modified: makefile
[GalaxyCodeBases.git] / c_cpp / etc / calc / commath.c
blob6aadeeccb85510cb1e1cdb531acbdd0e8ed65e4e
1 /*
2 * commath - extended precision complex arithmetic primitive routines
4 * Copyright (C) 1999-2007 David I. Bell
6 * Calc is open software; you can redistribute it and/or modify it under
7 * the terms of the version 2.1 of the GNU Lesser General Public License
8 * as published by the Free Software Foundation.
10 * Calc is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
13 * Public License for more details.
15 * A copy of version 2.1 of the GNU Lesser General Public License is
16 * distributed with calc under the filename COPYING-LGPL. You should have
17 * received a copy with calc; if not, write to Free Software Foundation, Inc.
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
20 * @(#) $Revision: 30.1 $
21 * @(#) $Id: commath.c,v 30.1 2007/03/16 11:09:46 chongo Exp $
22 * @(#) $Source: /usr/local/src/bin/calc/RCS/commath.c,v $
24 * Under source code control: 1990/02/15 01:48:10
25 * File existed as early as: before 1990
27 * Share and enjoy! :-) http://www.isthe.com/chongo/tech/comp/calc/
31 #include "cmath.h"
34 COMPLEX _czero_ = { &_qzero_, &_qzero_, 1 };
35 COMPLEX _cone_ = { &_qone_, &_qzero_, 1 };
36 COMPLEX _conei_ = { &_qzero_, &_qone_, 1 };
38 STATIC COMPLEX _cnegone_ = { &_qnegone_, &_qzero_, 1 };
42 * Add two complex numbers.
44 COMPLEX *
45 c_add(COMPLEX *c1, COMPLEX *c2)
47 COMPLEX *r;
49 if (ciszero(c1))
50 return clink(c2);
51 if (ciszero(c2))
52 return clink(c1);
53 r = comalloc();
54 if (!qiszero(c1->real) || !qiszero(c2->real)) {
55 qfree(r->real);
56 r->real = qqadd(c1->real, c2->real);
58 if (!qiszero(c1->imag) || !qiszero(c2->imag)) {
59 qfree(r->imag);
60 r->imag = qqadd(c1->imag, c2->imag);
62 return r;
67 * Subtract two complex numbers.
69 COMPLEX *
70 c_sub(COMPLEX *c1, COMPLEX *c2)
72 COMPLEX *r;
74 if ((c1->real == c2->real) && (c1->imag == c2->imag))
75 return clink(&_czero_);
76 if (ciszero(c2))
77 return clink(c1);
78 r = comalloc();
79 if (!qiszero(c1->real) || !qiszero(c2->real)) {
80 qfree(r->real);
81 r->real = qsub(c1->real, c2->real);
83 if (!qiszero(c1->imag) || !qiszero(c2->imag)) {
84 qfree(r->imag);
85 r->imag = qsub(c1->imag, c2->imag);
87 return r;
92 * Multiply two complex numbers.
93 * This saves one multiplication over the obvious algorithm by
94 * trading it for several extra additions, as follows. Let
95 * q1 = (a + b) * (c + d)
96 * q2 = a * c
97 * q3 = b * d
98 * Then (a+bi) * (c+di) = (q2 - q3) + (q1 - q2 - q3)i.
100 COMPLEX *
101 c_mul(COMPLEX *c1, COMPLEX *c2)
103 COMPLEX *r;
104 NUMBER *q1, *q2, *q3, *q4;
106 if (ciszero(c1) || ciszero(c2))
107 return clink(&_czero_);
108 if (cisone(c1))
109 return clink(c2);
110 if (cisone(c2))
111 return clink(c1);
112 if (cisreal(c2))
113 return c_mulq(c1, c2->real);
114 if (cisreal(c1))
115 return c_mulq(c2, c1->real);
117 * Need to do the full calculation.
