbers corresponds to the fragment indexes 0..5 which comprise
210 * the macroblock (4 Y fragments and 2 C fragments). */
211 int *macroblock_fragments;
212 /* This is an array that indicates how a particular macroblock
213 * is coded. */
214 unsigned char *macroblock_coding;
216 int first_coded_y_fragment;
217 int first_coded_c_fragment;
218 int last_coded_y_fragment;
219 int last_coded_c_fragment;
221 uint8_t edge_emu_buffer[9*2048]; //FIXME dynamic alloc
222 int8_t qscale_table[2048]; //FIXME dynamic alloc (width+15)/16
224 /* Huffman decode */
225 int hti;
226 unsigned int hbits;
227 int entries;
228 int huff_code_size;
229 uint16_t huffman_table[80][32][2];
231 uint8_t filter_limit_values[64];
232 DECLARE_ALIGNED_8(int, bounding_values_array[256+2]);
233 } Vp3DecodeContext;
235 /************************************************************************
236 * VP3 specific functions
237 ************************************************************************/
240 * This function sets up all of the various blocks mappings:
241 * superblocks <-> fragments, macroblocks <-> fragments,
242 * superblocks <-> macroblocks
244 * Returns 0 is successful; returns 1 if *anything* went wrong.
246 static int init_block_mapping(Vp3DecodeContext *s)
248 int i, j;
249 signed int hilbert_walk_mb[4];
251 int current_fragment = 0;
252 int current_width = 0;
253 int current_height = 0;
254 int right_edge = 0;
255 int bottom_edge = 0;
256 int superblock_row_inc = 0;
257 int mapping_index = 0;
259 int current_macroblock;
260 int c_fragment;
262 signed char travel_width[16] = {
263 1, 1, 0, -1,
264 0, 0, 1, 0,
265 1, 0, 1, 0,
266 0, -1, 0, 1
269 signed char travel_height[16] = {
270 0, 0, 1, 0,
271 1, 1, 0, -1,
272 0, 1, 0, -1,
273 -1, 0, -1, 0
276 signed char travel_width_mb[4] = {
277 1, 0, 1, 0
280 signed char travel_height_mb[4] = {
281 0, 1, 0, -1
284 hilbert_walk_mb[0] = 1;
285 hilbert_walk_mb[1] = s->macroblock_width;
286 hilbert_walk_mb[2] = 1;
287 hilbert_walk_mb[3] = -s->macroblock_width;
289 /* iterate through each superblock (all planes) and map the fragments */
290 for (i = 0; i < s->superblock_count; i++) {
291 /* time to re-assign the limits? */
292 if (i == 0) {
294 /* start of Y superblocks */
295 right_edge = s->fragment_width;
296 bottom_edge = s->fragment_height;
297 current_width = -1;
298 current_height = 0;
299 superblock_row_inc = 3 * s->fragment_width -
300 (s->y_superblock_width * 4 - s->fragment_width);
302 /* the first operation for this variable is to advance by 1 */
303 current_fragment = -1;
305 } else if (i == s->u_superblock_start) {
307 /* start of U superblocks */
308 right_edge = s->fragment_width / 2;
309 bottom_edge = s->fragment_height / 2;
310 current_width = -1;
311 current_height = 0;
312 superblock_row_inc = 3 * (s->fragment_width / 2) -
313 (s->c_superblock_width * 4 - s->fragment_width / 2);
315 /* the first operation for this variable is to advance by 1 */
316 current_fragment = s->fragment_start[1] - 1;
318 } else if (i == s->v_superblock_start) {
320 /* start of V superblocks */
321 right_edge = s->fragment_width / 2;
322 bottom_edge = s->fragment_height / 2;
323 current_width = -1;
324 current_height = 0;
325 superblock_row_inc = 3 * (s->fragment_width / 2) -
326 (s->c_superblock_width * 4 - s->fragment_width / 2);
328 /* the first operation for this variable is to advance by 1 */
329 current_fragment = s->fragment_start[2] - 1;
333 if (current_width >= right_edge - 1) {
334 /* reset width and move to next superblock row */
335 current_width = -1;
336 current_height += 4;
338 /* fragment is now at the start of a new superblock row */
339 current_fragment += superblock_row_inc;
342 /* iterate through all 16 fragments in a superblock */
343 for (j = 0; j < 16; j++) {
344 current_fragment += travel_width[j] + right_edge * travel_height[j];
345 current_width += travel_width[j];
346 current_height += travel_height[j];
348 /* check if the fragment is in bounds */
349 if ((current_width < right_edge) &&
350 (current_height < bottom_edge)) {
351 s->superblock_fragments[mapping_index] = current_fragment;
352 } else {
353 s->superblock_fragments[mapping_index] = -1;
356 mapping_index++;
360 /* initialize the superblock <-> macroblock mapping; iterate through
361 * all of the Y plane superblocks to build this mapping */
362 right_edge = s->macroblock_width;
363 bottom_edge = s->macroblock_height;
364 current_width = -1;
365 current_height = 0;
366 superblock_row_inc = s->macroblock_width -
367 (s->y_superblock_width * 2 - s->macroblock_width);
368 mapping_index = 0;
369 current_macroblock = -1;
370 for (i = 0; i < s->u_superblock_start; i++) {
372 if (current_width >= right_edge - 1) {
373 /* reset width and move to next superblock row */
374 current_width = -1;
375 current_height += 2;
377 /* macroblock is now at the start of a new superblock row */
378 current_macroblock += superblock_row_inc;
381 /* iterate through each potential macroblock in the superblock */
382 for (j = 0; j < 4; j++) {
383 current_macroblock += hilbert_walk_mb[j];
384 current_width += travel_width_mb[j];
385 current_height += travel_height_mb[j];
387 /* check if the macroblock is in bounds */
388 if ((current_width < right_edge) &&
389 (current_height < bottom_edge)) {
390 s->superblock_macroblocks[mapping_index] = current_macroblock;
391 } else {
392 s->superblock_macroblocks[mapping_index] = -1;
395 mapping_index++;
399 /* initialize the macroblock <-> fragment mapping */
400 current_fragment = 0;
401 current_macroblock = 0;
402 mapping_index = 0;
403 for (i = 0; i < s->fragment_height; i += 2) {
405 for (j = 0; j < s->fragment_width; j += 2) {
407 s->all_fragments[current_fragment].macroblock = current_macroblock;
408 s->macroblock_fragments[mapping_index++] = current_fragment;
410 if (j + 1 < s->fragment_width) {
411 s->all_fragments[current_fragment + 1].macroblock = current_macroblock;
412 s->macroblock_fragments[mapping_index++] = current_fragment + 1;
413 } else
414 s->macroblock_fragments[mapping_index++] = -1;
416 if (i + 1 < s->fragment_height) {
417 s->all_fragments[current_fragment + s->fragment_width].macroblock =
418 current_macroblock;
419 s->macroblock_fragments[mapping_index++] =
420 current_fragment + s->fragment_width;
421 } else
422 s->macroblock_fragments[mapping_index++] = -1;
424 if ((j + 1 < s->fragment_width) && (i + 1 < s->fragment_height)) {
425 s->all_fragments[current_fragment + s->fragment_width + 1].macroblock =
426 current_macroblock;
427 s->macroblock_fragments[mapping_index++] =
428 current_fragment + s->fragment_width + 1;
429 } else
430 s->macroblock_fragments[mapping_index++] = -1;
432 /* C planes */
433 c_fragment = s->fragment_start[1] +
434 (i * s->fragment_width / 4) + (j / 2);
435 s->all_fragments[c_fragment].macroblock = s->macroblock_count;
436 s->macroblock_fragments[mapping_index++] = c_fragment;
438 c_fragment = s->fragment_start[2] +
439 (i * s->fragment_width / 4) + (j / 2);
440 s->all_fragments[c_fragment].macroblock = s->macroblock_count;
441 s->macroblock_fragments[mapping_index++] = c_fragment;
443 if (j + 2 <= s->fragment_width)
444 current_fragment += 2;
445 else
446 current_fragment++;
447 current_macroblock++;
450 current_fragment += s->fragment_width;
453 return 0; /* successful path out */
457 * This function wipes out all of the fragment data.
459 static void init_frame(Vp3DecodeContext *s, GetBitContext *gb)
461 int i;
463 /* zero out all of the fragment information */
464 s->coded_fragment_list_index = 0;
465 for (i = 0; i < s->fragment_count; i++) {
466 s->coeff_counts[i] = 0;
467 s->all_fragments[i].motion_x = 127;
468 s->all_fragments[i].motion_y = 127;
469 s->all_fragments[i].next_coeff= NULL;
470 s->all_fragments[i].qpi = 0;
471 s->coeffs[i].index=
472 s->coeffs[i].coeff=0;
473 s->coeffs[i].next= NULL;
478 * This function sets up the dequantization tables used for a particular
479 * frame.
