1 // (C) 2006, Matt Mahoney, mmahoney (at) cs.fit.edu
2 // Copyright 2007 Google Inc.
4 // This program is free software; you can redistribute it and/or
5 // modify it under the terms of the GNU General Public License
6 // as published by the Free Software Foundation; either version 2
7 // of the License, or (at your option) any later version.
9 // This program is distributed in the hope that it will be useful,
10 // but WITHOUT ANY WARRANTY; without even the implied warranty of
11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 // GNU General Public License for more details.
14 // You should have received a copy of the GNU General Public License
15 // along with this program; if not, write to the Free Software
16 // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
18 #include "bbb_compress.h"
32 ///////////////////////// state table ////////////////////////
35 // nex(state, 0) = next state if bit y is 0, 0 <= state < 256
36 // nex(state, 1) = next state if bit y is 1
37 // nex(state, 2) = number of zeros in bit history represented by state
38 // nex(state, 3) = number of ones represented
40 // States represent a bit history within some context.
41 // State 0 is the starting state (no bits seen).
42 // States 1-30 represent all possible sequences of 1-4 bits.
43 // States 31-252 represent a pair of counts, (n0,n1), the number
44 // of 0 and 1 bits respectively. If n0+n1 < 16 then there are
45 // two states for each pair, depending on if a 0 or 1 was the last
47 // If n0 and n1 are too large, then there is no state to represent this
48 // pair, so another state with about the same ratio of n0/n1 is substituted.
49 // Also, when a bit is observed and the count of the opposite bit is large,
50 // then part of this count is discarded to favor newer data over old.
52 static const uint8 State_table
[256][4]={
53 { 1, 2, 0, 0},{ 3, 5, 1, 0},{ 4, 6, 0, 1},{ 7, 10, 2, 0}, // 0-3
54 { 8, 12, 1, 1},{ 9, 13, 1, 1},{ 11, 14, 0, 2},{ 15, 19, 3, 0}, // 4-7
55 { 16, 23, 2, 1},{ 17, 24, 2, 1},{ 18, 25, 2, 1},{ 20, 27, 1, 2}, // 8-11
56 { 21, 28, 1, 2},{ 22, 29, 1, 2},{ 26, 30, 0, 3},{ 31, 33, 4, 0}, // 12-15
57 { 32, 35, 3, 1},{ 32, 35, 3, 1},{ 32, 35, 3, 1},{ 32, 35, 3, 1}, // 16-19
58 { 34, 37, 2, 2},{ 34, 37, 2, 2},{ 34, 37, 2, 2},{ 34, 37, 2, 2}, // 20-23
59 { 34, 37, 2, 2},{ 34, 37, 2, 2},{ 36, 39, 1, 3},{ 36, 39, 1, 3}, // 24-27
60 { 36, 39, 1, 3},{ 36, 39, 1, 3},{ 38, 40, 0, 4},{ 41, 43, 5, 0}, // 28-31
61 { 42, 45, 4, 1},{ 42, 45, 4, 1},{ 44, 47, 3, 2},{ 44, 47, 3, 2}, // 32-35
62 { 46, 49, 2, 3},{ 46, 49, 2, 3},{ 48, 51, 1, 4},{ 48, 51, 1, 4}, // 36-39
63 { 50, 52, 0, 5},{ 53, 43, 6, 0},{ 54, 57, 5, 1},{ 54, 57, 5, 1}, // 40-43
64 { 56, 59, 4, 2},{ 56, 59, 4, 2},{ 58, 61, 3, 3},{ 58, 61, 3, 3}, // 44-47
65 { 60, 63, 2, 4},{ 60, 63, 2, 4},{ 62, 65, 1, 5},{ 62, 65, 1, 5}, // 48-51
66 { 50, 66, 0, 6},{ 67, 55, 7, 0},{ 68, 57, 6, 1},{ 68, 57, 6, 1}, // 52-55