119 r = comalloc();
120 q2 = qqadd(c1->real, c1->imag);
121 q3 = qqadd(c2->real, c2->imag);
122 q1 = qmul(q2, q3);
123 qfree(q2);
124 qfree(q3);
125 q2 = qmul(c1->real, c2->real);
126 q3 = qmul(c1->imag, c2->imag);
127 q4 = qqadd(q2, q3);
128 qfree(r->real);
129 r->real = qsub(q2, q3);
130 qfree(r->imag);
131 r->imag = qsub(q1, q4);
132 qfree(q1);
133 qfree(q2);
134 qfree(q3);
135 qfree(q4);
136 return r;
141 * Square a complex number.
143 COMPLEX *
144 c_square(COMPLEX *c)
146 COMPLEX *r;
147 NUMBER *q1, *q2;
149 if (ciszero(c))
150 return clink(&_czero_);
151 if (cisrunit(c))
152 return clink(&_cone_);
153 if (cisiunit(c))
154 return clink(&_cnegone_);
155 r = comalloc();
156 if (cisreal(c)) {
157 qfree(r->real);
158 r->real = qsquare(c->real);
159 return r;
161 if (cisimag(c)) {
162 qfree(r->real);
163 q1 = qsquare(c->imag);
164 r->real = qneg(q1);
165 qfree(q1);
166 return r;
168 q1 = qsquare(c->real);
169 q2 = qsquare(c->imag);
170 qfree(r->real);
171 r->real = qsub(q1, q2);
172 qfree(q1);
173 qfree(q2);
174 qfree(r->imag);
175 q1 = qmul(c->real, c->imag);
176 r->imag = qscale(q1, 1L);
177 qfree(q1);
178 return r;
183 * Divide two complex numbers.
185 COMPLEX *
186 c_div(COMPLEX *c1, COMPLEX *c2)
188 COMPLEX *r;
189 NUMBER *q1, *q2, *q3, *den;
191 if (ciszero(c2)) {
192 math_error("Division by zero");
193 /*NOTREACHED*/
195 if ((c1->real == c2->real) && (c1->imag == c2->imag))
196 return clink(&_cone_);
197 r = comalloc();
198 if (cisreal(c1) && cisreal(c2)) {
199 qfree(r->real);
200 r->real = qqdiv(c1->real, c2->real);
201 return r;
203 if (cisimag(c1) && cisimag(c2)) {
204 qfree(r->real);
205 r->real = qqdiv(c1->imag, c2->imag);
206 return r;
208 if (cisimag(c1) && cisreal(c2)) {
209 qfree(r->imag);
210 r->imag = qqdiv(c1->imag, c2->real);
211 return r;
213 if (cisreal(c1) && cisimag(c2)) {
214 qfree(r->imag);
215 q1 = qqdiv(c1->real, c2->imag);
216 r->imag = qneg(q1);
217 qfree(q1);
218 return r;
220 if (cisreal(c2)) {
221 qfree(r->real);
222 qfree(r->imag);
223 r->real = qqdiv(c1->real, c2->real);
224 r->imag = qqdiv(c1->imag, c2->real);
225 return r;
227 q1 = qsquare(c2->real);
228 q2 = qsquare(c2->imag);
229 den = qqadd(q1, q2);
230 qfree(q1);
231 qfree(q2);
232 q1 = qmul(c1->real, c2->real);
233 q2 = qmul(c1->imag, c2->imag);
234 q3 = qqadd(q1, q2);
235 qfree(q1);
236 qfree(q2);
237 qfree(r->real);
238 r->real = qqdiv(q3, den);
239 qfree(q3);
240 q1 = qmul(c1->real, c2->imag);
241 q2 = qmul(c1->imag, c2->real);
242 q3 = qsub(q2, q1);
243 qfree(q1);
244 qfree(q2);
245 qfree(r->imag);
246 r->imag = qqdiv(q3, den);
247 qfree(q3);
248 qfree(den);
249 return r;
254 * Invert a complex number.