481 static void init_dequantizer(Vp3DecodeContext *s, int qpi)
483 int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]];
484 int dc_scale_factor = s->coded_dc_scale_factor[s->qps[qpi]];
485 int i, plane, inter, qri, bmi, bmj, qistart;
487 for(inter=0; inter<2; inter++){
488 for(plane=0; plane<3; plane++){
489 int sum=0;
490 for(qri=0; qri<s->qr_count[inter][plane]; qri++){
491 sum+= s->qr_size[inter][plane][qri];
492 if(s->qps[qpi] <= sum)
493 break;
495 qistart= sum - s->qr_size[inter][plane][qri];
496 bmi= s->qr_base[inter][plane][qri ];
497 bmj= s->qr_base[inter][plane][qri+1];
498 for(i=0; i<64; i++){
499 int coeff= ( 2*(sum -s->qps[qpi])*s->base_matrix[bmi][i]
500 - 2*(qistart-s->qps[qpi])*s->base_matrix[bmj][i]
501 + s->qr_size[inter][plane][qri])
502 / (2*s->qr_size[inter][plane][qri]);
504 int qmin= 8<<(inter + !i);
505 int qscale= i ? ac_scale_factor : dc_scale_factor;
507 s->qmat[qpi][inter][plane][s->dsp.idct_permutation[i]]= av_clip((qscale * coeff)/100 * 4, qmin, 4096);
509 // all DC coefficients use the same quant so as not to interfere with DC prediction
510 s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0];
514 memset(s->qscale_table, (FFMAX(s->qmat[0][0][0][1], s->qmat[0][0][1][1])+8)/16, 512); //FIXME finetune
518 * This function initializes the loop filter boundary limits if the frame's
519 * quality index is different from the previous frame's.
521 * The filter_limit_values may not be larger than 127.
523 static void init_loop_filter(Vp3DecodeContext *s)
525 int *bounding_values= s->bounding_values_array+127;
526 int filter_limit;
527 int x;
528 int value;
530 filter_limit = s->filter_limit_values[s->qps[0]];
532 /* set up the bounding values */
533 memset(s->bounding_values_array, 0, 256 * sizeof(int));
534 for (x = 0; x < filter_limit; x++) {
535 bounding_values[-x] = -x;
536 bounding_values[x] = x;
538 for (x = value = filter_limit; x < 128 && value; x++, value--) {
539 bounding_values[ x] = value;
540 bounding_values[-x] = -value;
542 if (value)
543 bounding_values[128] = value;
544 bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202;
548 * This function unpacks all of the superblock/macroblock/fragment coding
549 * information from the bitstream.
551 static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
553 int bit = 0;
554 int current_superblock = 0;
555 int current_run = 0;
556 int decode_fully_flags = 0;
557 int decode_partial_blocks = 0;
558 int first_c_fragment_seen;
560 int i, j;
561 int current_fragment;
563 if (s->keyframe) {
564 memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
566 } else {
568 /* unpack the list of partially-coded superblocks */
569 bit = get_bits1(gb);
570 /* toggle the bit because as soon as the first run length is
571 * fetched the bit will be toggled again */
572 bit ^= 1;
573 while (current_superblock < s->superblock_count) {
574 if (current_run-- == 0) {
575 bit ^= 1;
576 current_run = get_vlc2(gb,
577 s->superblock_run_length_vlc.table, 6, 2);
578 if (current_run == 33)
579 current_run += get_bits(gb, 12);
581 /* if any of the superblocks are not partially coded, flag
582 * a boolean to decode the list of fully-coded superblocks */
583 if (bit == 0) {
584 decode_fully_flags = 1;
585 } else {
587 /* make a note of the fact that there are partially coded
588 * superblocks */
589 decode_partial_blocks = 1;
592 s->superblock_coding[current_superblock++] = bit;
595 /* unpack the list of fully coded superblocks if any of the blocks were
596 * not marked as partially coded in the previous step */
597 if (decode_fully_flags) {
599 current_superblock = 0;
600 current_run = 0;
601 bit = get_bits1(gb);
602 /* toggle the bit because as soon as the first run length is
603 * fetched the bit will be toggled again */
604 bit ^= 1;
605 while (current_superblock < s->superblock_count) {
607 /* skip any superblocks already marked as partially coded */
608 if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
610 if (current_run-- == 0) {
611 bit ^= 1;
612 current_run = get_vlc2(gb,
613 s->superblock_run_length_vlc.table, 6, 2);
614 if (current_run == 33)
615 current_run += get_bits(gb, 12);
617 s->superblock_coding[current_superblock] = 2*bit;
619 current_superblock++;
623 /* if there were partial blocks, initialize bitstream for
624 * unpacking fragment codings */
625 if (decode_partial_blocks) {
627 current_run = 0;
628 bit = get_bits1(gb);
629 /* toggle the bit because as soon as the first run length is
630 * fetched the bit will be toggled again */
631 bit ^= 1;
635 /* figure out which fragments are coded; iterate through each
636 * superblock (all planes) */
637 s->coded_fragment_list_index = 0;
638 s->next_coeff= s->coeffs + s->fragment_count;
639 s->first_coded_y_fragment = s->first_coded_c_fragment = 0;
640 s->last_coded_y_fragment = s->last_coded_c_fragment = -1;
641 first_c_fragment_seen = 0;
642 memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
643 for (i = 0; i < s->superblock_count; i++) {
645 /* iterate through all 16 fragments in a superblock */
646 for (j = 0; j < 16; j++) {
648 /* if the fragment is in bounds, check its coding status */
649 current_fragment = s->superblock_fragments[i * 16 + j];
650 if (current_fragment >= s->fragment_count) {
651 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_superblocks(): bad fragment number (%d >= %d)\n",
652 current_fragment, s->fragment_count);
653 return 1;
655 if (current_fragment != -1) {
656 if (s->superblock_coding[i] == SB_NOT_CODED) {
658 /* copy all the fragments from the prior frame */
659 s->all_fragments[current_fragment].coding_method =
660 MODE_COPY;
662 } else if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
664 /* fragment may or may not be coded; this is the case
665 * that cares about the fragment coding runs */
666 if (current_run-- == 0) {
667 bit ^= 1;
668 current_run = get_vlc2(gb,
669 s->fragment_run_length_vlc.table, 5, 2);
672 if (bit) {
673 /* default mode; actual mode will be decoded in
674 * the next phase */
675 s->all_fragments[current_fragment].coding_method =
676 MODE_INTER_NO_MV;
677 s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
678 s->coded_fragment_list[s->coded_fragment_list_index] =
679 current_fragment;
680 if ((current_fragment >= s->fragment_start[1]) &&
681 (s->last_coded_y_fragment == -1) &&
682 (!first_c_fragment_seen)) {
683 s->first_coded_c_fragment = s->coded_fragment_list_index;
684 s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
685 first_c_fragment_seen = 1;
687 s->coded_fragment_list_index++;
688 s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
689 } else {
690 /* not coded; copy this fragment from the prior frame */
691 s->all_fragments[current_fragment].coding_method =
692 MODE_COPY;
695 } else {
697 /* fragments are fully coded in this superblock; actual
698 * coding will be determined in next step */
699 s->all_fragments[current_fragment].coding_method =
700 MODE_INTER_NO_MV;
701 s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
702 s->coded_fragment_list[s->coded_fragment_list_index] =
703 current_fragment;
704 if ((current_fragment >= s->fragment_start[1]) &&
705 (s->last_coded_y_fragment == -1) &&
706 (!first_c_fragment_seen)) {
707 s->first_coded_c_fragment = s->coded_fragment_list_index;
708 s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
709 first_c_fragment_seen = 1;
711 s->coded_fragment_list_index++;
712 s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
718 if (!first_c_fragment_seen)
719 /* only Y fragments coded in this frame */
720 s->last_coded_y_fragment = s->coded_fragment_list_index - 1;
721 else
722 /* end the list of coded C fragments */
723 s->last_coded_c_fragment = s->coded_fragment_list_index - 1;
725 return 0;
729 * This function unpacks all the coding mode data for individual macroblocks
730 * from the bitstream.
732 static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
734 int i, j, k;
735 int scheme;
736 int current_macroblock;
737 int current_fragment;
738 int coding_mode;
739 int custom_mode_alphabet[CODING_MODE_COUNT];
741 if (s->keyframe) {
742 for (i = 0; i < s->fragment_count; i++)
743 s->all_fragments[i].coding_method = MODE_INTRA;
745 } else {
747 /* fetch the mode coding scheme for this frame */
748 scheme = get_bits(gb, 3);
750 /* is it a custom coding scheme? */
751 if (scheme == 0) {
752 for (i = 0; i < 8; i++)
753 custom_mode_alphabet[i] = MODE_INTER_NO_MV;
754 for (i = 0; i < 8; i++)
755 custom_mode_alphabet[get_bits(gb, 3)] = i;
758 /* iterate through all of the macroblocks that contain 1 or more
759 * coded fragments */
760 for (i = 0; i < s->u_superblock_start; i++) {
762 for (j = 0; j < 4; j++) {
763 current_macroblock = s->superblock_macroblocks[i * 4 + j];
764 if ((current_macroblock == -1) ||
765 (s->macroblock_coding[current_macroblock] == MODE_COPY))
766 continue;
767 if (current_macroblock >= s->macroblock_count) {
768 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_modes(): bad macroblock number (%d >= %d)\n",
769 current_macroblock, s->macroblock_count);
770 return 1;
773 /* mode 7 means get 3 bits for each coding mode */
774 if (scheme == 7)
775 coding_mode = get_bits(gb, 3);
776 else if(scheme == 0)
777 coding_mode = custom_mode_alphabet
778 [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
779 else
780 coding_mode = ModeAlphabet[scheme-1]
781 [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
783 s->macroblock_coding[current_macroblock] = coding_mode;
784 for (k = 0; k < 6; k++) {
785 current_fragment =
786 s->macroblock_fragments[current_macroblock * 6 + k];
787 if (current_fragment == -1)
788 continue;
789 if (current_fragment >= s->fragment_count) {
790 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_modes(): bad fragment number (%d >= %d)\n",
791 current_fragment, s->fragment_count);
792 return 1;
794 if (s->all_fragments[current_fragment].coding_method !=
795 MODE_COPY)
796 s->all_fragments[current_fragment].coding_method =
797 coding_mode;
803 return 0;
807 * This function unpacks all the motion vectors for the individual
808 * macroblocks from the bitstream.
810 static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
812 int i, j, k, l;
813 int coding_mode;
814 int motion_x[6];
815 int motion_y[6];
816 int last_motion_x = 0;
817 int last_motion_y = 0;
818 int prior_last_motion_x = 0;
819 int prior_last_motion_y = 0;
820 int current_macroblock;
821 int current_fragment;
823 if (s->keyframe)
824 return 0;
826 memset(motion_x, 0, 6 * sizeof(int));
827 memset(motion_y, 0, 6 * sizeof(int));
829 /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
830 coding_mode = get_bits1(gb);
832 /* iterate through all of the macroblocks that contain 1 or more
833 * coded fragments */
834 for (i = 0; i < s->u_superblock_start; i++) {
836 for (j = 0; j < 4; j++) {
837 current_macroblock = s->superblock_macroblocks[i * 4 + j];
838 if ((current_macroblock == -1) ||
839 (s->macroblock_coding[current_macroblock] == MODE_COPY))
840 continue;
841 if (current_macroblock >= s->macroblock_count) {
842 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vectors(): bad macroblock number (%d >= %d)\n",
843 current_macroblock, s->macroblock_count);
844 return 1;
847 current_fragment = s->macroblock_fragments[current_macroblock * 6];
848 if (current_fragment >= s->fragment_count) {
849 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vectors(): bad fragment number (%d >= %d\n",
850 current_fragment, s->fragment_count);
851 return 1;
853 switch (s->macroblock_coding[current_macroblock]) {
855 case MODE_INTER_PLUS_MV:
856 case MODE_GOLDEN_MV:
857 /* all 6 fragments use the same motion vector */
858 if (coding_mode == 0) {
859 motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
860 motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
861 } else {
862 motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
863 motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
866 for (k = 1; k < 6; k++) {
867 motion_x[k] = motion_x[0];
868 motion_y[k] = motion_y[0];
871 /* vector maintenance, only on MODE_INTER_PLUS_MV */
872 if (s->macroblock_coding[current_macroblock] ==
873 MODE_INTER_PLUS_MV) {
874 prior_last_motion_x = last_motion_x;
875 prior_last_motion_y = last_motion_y;
876 last_motion_x = motion_x[0];
877 last_motion_y = motion_y[0];
879 break;
881 case MODE_INTER_FOURMV:
882 /* vector maintenance */
883 prior_last_motion_x = last_motion_x;
884 prior_last_motion_y = last_motion_y;
886 /* fetch 4 vectors from the bitstream, one for each
887 * Y fragment, then average for the C fragment vectors */
888 motion_x[4] = motion_y[4] = 0;
889 for (k = 0; k < 4; k++) {
890 for (l = 0; l < s->coded_fragment_list_index; l++)
891 if (s->coded_fragment_list[l] == s->macroblock_fragments[6*current_macroblock + k])
892 break;
893 if (l < s->coded_fragment_list_index) {
894 if (coding_mode == 0) {
895 motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
896 motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
897 } else {
898 motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
899 motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
901 last_motion_x = motion_x[k];
902 last_motion_y = motion_y[k];
903 } else {
904 motion_x[k] = 0;
905 motion_y[k] = 0;
907 motion_x[4] += motion_x[k];
908 motion_y[4] += motion_y[k];
911 motion_x[5]=
912 motion_x[4]= RSHIFT(motion_x[4], 2);
913 motion_y[5]=
914 motion_y[4]= RSHIFT(motion_y[4], 2);
915 break;
917 case MODE_INTER_LAST_MV:
918 /* all 6 fragments use the last motion vector */
919 motion_x[0] = last_motion_x;
920 motion_y[0] = last_motion_y;
921 for (k = 1; k < 6; k++) {
922 motion_x[k] = motion_x[0];
923 motion_y[k] = motion_y[0];
926 /* no vector maintenance (last vector remains the
927 * last vector) */
928 break;
930 case MODE_INTER_PRIOR_LAST:
931 /* all 6 fragments use the motion vector prior to the
932 * last motion vector */
933 motion_x[0] = prior_last_motion_x;
934 motion_y[0] = prior_last_motion_y;
935 for (k = 1; k < 6; k++) {
936 motion_x[k] = motion_x[0];
937 motion_y[k] = motion_y[0];
940 /* vector maintenance */
941 prior_last_motion_x = last_motion_x;
942 prior_last_motion_y = last_motion_y;
943 last_motion_x = motion_x[0];
944 last_motion_y = motion_y[0];
945 break;
947 default:
948 /* covers intra, inter without MV, golden without MV */
949 memset(motion_x, 0, 6 * sizeof(int));
950 memset(motion_y, 0, 6 * sizeof(int));
952 /* no vector maintenance */
953 break;
956 /* assign the motion vectors to the correct fragments */
957 for (k = 0; k < 6; k++) {
958 current_fragment =
959 s->macroblock_fragments[current_macroblock * 6 + k];
960 if (current_fragment == -1)
961 continue;
962 if (current_fragment >= s->fragment_count) {
963 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vectors(): bad fragment number (%d >= %d)\n",
964 current_fragment, s->fragment_count);
965 return 1;
967 s->all_fragments[current_fragment].motion_x = motion_x[k];
968 s->all_fragments[current_fragment].motion_y = motion_y[k];
973 return 0;
976 static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb)
978 int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi;
979 int num_blocks = s->coded_fragment_list_index;
981 for (qpi = 0; qpi < s->nqps-1 && num_blocks > 0; qpi++) {
982 i = blocks_decoded = num_blocks_at_qpi = 0;
984 bit = get_bits1(gb);
986 do {
987 run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1;
988 if (run_length == 34)
989 run_length += get_bits(gb, 12);
990 blocks_decoded += run_length;
992 if (!bit)
993 num_blocks_at_qpi += run_length;
995 for (j = 0; j < run_length; i++) {
996 if (i > s->coded_fragment_list_index)
997 return -1;
999 if (s->all_fragments[s->coded_fragment_list[i]].qpi == qpi) {
1000 s->all_fragments[s->coded_fragment_list[i]].qpi += bit;
1001 j++;
1005 if (run_length == 4129)
1006 bit = get_bits1(gb);
1007 else
1008 bit ^= 1;
1009 } while (blocks_decoded < num_blocks);
1011 num_blocks -= num_blocks_at_qpi;
1014 return 0;
1018 * This function is called by unpack_dct_coeffs() to extract the VLCs from
1019 * the bitstream. The VLCs encode tokens which are used to unpack DCT
1020 * data. This function unpacks all the VLCs for either the Y plane or both
1021 * C planes, and is called for DC coefficients or different AC coefficient
1022 * levels (since different coefficient types require different VLC tables.
1024 * This function returns a residual eob run. E.g, if a particular token gave
1025 * instructions to EOB the next 5 fragments and there were only 2 fragments
1026 * left in the current fragment range, 3 would be returned so that it could
1027 * be passed into the next call to this same function.
1029 static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
1030 VLC *table, int coeff_index,
1031 int first_fragment, int last_fragment,
1032 int eob_run)
1034 int i;
1035 int token;
1036 int zero_run = 0;
1037 DCTELEM coeff = 0;
1038 Vp3Fragment *fragment;
1039 uint8_t *perm= s->scantable.permutated;
1040 int bits_to_get;
1042 if ((first_fragment >= s->fragment_count) ||
1043 (last_fragment >= s->fragment_count)) {
1045 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vlcs(): bad fragment number (%d -> %d ?)\n",
1046 first_fragment, last_fragment);
1047 return 0;
1050 for (i = first_fragment; i <= last_fragment; i++) {
1051 int fragment_num = s->coded_fragment_list[i];
1053 if (s->coeff_counts[fragment_num] > coeff_index)
1054 continue;
1055 fragment = &s->all_fragments[fragment_num];
1057 if (!eob_run) {
1058 /* decode a VLC into a token */
1059 token = get_vlc2(gb, table->table, 5, 3);
1060 /* use the token to get a zero run, a coefficient, and an eob run */
1061 if (token <= 6) {
1062 eob_run = eob_run_base[token];
1063 if (eob_run_get_bits[token])
1064 eob_run += get_bits(gb, eob_run_get_bits[token]);
1065 coeff = zero_run = 0;
1066 } else {
1067 bits_to_get = coeff_get_bits[token];
1068 if (!bits_to_get)
1069 coeff = coeff_tables[token][0];
1070 else
1071 coeff = coeff_tables[token][get_bits(gb, bits_to_get)];
1073 zero_run = zero_run_base[token];
1074 if (zero_run_get_bits[token])
1075 zero_run += get_bits(gb, zero_run_get_bits[token]);
1079 if (!eob_run) {
1080 s->coeff_counts[fragment_num] += zero_run;
1081 if (s->coeff_counts[fragment_num] < 64){
1082 fragment->next_coeff->coeff= coeff;
1083 fragment->next_coeff->index= perm[s->coeff_counts[fragment_num]++]; //FIXME perm here already?