256 COMPLEX *
257 c_inv(COMPLEX *c)
259 COMPLEX *r;
260 NUMBER *q1, *q2, *den;
262 if (ciszero(c)) {
263 math_error("Inverting zero");
264 /*NOTREACHED*/
266 r = comalloc();
267 if (cisreal(c)) {
268 qfree(r->real);
269 r->real = qinv(c->real);
270 return r;
272 if (cisimag(c)) {
273 q1 = qinv(c->imag);
274 qfree(r->imag);
275 r->imag = qneg(q1);
276 qfree(q1);
277 return r;
279 q1 = qsquare(c->real);
280 q2 = qsquare(c->imag);
281 den = qqadd(q1, q2);
282 qfree(q1);
283 qfree(q2);
284 qfree(r->real);
285 r->real = qqdiv(c->real, den);
286 q1 = qqdiv(c->imag, den);
287 qfree(r->imag);
288 r->imag = qneg(q1);
289 qfree(q1);
290 qfree(den);
291 return r;
296 * Negate a complex number.
298 COMPLEX *
299 c_neg(COMPLEX *c)
301 COMPLEX *r;
303 if (ciszero(c))
304 return clink(&_czero_);
305 r = comalloc();
306 if (!qiszero(c->real)) {
307 qfree(r->real);
308 r->real = qneg(c->real);
310 if (!qiszero(c->imag)) {
311 qfree(r->imag);
312 r->imag = qneg(c->imag);
314 return r;
319 * Take the integer part of a complex number.
320 * This means take the integer part of both components.
322 COMPLEX *
323 c_int(COMPLEX *c)
325 COMPLEX *r;
327 if (cisint(c))
328 return clink(c);
329 r = comalloc();
330 qfree(r->real);
331 r->real = qint(c->real);
332 qfree(r->imag);
333 r->imag = qint(c->imag);
334 return r;
339 * Take the fractional part of a complex number.
340 * This means take the fractional part of both components.
342 COMPLEX *
343 c_frac(COMPLEX *c)
345 COMPLEX *r;
347 if (cisint(c))
348 return clink(&_czero_);
349 r = comalloc();
350 qfree(r->real);
351 r->real = qfrac(c->real);
352 qfree(r->imag);
353 r->imag = qfrac(c->imag);
354 return r;
359 * Take the conjugate of a complex number.
360 * This negates the complex part.
362 COMPLEX *
363 c_conj(COMPLEX *c)
365 COMPLEX *r;
367 if (cisreal(c))
368 return clink(c);
369 r = comalloc();
370 if (!qiszero(c->real)) {
371 qfree(r->real);
372 r->real = qlink(c->real);
374 qfree(r->imag);
375 r->imag = qneg(c->imag);
376 return r;
381 * Return the real part of a complex number.
383 COMPLEX *
384 c_real(COMPLEX *c)
386 COMPLEX *r;
388 if (cisreal(c))
389 return clink(c);
390 r = comalloc();
391 if (!qiszero(c->real)) {
392 qfree(r->real);
393 r->real = qlink(c->real);
395 return r;
400 * Return the imaginary part of a complex number as a real.
402 COMPLEX *
403 c_imag(COMPLEX *c)
405 COMPLEX *r;
407 if (cisreal(c))
408 return clink(&_czero_);
409 r = comalloc();
410 qfree(r->real);
411 r->real = qlink(c->imag);
412 return r;
417 * Add a real number to a complex number.
419 COMPLEX *
420 c_addq(COMPLEX *c, NUMBER *q)
422 COMPLEX *r;
424 if (qiszero(q))
425 return clink(c);
426 r = comalloc();
427 qfree(r->real);
428 qfree(r->imag);
429 r->real = qqadd(c->real, q);
430 r->imag = qlink(c->imag);
431 return r;
436 * Subtract a real number from a complex number.
438 COMPLEX *
439 c_subq(COMPLEX *c, NUMBER *q)
441 COMPLEX *r;
443 if (qiszero(q))
444 return clink(c);
445 r = comalloc();
446 qfree(r->real);
447 qfree(r->imag);
448 r->real = qsub(c->real, q);
449 r->imag = qlink(c->imag);
450 return r;
455 * Shift the components of a complex number left by the specified
456 * number of bits. Negative values shift to the right.