1084 fragment->next_coeff->next= s->next_coeff;
1085 s->next_coeff->next=NULL;
1086 fragment->next_coeff= s->next_coeff++;
1088 } else {
1089 s->coeff_counts[fragment_num] |= 128;
1090 eob_run--;
1094 return eob_run;
1098 * This function unpacks all of the DCT coefficient data from the
1099 * bitstream.
1101 static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
1103 int i;
1104 int dc_y_table;
1105 int dc_c_table;
1106 int ac_y_table;
1107 int ac_c_table;
1108 int residual_eob_run = 0;
1110 /* fetch the DC table indexes */
1111 dc_y_table = get_bits(gb, 4);
1112 dc_c_table = get_bits(gb, 4);
1114 /* unpack the Y plane DC coefficients */
1115 residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
1116 s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1118 /* unpack the C plane DC coefficients */
1119 residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1120 s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1122 /* fetch the AC table indexes */
1123 ac_y_table = get_bits(gb, 4);
1124 ac_c_table = get_bits(gb, 4);
1126 /* unpack the group 1 AC coefficients (coeffs 1-5) */
1127 for (i = 1; i <= 5; i++) {
1128 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_y_table], i,
1129 s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1131 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_c_table], i,
1132 s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1135 /* unpack the group 2 AC coefficients (coeffs 6-14) */
1136 for (i = 6; i <= 14; i++) {
1137 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_y_table], i,
1138 s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1140 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_c_table], i,
1141 s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1144 /* unpack the group 3 AC coefficients (coeffs 15-27) */
1145 for (i = 15; i <= 27; i++) {
1146 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_y_table], i,
1147 s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1149 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_c_table], i,
1150 s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1153 /* unpack the group 4 AC coefficients (coeffs 28-63) */
1154 for (i = 28; i <= 63; i++) {
1155 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_y_table], i,
1156 s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1158 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_c_table], i,
1159 s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1162 return 0;
1166 * This function reverses the DC prediction for each coded fragment in
1167 * the frame. Much of this function is adapted directly from the original
1168 * VP3 source code.
1170 #define COMPATIBLE_FRAME(x) \
1171 (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
1172 #define FRAME_CODED(x) (s->all_fragments[x].coding_method != MODE_COPY)
1173 #define DC_COEFF(u) (s->coeffs[u].index ? 0 : s->coeffs[u].coeff) //FIXME do somethin to simplify this
1175 static void reverse_dc_prediction(Vp3DecodeContext *s,
1176 int first_fragment,
1177 int fragment_width,
1178 int fragment_height)
1181 #define PUL 8
1182 #define PU 4
1183 #define PUR 2
1184 #define PL 1
1186 int x, y;
1187 int i = first_fragment;
1189 int predicted_dc;
1191 /* DC values for the left, up-left, up, and up-right fragments */
1192 int vl, vul, vu, vur;
1194 /* indexes for the left, up-left, up, and up-right fragments */
1195 int l, ul, u, ur;
1198 * The 6 fields mean:
1199 * 0: up-left multiplier
1200 * 1: up multiplier
1201 * 2: up-right multiplier
1202 * 3: left multiplier
1204 int predictor_transform[16][4] = {
1205 { 0, 0, 0, 0},
1206 { 0, 0, 0,128}, // PL
1207 { 0, 0,128, 0}, // PUR
1208 { 0, 0, 53, 75}, // PUR|PL
1209 { 0,128, 0, 0}, // PU
1210 { 0, 64, 0, 64}, // PU|PL
1211 { 0,128, 0, 0}, // PU|PUR
1212 { 0, 0, 53, 75}, // PU|PUR|PL
1213 {128, 0, 0, 0}, // PUL
1214 { 0, 0, 0,128}, // PUL|PL
1215 { 64, 0, 64, 0}, // PUL|PUR
1216 { 0, 0, 53, 75}, // PUL|PUR|PL
1217 { 0,128, 0, 0}, // PUL|PU
1218 {-104,116, 0,116}, // PUL|PU|PL
1219 { 24, 80, 24, 0}, // PUL|PU|PUR
1220 {-104,116, 0,116} // PUL|PU|PUR|PL
1223 /* This table shows which types of blocks can use other blocks for
1224 * prediction. For example, INTRA is the only mode in this table to
1225 * have a frame number of 0. That means INTRA blocks can only predict
1226 * from other INTRA blocks. There are 2 golden frame coding types;
1227 * blocks encoding in these modes can only predict from other blocks
1228 * that were encoded with these 1 of these 2 modes. */
1229 unsigned char compatible_frame[8] = {
1230 1, /* MODE_INTER_NO_MV */
1231 0, /* MODE_INTRA */
1232 1, /* MODE_INTER_PLUS_MV */
1233 1, /* MODE_INTER_LAST_MV */
1234 1, /* MODE_INTER_PRIOR_MV */
1235 2, /* MODE_USING_GOLDEN */
1236 2, /* MODE_GOLDEN_MV */
1237 1 /* MODE_INTER_FOUR_MV */
1239 int current_frame_type;
1241 /* there is a last DC predictor for each of the 3 frame types */
1242 short last_dc[3];
1244 int transform = 0;
1246 vul = vu = vur = vl = 0;
1247 last_dc[0] = last_dc[1] = last_dc[2] = 0;
1249 /* for each fragment row... */
1250 for (y = 0; y < fragment_height; y++) {
1252 /* for each fragment in a row... */
1253 for (x = 0; x < fragment_width; x++, i++) {
1255 /* reverse prediction if this block was coded */
1256 if (s->all_fragments[i].coding_method != MODE_COPY) {
1258 current_frame_type =
1259 compatible_frame[s->all_fragments[i].coding_method];
1261 transform= 0;
1262 if(x){
1263 l= i-1;
1264 vl = DC_COEFF(l);
1265 if(FRAME_CODED(l) && COMPATIBLE_FRAME(l))
1266 transform |= PL;
1268 if(y){
1269 u= i-fragment_width;
1270 vu = DC_COEFF(u);
1271 if(FRAME_CODED(u) && COMPATIBLE_FRAME(u))
1272 transform |= PU;
1273 if(x){
1274 ul= i-fragment_width-1;
1275 vul = DC_COEFF(ul);
1276 if(FRAME_CODED(ul) && COMPATIBLE_FRAME(ul))
1277 transform |= PUL;
1279 if(x + 1 < fragment_width){
1280 ur= i-fragment_width+1;
1281 vur = DC_COEFF(ur);
1282 if(FRAME_CODED(ur) && COMPATIBLE_FRAME(ur))
1283 transform |= PUR;
1287 if (transform == 0) {
1289 /* if there were no fragments to predict from, use last
1290 * DC saved */
1291 predicted_dc = last_dc[current_frame_type];
1292 } else {
1294 /* apply the appropriate predictor transform */
1295 predicted_dc =
1296 (predictor_transform[transform][0] * vul) +
1297 (predictor_transform[transform][1] * vu) +
1298 (predictor_transform[transform][2] * vur) +
1299 (predictor_transform[transform][3] * vl);
1301 predicted_dc /= 128;
1303 /* check for outranging on the [ul u l] and
1304 * [ul u ur l] predictors */
1305 if ((transform == 13) || (transform == 15)) {
1306 if (FFABS(predicted_dc - vu) > 128)
1307 predicted_dc = vu;
1308 else if (FFABS(predicted_dc - vl) > 128)
1309 predicted_dc = vl;
1310 else if (FFABS(predicted_dc - vul) > 128)
1311 predicted_dc = vul;
1315 /* at long last, apply the predictor */
1316 if(s->coeffs[i].index){
1317 *s->next_coeff= s->coeffs[i];
1318 s->coeffs[i].index=0;
1319 s->coeffs[i].coeff=0;
1320 s->coeffs[i].next= s->next_coeff++;
1322 s->coeffs[i].coeff += predicted_dc;
1323 /* save the DC */
1324 last_dc[current_frame_type] = DC_COEFF(i);
1325 if(DC_COEFF(i) && !(s->coeff_counts[i]&127)){
1326 s->coeff_counts[i]= 129;
1327 // s->all_fragments[i].next_coeff= s->next_coeff;
1328 s->coeffs[i].next= s->next_coeff;
1329 (s->next_coeff++)->next=NULL;
1337 * Perform the final rendering for a particular slice of data.
1338 * The slice number ranges from 0..(macroblock_height - 1).
1340 static void render_slice(Vp3DecodeContext *s, int slice)
1342 int x;
1343 int16_t *dequantizer;
1344 DECLARE_ALIGNED_16(DCTELEM, block[64]);
1345 int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
1346 int motion_halfpel_index;
1347 uint8_t *motion_source;
1348 int plane;
1349 int current_macroblock_entry = slice * s->macroblock_width * 6;
1351 if (slice >= s->macroblock_height)
1352 return;
1354 for (plane = 0; plane < 3; plane++) {
1355 uint8_t *output_plane = s->current_frame.data [plane];
1356 uint8_t * last_plane = s-> last_frame.data [plane];
1357 uint8_t *golden_plane = s-> golden_frame.data [plane];
1358 int stride = s->current_frame.linesize[plane];
1359 int plane_width = s->width >> !!plane;
1360 int plane_height = s->height >> !!plane;
1361 int y = slice * FRAGMENT_PIXELS << !plane ;
1362 int slice_height = y + (FRAGMENT_PIXELS << !plane);
1363 int i = s->macroblock_fragments[current_macroblock_entry + plane + 3*!!plane];
1365 if (!s->flipped_image) stride = -stride;
1368 if(FFABS(stride) > 2048)
1369 return; //various tables are fixed size
1371 /* for each fragment row in the slice (both of them)... */
1372 for (; y < slice_height; y += 8) {
1374 /* for each fragment in a row... */
1375 for (x = 0; x < plane_width; x += 8, i++) {
1377 if ((i < 0) || (i >= s->fragment_count)) {
1378 av_log(s->avctx, AV_LOG_ERROR, " vp3:render_slice(): bad fragment number (%d)\n", i);
1379 return;
1382 /* transform if this block was coded */
1383 if ((s->all_fragments[i].coding_method != MODE_COPY) &&
1384 !((s->avctx->flags & CODEC_FLAG_GRAY) && plane)) {
1386 if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
1387 (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
1388 motion_source= golden_plane;
1389 else
1390 motion_source= last_plane;
1392 motion_source += s->all_fragments[i].first_pixel;
1393 motion_halfpel_index = 0;
1395 /* sort out the motion vector if this fragment is coded
1396 * using a motion vector method */
1397 if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
1398 (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
1399 int src_x, src_y;
1400 motion_x = s->all_fragments[i].motion_x;
1401 motion_y = s->all_fragments[i].motion_y;
1402 if(plane){
1403 motion_x= (motion_x>>1) | (motion_x&1);
1404 motion_y= (motion_y>>1) | (motion_y&1);
1407 src_x= (motion_x>>1) + x;
1408 src_y= (motion_y>>1) + y;
1409 if ((motion_x == 127) || (motion_y == 127))
1410 av_log(s->avctx, AV_LOG_ERROR, " help! got invalid motion vector! (%X, %X)\n", motion_x, motion_y);
1412 motion_halfpel_index = motion_x & 0x01;
1413 motion_source += (motion_x >> 1);
1415 motion_halfpel_index |= (motion_y & 0x01) << 1;
1416 motion_source += ((motion_y >> 1) * stride);
1418 if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){
1419 uint8_t *temp= s->edge_emu_buffer;
1420 if(stride<0) temp -= 9*stride;
1421 else temp += 9*stride;
1423 ff_emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height);
1424 motion_source= temp;
1429 /* first, take care of copying a block from either the
1430 * previous or the golden frame */
1431 if (s->all_fragments[i].coding_method != MODE_INTRA) {
1432 /* Note, it is possible to implement all MC cases with
1433 put_no_rnd_pixels_l2 which would look more like the
1434 VP3 source but this would be slower as
1435 put_no_rnd_pixels_tab is better optimzed */
1436 if(motion_halfpel_index != 3){
1437 s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
1438 output_plane + s->all_fragments[i].first_pixel,
1439 motion_source, stride, 8);
1440 }else{
1441 int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
1442 s->dsp.put_no_rnd_pixels_l2[1](
1443 output_plane + s->all_fragments[i].first_pixel,
1444 motion_source - d,
1445 motion_source + stride + 1 + d,
1446 stride, 8);
1448 dequantizer = s->qmat[s->all_fragments[i].qpi][1][plane];
1449 }else{
1450 dequantizer = s->qmat[s->all_fragments[i].qpi][0][plane];
1453 /* dequantize the DCT coefficients */
1454 if(s->avctx->idct_algo==FF_IDCT_VP3){
1455 Coeff *coeff= s->coeffs + i;
1456 s->dsp.clear_block(block);
1457 while(coeff->next){
1458 block[coeff->index]= coeff->coeff * dequantizer[coeff->index];
1459 coeff= coeff->next;
1461 }else{
1462 Coeff *coeff= s->coeffs + i;
1463 s->dsp.clear_block(block);
1464 while(coeff->next){
1465 block[coeff->index]= (coeff->coeff * dequantizer[coeff->index] + 2)>>2;
1466 coeff= coeff->next;
1470 /* invert DCT and place (or add) in final output */
1472 if (s->all_fragments[i].coding_method == MODE_INTRA) {
1473 if(s->avctx->idct_algo!=FF_IDCT_VP3)
1474 block[0] += 128<<3;
1475 s->dsp.idct_put(
1476 output_plane + s->all_fragments[i].first_pixel,
1477 stride,
1478 block);
1479 } else {
1480 s->dsp.idct_add(
1481 output_plane + s->all_fragments[i].first_pixel,
1482 stride,
1483 block);
1485 } else {
1487 /* copy directly from the previous frame */
1488 s->dsp.put_pixels_tab[1][0](
1489 output_plane + s->all_fragments[i].first_pixel,
1490 last_plane + s->all_fragments[i].first_pixel,
1491 stride, 8);
1494 #if 0
1495 /* perform the left edge filter if:
1496 * - the fragment is not on the left column
1497 * - the fragment is coded in this frame
1498 * - the fragment is not coded in this frame but the left
1499 * fragment is coded in this frame (this is done instead
1500 * of a right edge filter when rendering the left fragment
1501 * since this fragment is not available yet) */
1502 if ((x > 0) &&
1503 ((s->all_fragments[i].coding_method != MODE_COPY) ||
1504 ((s->all_fragments[i].coding_method == MODE_COPY) &&
1505 (s->all_fragments[i - 1].coding_method != MODE_COPY)) )) {
1506 horizontal_filter(
1507 output_plane + s->all_fragments[i].first_pixel + 7*stride,
1508 -stride, s->bounding_values_array + 127);
1511 /* perform the top edge filter if:
1512 * - the fragment is not on the top row
1513 * - the fragment is coded in this frame
1514 * - the fragment is not coded in this frame but the above
1515 * fragment is coded in this frame (this is done instead
1516 * of a bottom edge filter when rendering the above
1517 * fragment since this fragment is not available yet) */
1518 if ((y > 0) &&
1519 ((s->all_fragments[i].coding_method != MODE_COPY) ||
1520 ((s->all_fragments[i].coding_method == MODE_COPY) &&
1521 (s->all_fragments[i - fragment_width].coding_method != MODE_COPY)) )) {
1522 vertical_filter(
1523 output_plane + s->all_fragments[i].first_pixel - stride,
1524 -stride, s->bounding_values_array + 127);
1526 #endif
1531 /* this looks like a good place for slice dispatch... */
1532 /* algorithm:
1533 * if (slice == s->macroblock_height - 1)
1534 * dispatch (both last slice & 2nd-to-last slice);
1535 * else if (slice > 0)
1536 * dispatch (slice - 1);
1539 emms_c();
1542 static void apply_loop_filter(Vp3DecodeContext *s)
1544 int plane;
1545 int x, y;
1546 int *bounding_values= s->bounding_values_array+127;
1548 #if 0
1549 int bounding_values_array[256];
1550 int filter_limit;
1552 /* find the right loop limit value */
1553 for (x = 63; x >= 0; x--) {
1554 if (vp31_ac_scale_factor[x] >= s->quality_index)
1555 break;
1557 filter_limit = vp31_filter_limit_values[s->quality_index];
1559 /* set up the bounding values */
1560 memset(bounding_values_array, 0, 256 * sizeof(int));
1561 for (x = 0; x < filter_limit; x++) {
1562 bounding_values[-x - filter_limit] = -filter_limit + x;
1563 bounding_values[-x] = -x;
1564 bounding_values[x] = x;
1565 bounding_values[x + filter_limit] = filter_limit - x;
1567 #endif
1569 for (plane = 0; plane < 3; plane++) {
1570 int width = s->fragment_width >> !!plane;
1571 int height = s->fragment_height >> !!plane;
1572 int fragment = s->fragment_start [plane];
1573 int stride = s->current_frame.linesize[plane];
1574 uint8_t *plane_data = s->current_frame.data [plane];
1575 if (!s->flipped_image) stride = -stride;
1577 for (y = 0; y < height; y++) {
1579 for (x = 0; x < width; x++) {
1580 /* do not perform left edge filter for left columns frags */
1581 if ((x > 0) &&
1582 (s->all_fragments[fragment].coding_method != MODE_COPY)) {
1583 s->dsp.vp3_h_loop_filter(
1584 plane_data + s->all_fragments[fragment].first_pixel,
1585 stride, bounding_values);
1588 /* do not perform top edge filter for top row fragments */
1589 if ((y > 0) &&
1590 (s->all_fragments[fragment].coding_method != MODE_COPY)) {
1591 s->dsp.vp3_v_loop_filter(
1592 plane_data + s->all_fragments[fragment].first_pixel,
1593 stride, bounding_values);
1596 /* do not perform right edge filter for right column
1597 * fragments or if right fragment neighbor is also coded
1598 * in this frame (it will be filtered in next iteration) */
1599 if ((x < width - 1) &&
1600 (s->all_fragments[fragment].coding_method != MODE_COPY) &&
1601 (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
1602 s->dsp.vp3_h_loop_filter(
1603 plane_data + s->all_fragments[fragment + 1].first_pixel,
1604 stride, bounding_values);
1607 /* do not perform bottom edge filter for bottom row
1608 * fragments or if bottom fragment neighbor is also coded
1609 * in this frame (it will be filtered in the next row) */
1610 if ((y < height - 1) &&
1611 (s->all_fragments[fragment].coding_method != MODE_COPY) &&
1612 (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
1613 s->dsp.vp3_v_loop_filter(
1614 plane_data + s->all_fragments[fragment + width].first_pixel,
1615 stride, bounding_values);
1618 fragment++;
1625 * This function computes the first pixel addresses for each fragment.