458 COMPLEX *
459 c_shift(COMPLEX *c, long n)
461 COMPLEX *r;
463 if (ciszero(c) || (n == 0))
464 return clink(c);
465 r = comalloc();
466 qfree(r->real);
467 qfree(r->imag);
468 r->real = qshift(c->real, n);
469 r->imag = qshift(c->imag, n);
470 return r;
475 * Scale a complex number by a power of two.
477 COMPLEX *
478 c_scale(COMPLEX *c, long n)
480 COMPLEX *r;
482 if (ciszero(c) || (n == 0))
483 return clink(c);
484 r = comalloc();
485 qfree(r->real);
486 qfree(r->imag);
487 r->real = qscale(c->real, n);
488 r->imag = qscale(c->imag, n);
489 return r;
494 * Multiply a complex number by a real number.
496 COMPLEX *
497 c_mulq(COMPLEX *c, NUMBER *q)
499 COMPLEX *r;
501 if (qiszero(q))
502 return clink(&_czero_);
503 if (qisone(q))
504 return clink(c);
505 if (qisnegone(q))
506 return c_neg(c);
507 r = comalloc();
508 qfree(r->real);
509 qfree(r->imag);
510 r->real = qmul(c->real, q);
511 r->imag = qmul(c->imag, q);
512 return r;
517 * Divide a complex number by a real number.
519 COMPLEX *
520 c_divq(COMPLEX *c, NUMBER *q)
522 COMPLEX *r;
524 if (qiszero(q)) {
525 math_error("Division by zero");
526 /*NOTREACHED*/
528 if (qisone(q))
529 return clink(c);
530 if (qisnegone(q))
531 return c_neg(c);
532 r = comalloc();
533 qfree(r->real);
534 qfree(r->imag);
535 r->real = qqdiv(c->real, q);
536 r->imag = qqdiv(c->imag, q);
537 return r;
544 * Construct a complex number given the real and imaginary components.
546 COMPLEX *
547 qqtoc(NUMBER *q1, NUMBER *q2)
549 COMPLEX *r;
551 if (qiszero(q1) && qiszero(q2))
552 return clink(&_czero_);
553 r = comalloc();
554 qfree(r->real);
555 qfree(r->imag);
556 r->real = qlink(q1);
557 r->imag = qlink(q2);
558 return r;
563 * Compare two complex numbers for equality, returning FALSE if they are equal,
564 * and TRUE if they differ.
566 BOOL
567 c_cmp(COMPLEX *c1, COMPLEX *c2)
569 BOOL i;
571 i = qcmp(c1->real, c2->real);
572 if (!i)
573 i = qcmp(c1->imag, c2->imag);
574 return i;
579 * Compare two complex numbers and return a complex number with real and
580 * imaginary parts -1, 0 or 1 indicating relative values of the real and
581 * imaginary parts of the two numbers.
583 COMPLEX *
584 c_rel(COMPLEX *c1, COMPLEX *c2)
586 COMPLEX *c;
588 c = comalloc();
589 qfree(c->real);
590 qfree(c->imag);
591 c->real = itoq((long) qrel(c1->real, c2->real));
592 c->imag = itoq((long) qrel(c1->imag, c2->imag));
594 return c;
599 * Allocate a new complex number.
601 COMPLEX *
602 comalloc(void)
604 COMPLEX *r;
606 r = (COMPLEX *) malloc(sizeof(COMPLEX));
607 if (r == NULL) {
608 math_error("Cannot allocate complex number");
609 /*NOTREACHED*/
611 r->links = 1;
612 r->real = qlink(&_qzero_);
613 r->imag = qlink(&_qzero_);
614 return r;
619 * Free a complex number.
621 void
622 comfree(COMPLEX *c)
624 if (--(c->links) > 0)
625 return;
626 qfree(c->real);
627 qfree(c->imag);
628 free(c);