1626 * This function needs to be invoked after the first frame is allocated
1627 * so that it has access to the plane strides.
1629 static void vp3_calculate_pixel_addresses(Vp3DecodeContext *s)
1631 #define Y_INITIAL(chroma_shift) s->flipped_image ? 1 : s->fragment_height >> chroma_shift
1632 #define Y_FINISHED(chroma_shift) s->flipped_image ? y <= s->fragment_height >> chroma_shift : y > 0
1634 int i, x, y;
1635 const int y_inc = s->flipped_image ? 1 : -1;
1637 /* figure out the first pixel addresses for each of the fragments */
1638 /* Y plane */
1639 i = 0;
1640 for (y = Y_INITIAL(0); Y_FINISHED(0); y += y_inc) {
1641 for (x = 0; x < s->fragment_width; x++) {
1642 s->all_fragments[i++].first_pixel =
1643 s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
1644 s->golden_frame.linesize[0] +
1645 x * FRAGMENT_PIXELS;
1649 /* U plane */
1650 i = s->fragment_start[1];
1651 for (y = Y_INITIAL(1); Y_FINISHED(1); y += y_inc) {
1652 for (x = 0; x < s->fragment_width / 2; x++) {
1653 s->all_fragments[i++].first_pixel =
1654 s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
1655 s->golden_frame.linesize[1] +
1656 x * FRAGMENT_PIXELS;
1660 /* V plane */
1661 i = s->fragment_start[2];
1662 for (y = Y_INITIAL(1); Y_FINISHED(1); y += y_inc) {
1663 for (x = 0; x < s->fragment_width / 2; x++) {
1664 s->all_fragments[i++].first_pixel =
1665 s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
1666 s->golden_frame.linesize[2] +
1667 x * FRAGMENT_PIXELS;
1673 * This is the ffmpeg/libavcodec API init function.
1675 static av_cold int vp3_decode_init(AVCodecContext *avctx)
1677 Vp3DecodeContext *s = avctx->priv_data;
1678 int i, inter, plane;
1679 int c_width;
1680 int c_height;
1681 int y_superblock_count;
1682 int c_superblock_count;
1684 if (avctx->codec_tag == MKTAG('V','P','3','0'))
1685 s->version = 0;
1686 else
1687 s->version = 1;
1689 s->avctx = avctx;
1690 s->width = FFALIGN(avctx->width, 16);
1691 s->height = FFALIGN(avctx->height, 16);
1692 avctx->pix_fmt = PIX_FMT_YUV420P;
1693 avctx->chroma_sample_location = AVCHROMA_LOC_CENTER;
1694 if(avctx->idct_algo==FF_IDCT_AUTO)
1695 avctx->idct_algo=FF_IDCT_VP3;
1696 dsputil_init(&s->dsp, avctx);
1698 ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct);
1700 /* initialize to an impossible value which will force a recalculation
1701 * in the first frame decode */
1702 for (i = 0; i < 3; i++)
1703 s->qps[i] = -1;
1705 s->y_superblock_width = (s->width + 31) / 32;
1706 s->y_superblock_height = (s->height + 31) / 32;
1707 y_superblock_count = s->y_superblock_width * s->y_superblock_height;
1709 /* work out the dimensions for the C planes */
1710 c_width = s->width / 2;
1711 c_height = s->height / 2;
1712 s->c_superblock_width = (c_width + 31) / 32;
1713 s->c_superblock_height = (c_height + 31) / 32;
1714 c_superblock_count = s->c_superblock_width * s->c_superblock_height;
1716 s->superblock_count = y_superblock_count + (c_superblock_count * 2);
1717 s->u_superblock_start = y_superblock_count;
1718 s->v_superblock_start = s->u_superblock_start + c_superblock_count;
1719 s->superblock_coding = av_malloc(s->superblock_count);
1721 s->macroblock_width = (s->width + 15) / 16;
1722 s->macroblock_height = (s->height + 15) / 16;
1723 s->macroblock_count = s->macroblock_width * s->macroblock_height;
1725 s->fragment_width = s->width / FRAGMENT_PIXELS;
1726 s->fragment_height = s->height / FRAGMENT_PIXELS;
1728 /* fragment count covers all 8x8 blocks for all 3 planes */
1729 s->fragment_count = s->fragment_width * s->fragment_height * 3 / 2;
1730 s->fragment_start[1] = s->fragment_width * s->fragment_height;
1731 s->fragment_start[2] = s->fragment_width * s->fragment_height * 5 / 4;
1733 s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
1734 s->coeff_counts = av_malloc(s->fragment_count * sizeof(*s->coeff_counts));
1735 s->coeffs = av_malloc(s->fragment_count * sizeof(Coeff) * 65);
1736 s->coded_fragment_list = av_malloc(s->fragment_count * sizeof(int));
1737 s->pixel_addresses_initialized = 0;
1739 if (!s->theora_tables)
1741 for (i = 0; i < 64; i++) {
1742 s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
1743 s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
1744 s->base_matrix[0][i] = vp31_intra_y_dequant[i];
1745 s->base_matrix[1][i] = vp31_intra_c_dequant[i];
1746 s->base_matrix[2][i] = vp31_inter_dequant[i];
1747 s->filter_limit_values[i] = vp31_filter_limit_values[i];
1750 for(inter=0; inter<2; inter++){
1751 for(plane=0; plane<3; plane++){
1752 s->qr_count[inter][plane]= 1;
1753 s->qr_size [inter][plane][0]= 63;
1754 s->qr_base [inter][plane][0]=
1755 s->qr_base [inter][plane][1]= 2*inter + (!!plane)*!inter;
1759 /* init VLC tables */
1760 for (i = 0; i < 16; i++) {
1762 /* DC histograms */
1763 init_vlc(&s->dc_vlc[i], 5, 32,
1764 &dc_bias[i][0][1], 4, 2,
1765 &dc_bias[i][0][0], 4, 2, 0);
1767 /* group 1 AC histograms */
1768 init_vlc(&s->ac_vlc_1[i], 5, 32,
1769 &ac_bias_0[i][0][1], 4, 2,
1770 &ac_bias_0[i][0][0], 4, 2, 0);
1772 /* group 2 AC histograms */
1773 init_vlc(&s->ac_vlc_2[i], 5, 32,
1774 &ac_bias_1[i][0][1], 4, 2,
1775 &ac_bias_1[i][0][0], 4, 2, 0);
1777 /* group 3 AC histograms */
1778 init_vlc(&s->ac_vlc_3[i], 5, 32,
1779 &ac_bias_2[i][0][1], 4, 2,
1780 &ac_bias_2[i][0][0], 4, 2, 0);
1782 /* group 4 AC histograms */
1783 init_vlc(&s->ac_vlc_4[i], 5, 32,
1784 &ac_bias_3[i][0][1], 4, 2,
1785 &ac_bias_3[i][0][0], 4, 2, 0);
1787 } else {
1788 for (i = 0; i < 16; i++) {
1790 /* DC histograms */
1791 if (init_vlc(&s->dc_vlc[i], 5, 32,
1792 &s->huffman_table[i][0][1], 4, 2,
1793 &s->huffman_table[i][0][0], 4, 2, 0) < 0)
1794 goto vlc_fail;
1796 /* group 1 AC histograms */
1797 if (init_vlc(&s->ac_vlc_1[i], 5, 32,
1798 &s->huffman_table[i+16][0][1], 4, 2,
1799 &s->huffman_table[i+16][0][0], 4, 2, 0) < 0)
1800 goto vlc_fail;
1802 /* group 2 AC histograms */
1803 if (init_vlc(&s->ac_vlc_2[i], 5, 32,
1804 &s->huffman_table[i+16*2][0][1], 4, 2,
1805 &s->huffman_table[i+16*2][0][0], 4, 2, 0) < 0)
1806 goto vlc_fail;
1808 /* group 3 AC histograms */
1809 if (init_vlc(&s->ac_vlc_3[i], 5, 32,
1810 &s->huffman_table[i+16*3][0][1], 4, 2,
1811 &s->huffman_table[i+16*3][0][0], 4, 2, 0) < 0)
1812 goto vlc_fail;
1814 /* group 4 AC histograms */
1815 if (init_vlc(&s->ac_vlc_4[i], 5, 32,
1816 &s->huffman_table[i+16*4][0][1], 4, 2,
1817 &s->huffman_table[i+16*4][0][0], 4, 2, 0) < 0)
1818 goto vlc_fail;
1822 init_vlc(&s->superblock_run_length_vlc, 6, 34,
1823 &superblock_run_length_vlc_table[0][1], 4, 2,
1824 &superblock_run_length_vlc_table[0][0], 4, 2, 0);
1826 init_vlc(&s->fragment_run_length_vlc, 5, 30,
1827 &fragment_run_length_vlc_table[0][1], 4, 2,
1828 &fragment_run_length_vlc_table[0][0], 4, 2, 0);
1830 init_vlc(&s->mode_code_vlc, 3, 8,
1831 &mode_code_vlc_table[0][1], 2, 1,
1832 &mode_code_vlc_table[0][0], 2, 1, 0);
1834 init_vlc(&s->motion_vector_vlc, 6, 63,
1835 &motion_vector_vlc_table[0][1], 2, 1,
1836 &motion_vector_vlc_table[0][0], 2, 1, 0);
1838 /* work out the block mapping tables */
1839 s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
1840 s->superblock_macroblocks = av_malloc(s->superblock_count * 4 * sizeof(int));
1841 s->macroblock_fragments = av_malloc(s->macroblock_count * 6 * sizeof(int));
1842 s->macroblock_coding = av_malloc(s->macroblock_count + 1);
1843 init_block_mapping(s);
1845 for (i = 0; i < 3; i++) {
1846 s->current_frame.data[i] = NULL;
1847 s->last_frame.data[i] = NULL;
1848 s->golden_frame.data[i] = NULL;
1851 return 0;
1853 vlc_fail:
1854 av_log(avctx, AV_LOG_FATAL, "Invalid huffman table\n");
1855 return -1;
1859 * This is the ffmpeg/libavcodec API frame decode function.
1861 static int vp3_decode_frame(AVCodecContext *avctx,
1862 void *data, int *data_size,
1863 AVPacket *avpkt)
1865 const uint8_t *buf = avpkt->data;
1866 int buf_size = avpkt->size;
1867 Vp3DecodeContext *s = avctx->priv_data;
1868 GetBitContext gb;
1869 static int counter = 0;
1870 int i;
1872 init_get_bits(&gb, buf, buf_size * 8);
1874 if (s->theora && get_bits1(&gb))
1876 av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n");
1877 return -1;
1880 s->keyframe = !get_bits1(&gb);
1881 if (!s->theora)
1882 skip_bits(&gb, 1);
1883 for (i = 0; i < 3; i++)
1884 s->last_qps[i] = s->qps[i];
1886 s->nqps=0;
1888 s->qps[s->nqps++]= get_bits(&gb, 6);
1889 } while(s->theora >= 0x030200 && s->nqps<3 && get_bits1(&gb));
1890 for (i = s->nqps; i < 3; i++)
1891 s->qps[i] = -1;
1893 if (s->avctx->debug & FF_DEBUG_PICT_INFO)
1894 av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
1895 s->keyframe?"key":"", counter, s->qps[0]);
1896 counter++;
1898 if (s->qps[0] != s->last_qps[0])
1899 init_loop_filter(s);
1901 for (i = 0; i < s->nqps; i++)
1902 // reinit all dequantizers if the first one changed, because
1903 // the DC of the first quantizer must be used for all matrices
1904 if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0])
1905 init_dequantizer(s, i);
1907 if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
1908 return buf_size;
1910 if (s->keyframe) {
1911 if (!s->theora)
1913 skip_bits(&gb, 4); /* width code */
1914 skip_bits(&gb, 4); /* height code */
1915 if (s->version)
1917 s->version = get_bits(&gb, 5);
1918 if (counter == 1)
1919 av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
1922 if (s->version || s->theora)
1924 if (get_bits1(&gb))
1925 av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
1926 skip_bits(&gb, 2); /* reserved? */
1929 if (s->last_frame.data[0] == s->golden_frame.data[0]) {
1930 if (s->golden_frame.data[0])
1931 avctx->release_buffer(avctx, &s->golden_frame);
1932 s->last_frame= s->golden_frame; /* ensure that we catch any access to this released frame */
1933 } else {
1934 if (s->golden_frame.data[0])
1935 avctx->release_buffer(avctx, &s->golden_frame);
1936 if (s->last_frame.data[0])
1937 avctx->release_buffer(avctx, &s->last_frame);
1940 s->golden_frame.reference = 3;
1941 if(avctx->get_buffer(avctx, &s->golden_frame) < 0) {
1942 av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
1943 return -1;
1946 /* golden frame is also the current frame */
1947 s->current_frame= s->golden_frame;
1949 /* time to figure out pixel addresses? */
1950 if (!s->pixel_addresses_initialized)
1952 vp3_calculate_pixel_addresses(s);
1953 s->pixel_addresses_initialized = 1;
1955 } else {
1956 /* allocate a new current frame */
1957 s->current_frame.reference = 3;
1958 if (!s->pixel_addresses_initialized) {
1959 av_log(s->avctx, AV_LOG_ERROR, "vp3: first frame not a keyframe\n");
1960 return -1;
1962 if(avctx->get_buffer(avctx, &s->current_frame) < 0) {
1963 av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
1964 return -1;
1968 s->current_frame.qscale_table= s->qscale_table; //FIXME allocate individual tables per AVFrame
1969 s->current_frame.qstride= 0;
1971 init_frame(s, &gb);
1973 if (unpack_superblocks(s, &gb)){
1974 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
1975 return -1;
1977 if (unpack_modes(s, &gb)){
1978 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
1979 return -1;
1981 if (unpack_vectors(s, &gb)){
1982 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
1983 return -1;
1985 if (unpack_block_qpis(s, &gb)){
1986 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n");
1987 return -1;
1989 if (unpack_dct_coeffs(s, &gb)){
1990 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
1991 return -1;
1994 reverse_dc_prediction(s, 0, s->fragment_width, s->fragment_height);
1995 if ((avctx->flags & CODEC_FLAG_GRAY) == 0) {
1996 reverse_dc_prediction(s, s->fragment_start[1],
1997 s->fragment_width / 2, s->fragment_height / 2);
1998 reverse_dc_prediction(s, s->fragment_start[2],
1999 s->fragment_width / 2, s->fragment_height / 2);
2002 for (i = 0; i < s->macroblock_height; i++)
2003 render_slice(s, i);
2005 apply_loop_filter(s);
2007 *data_size=sizeof(AVFrame);
2008 *(AVFrame*)data= s->current_frame;
2010 /* release the last frame, if it is allocated and if it is not the
2011 * golden frame */
2012 if ((s->last_frame.data[0]) &&
2013 (s->last_frame.data[0] != s->golden_frame.data[0]))
2014 avctx->release_buffer(avctx, &s->last_frame);
2016 /* shuffle frames (last = current) */
2017 s->last_frame= s->current_frame;
2018 s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */
2020 return buf_size;
2024 * This is the ffmpeg/libavcodec API module cleanup function.
2026 static av_cold int vp3_decode_end(AVCodecContext *avctx)
2028 Vp3DecodeContext *s = avctx->priv_data;
2029 int i;
2031 av_free(s->superblock_coding);
2032 av_free(s->all_fragments);
2033 av_free(s->coeff_counts);
2034 av_free(s->coeffs);
2035 av_free(s->coded_fragment_list);
2036 av_free(s->superblock_fragments);
2037 av_free(s->superblock_macroblocks);
2038 av_free(s->macroblock_fragments);
2039 av_free(s->macroblock_coding);
2041 for (i = 0; i < 16; i++) {
2042 free_vlc(&s->dc_vlc[i]);
2043 free_vlc(&s->ac_vlc_1[i]);
2044 free_vlc(&s->ac_vlc_2[i]);
2045 free_vlc(&s->ac_vlc_3[i]);
2046 free_vlc(&s->ac_vlc_4[i]);
2049 free_vlc(&s->superblock_run_length_vlc);
2050 free_vlc(&s->fragment_run_length_vlc);
2051 free_vlc(&s->mode_code_vlc);
2052 free_vlc(&s->motion_vector_vlc);
2054 /* release all frames */
2055 if (s->golden_frame.data[0] && s->golden_frame.data[0] != s->last_frame.data[0])
2056 avctx->release_buffer(avctx, &s->golden_frame);
2057 if (s->last_frame.data[0])
2058 avctx->release_buffer(avctx, &s->last_frame);
2059 /* no need to release the current_frame since it will always be pointing
2060 * to the same frame as either the golden or last frame */
2062 return 0;
2065 static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
2067 Vp3DecodeContext *s = avctx->priv_data;
2069 if (get_bits1(gb)) {
2070 int token;
2071 if (s->entries >= 32) { /* overflow */
2072 av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2073 return -1;
2075 token = get_bits(gb, 5);
2076 //av_log(avctx, AV_LOG_DEBUG, "hti %d hbits %x token %d entry : %d size %d\n", s->hti, s->hbits, token, s->entries, s->huff_code_size);
2077 s->huffman_table[s->hti][token][0] = s->hbits;
2078 s->huffman_table[s->hti][token][1] = s->huff_code_size;
2079 s->entries++;
2081 else {
2082 if (s->huff_code_size >= 32) {/* overflow */
2083 av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2084 return -1;
2086 s->huff_code_size++;
2087 s->hbits <<= 1;
2088 if (read_huffman_tree(avctx, gb))
2089 return -1;
2090 s->hbits |= 1;
2091 if (read_huffman_tree(avctx, gb))
2092 return -1;
2093 s->hbits >>= 1;
2094 s->huff_code_size--;
2096 return 0;
2099 #if CONFIG_THEORA_DECODER
2100 static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
2102 Vp3DecodeContext *s = avctx->priv_data;
2103 int visible_width, visible_height;
2105 s->theora = get_bits_long(gb, 24);
2106 av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
2108 /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
2109 /* but previous versions have the image flipped relative to vp3 */
2110 if (s->theora < 0x030200)
2112 s->flipped_image = 1;
2113 av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
2116 visible_width = s->width = get_bits(gb, 16) << 4;
2117 visible_height = s->height = get_bits(gb, 16) << 4;
2119 if(avcodec_check_dimensions(avctx, s->width, s->height)){
2120 av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height);
2121 s->width= s->height= 0;
2122 return -1;
2125 if (s->theora >= 0x030400)
2127 skip_bits(gb, 32); /* total number of superblocks in a frame */
2128 // fixme, the next field is 36bits long
2129 skip_bits(gb, 32); /* total number of blocks in a frame */
2130 skip_bits(gb, 4); /* total number of blocks in a frame */
2131 skip_bits(gb, 32); /* total number of macroblocks in a frame */
2134 if (s->theora >= 0x030200) {
2135 visible_width = get_bits_long(gb, 24);
2136 visible_height = get_bits_long(gb, 24);
2138 skip_bits(gb, 8); /* offset x */
2139 skip_bits(gb, 8); /* offset y */
2142 skip_bits(gb, 32); /* fps numerator */
2143 skip_bits(gb, 32); /* fps denumerator */
2144 skip_bits(gb, 24); /* aspect numerator */
2145 skip_bits(gb, 24); /* aspect denumerator */
2147 if (s->theora < 0x030200)
2148 skip_bits(gb, 5); /* keyframe frequency force */
2149 skip_bits(gb, 8); /* colorspace */
2150 if (s->theora >= 0x030400)
2151 skip_bits(gb, 2); /* pixel format: 420,res,422,444 */
2152 skip_bits(gb, 24); /* bitrate */
2154 skip_bits(gb, 6); /* quality hint */
2156 if (s->theora >= 0x030200)
2158 skip_bits(gb, 5); /* keyframe frequency force */
2160 if (s->theora < 0x030400)
2161 skip_bits(gb, 5); /* spare bits */
2164 // align_get_bits(gb);
2166 if ( visible_width <= s->width && visible_width > s->width-16
2167 && visible_height <= s->height && visible_height > s->height-16)
2168 avcodec_set_dimensions(avctx, visible_width, visible_height);
2169 else
2170 avcodec_set_dimensions(avctx, s->width, s->height);
2172 return 0;
2175 static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
2177 Vp3DecodeContext *s = avctx->priv_data;
2178 int i, n, matrices, inter, plane;
2180 if (s->theora >= 0x030200) {
2181 n = get_bits(gb, 3);
2182 /* loop filter limit values table */
2183 for (i = 0; i < 64; i++) {
2184 s->filter_limit_values[i] = get_bits(gb, n);
2185 if (s->filter_limit_values[i] > 127) {
2186 av_log(avctx, AV_LOG_ERROR, "filter limit value too large (%i > 127), clamping\n", s->filter_limit_values[i]);
2187 s->filter_limit_values[i] = 127;
2192 if (s->theora >= 0x030200)
2193 n = get_bits(gb, 4) + 1;
2194 else
2195 n = 16;
2196 /* quality threshold table */
2197 for (i = 0; i < 64; i++)
2198 s->coded_ac_scale_factor[i] = get_bits(gb, n);
2200 if (s->theora >= 0x030200)
2201 n = get_bits(gb, 4) + 1;
2202 else
2203 n = 16;
2204 /* dc scale factor table */
2205 for (i = 0; i < 64; i++)
2206 s->coded_dc_scale_factor[i] = get_bits(gb, n);
2208 if (s->theora >= 0x030200)
2209 matrices = get_bits(gb, 9) + 1;
2210 else
2211 matrices = 3;
2213 if(matrices > 384){
2214 av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
2215 return -1;
2218 for(n=0; n<matrices; n++){
2219 for (i = 0; i < 64; i++)
2220 s->base_matrix[n][i]= get_bits(gb, 8);
2223 for (inter = 0; inter <= 1; inter++) {
2224 for (plane = 0; plane <= 2; plane++) {
2225 int newqr= 1;
2226 if (inter || plane > 0)
2227 newqr = get_bits1(gb);
2228 if (!newqr) {
2229 int qtj, plj;
2230 if(inter && get_bits1(gb)){
2231 qtj = 0;
2232 plj = plane;
2233 }else{
2234 qtj= (3*inter + plane - 1) / 3;
2235 plj= (plane + 2) % 3;
2237 s->qr_count[inter][plane]= s->qr_count[qtj][plj];
2238 memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], sizeof(s->qr_size[0][0]));
2239 memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], sizeof(s->qr_base[0][0]));
2240 } else {
2241 int qri= 0;
2242 int qi = 0;
2244 for(;;){
2245 i= get_bits(gb, av_log2(matrices-1)+1);
2246 if(i>= matrices){
2247 av_log(avctx, AV_LOG_ERROR, "invalid base matrix index\n");
2248 return -1;
2250 s->qr_base[inter][plane][qri]= i;
2251 if(qi >= 63)
2252 break;
2253 i = get_bits(gb, av_log2(63-qi)+1) + 1;
2254 s->qr_size[inter][plane][qri++]= i;
2255 qi += i;
2258 if (qi > 63) {
2259 av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
2260 return -1;
2262 s->qr_count[inter][plane]= qri;
2267 /* Huffman tables */
2268 for (s->hti = 0; s->hti < 80; s->hti++) {
2269 s->entries = 0;
2270 s->huff_code_size = 1;
2271 if (!get_bits1(gb)) {
2272 s->hbits = 0;
2273 if(read_huffman_tree(avctx, gb))
2274 return -1;
2275 s->hbits = 1;
2276 if(read_huffman_tree(avctx, gb))
2277 return -1;
2281 s->theora_tables = 1;
2283 return 0;
2286 static av_cold int theora_decode_init(AVCodecContext *avctx)
2288 Vp3DecodeContext *s = avctx->priv_data;
2289 GetBitContext gb;
2290 int ptype;
2291 uint8_t *header_start[3];
2292 int header_len[3];
2293 int i;
2295 s->theora = 1;
2297 if (!avctx->extradata_size)
2299 av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
2300 return -1;
2303 if (ff_split_xiph_headers(avctx->extradata, avctx->extradata_size,
2304 42, header_start, header_len) < 0) {
2305 av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
2306 return -1;
2309 for(i=0;i<3;i++) {
2310 init_get_bits(&gb, header_start[i], header_len[i]);
2312 ptype = get_bits(&gb, 8);
2314 if (!(ptype & 0x80))
2316 av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
2317 // return -1;
2320 // FIXME: Check for this as well.
2321 skip_bits_long(&gb, 6*8); /* "theora" */
2323 switch(ptype)
2325 case 0x80:
2326 theora_decode_header(avctx, &gb);
2327 break;
2328 case 0x81:
2329 // FIXME: is this needed? it breaks sometimes
2330 // theora_decode_comments(avctx, gb);
2331 break;
2332 case 0x82:
2333 if (theora_decode_tables(avctx, &gb))
2334 return -1;
2335 break;
2336 default:
2337 av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80);
2338 break;
2340 if(ptype != 0x81 && 8*header_len[i] != get_bits_count(&gb))
2341 av_log(avctx, AV_LOG_WARNING, "%d bits left in packet %X\n", 8*header_len[i] - get_bits_count(&gb), ptype);
2342 if (s->theora < 0x030200)
2343 break;
2346 return vp3_decode_init(avctx);
2349 AVCodec theora_decoder = {
2350 "theora",
2351 CODEC_TYPE_VIDEO,
2352 CODEC_ID_THEORA,
2353 sizeof(Vp3DecodeContext),
2354 theora_decode_init,
2355 NULL,
2356 vp3_decode_end,
2357 vp3_decode_frame,
2358 CODEC_CAP_DR1,
2359 NULL,
2360 .long_name = NULL_IF_CONFIG_SMALL("Theora"),
2362 #endif
2364 AVCodec vp3_decoder = {
2365 "vp3",
2366 CODEC_TYPE_VIDEO,
2367 CODEC_ID_VP3,
2368 sizeof(Vp3DecodeContext),
2369 vp3_decode_init,
2370 NULL,
2371 vp3_decode_end,
2372 vp3_decode_frame,
2373 CODEC_CAP_DR1,
2374 NULL,
2375 .long_name = NULL_IF_CONFIG_SMALL("On2 VP3"),