67 { 70, 73, 5, 2},{ 70, 73, 5, 2},{ 72, 75, 4, 3},{ 72, 75, 4, 3}, // 56-59
68 { 74, 77, 3, 4},{ 74, 77, 3, 4},{ 76, 79, 2, 5},{ 76, 79, 2, 5}, // 60-63
69 { 62, 81, 1, 6},{ 62, 81, 1, 6},{ 64, 82, 0, 7},{ 83, 69, 8, 0}, // 64-67
70 { 84, 71, 7, 1},{ 84, 71, 7, 1},{ 86, 73, 6, 2},{ 86, 73, 6, 2}, // 68-71
71 { 44, 59, 5, 3},{ 44, 59, 5, 3},{ 58, 61, 4, 4},{ 58, 61, 4, 4}, // 72-75
72 { 60, 49, 3, 5},{ 60, 49, 3, 5},{ 76, 89, 2, 6},{ 76, 89, 2, 6}, // 76-79
73 { 78, 91, 1, 7},{ 78, 91, 1, 7},{ 80, 92, 0, 8},{ 93, 69, 9, 0}, // 80-83
74 { 94, 87, 8, 1},{ 94, 87, 8, 1},{ 96, 45, 7, 2},{ 96, 45, 7, 2}, // 84-87
75 { 48, 99, 2, 7},{ 48, 99, 2, 7},{ 88,101, 1, 8},{ 88,101, 1, 8}, // 88-91
76 { 80,102, 0, 9},{103, 69,10, 0},{104, 87, 9, 1},{104, 87, 9, 1}, // 92-95
77 {106, 57, 8, 2},{106, 57, 8, 2},{ 62,109, 2, 8},{ 62,109, 2, 8}, // 96-99
78 { 88,111, 1, 9},{ 88,111, 1, 9},{ 80,112, 0,10},{113, 85,11, 0}, // 100-103
79 {114, 87,10, 1},{114, 87,10, 1},{116, 57, 9, 2},{116, 57, 9, 2}, // 104-107
80 { 62,119, 2, 9},{ 62,119, 2, 9},{ 88,121, 1,10},{ 88,121, 1,10}, // 108-111
81 { 90,122, 0,11},{123, 85,12, 0},{124, 97,11, 1},{124, 97,11, 1}, // 112-115
82 {126, 57,10, 2},{126, 57,10, 2},{ 62,129, 2,10},{ 62,129, 2,10}, // 116-119
83 { 98,131, 1,11},{ 98,131, 1,11},{ 90,132, 0,12},{133, 85,13, 0}, // 120-123
84 {134, 97,12, 1},{134, 97,12, 1},{136, 57,11, 2},{136, 57,11, 2}, // 124-127
85 { 62,139, 2,11},{ 62,139, 2,11},{ 98,141, 1,12},{ 98,141, 1,12}, // 128-131
86 { 90,142, 0,13},{143, 95,14, 0},{144, 97,13, 1},{144, 97,13, 1}, // 132-135
87 { 68, 57,12, 2},{ 68, 57,12, 2},{ 62, 81, 2,12},{ 62, 81, 2,12}, // 136-139
88 { 98,147, 1,13},{ 98,147, 1,13},{100,148, 0,14},{149, 95,15, 0}, // 140-143
89 {150,107,14, 1},{150,107,14, 1},{108,151, 1,14},{108,151, 1,14}, // 144-147
90 {100,152, 0,15},{153, 95,16, 0},{154,107,15, 1},{108,155, 1,15}, // 148-151
91 {100,156, 0,16},{157, 95,17, 0},{158,107,16, 1},{108,159, 1,16}, // 152-155
92 {100,160, 0,17},{161,105,18, 0},{162,107,17, 1},{108,163, 1,17}, // 156-159
93 {110,164, 0,18},{165,105,19, 0},{166,117,18, 1},{118,167, 1,18}, // 160-163
94 {110,168, 0,19},{169,105,20, 0},{170,117,19, 1},{118,171, 1,19}, // 164-167
95 {110,172, 0,20},{173,105,21, 0},{174,117,20, 1},{118,175, 1,20}, // 168-171
96 {110,176, 0,21},{177,105,22, 0},{178,117,21, 1},{118,179, 1,21}, // 172-175
97 {110,180, 0,22},{181,115,23, 0},{182,117,22, 1},{118,183, 1,22}, // 176-179
98 {120,184, 0,23},{185,115,24, 0},{186,127,23, 1},{128,187, 1,23}, // 180-183
99 {120,188, 0,24},{189,115,25, 0},{190,127,24, 1},{128,191, 1,24}, // 184-187
100 {120,192, 0,25},{193,115,26, 0},{194,127,25, 1},{128,195, 1,25}, // 188-191
101 {120,196, 0,26},{197,115,27, 0},{198,127,26, 1},{128,199, 1,26}, // 192-195
102 {120,200, 0,27},{201,115,28, 0},{202,127,27, 1},{128,203, 1,27}, // 196-199
103 {120,204, 0,28},{205,115,29, 0},{206,127,28, 1},{128,207, 1,28}, // 200-203
104 {120,208, 0,29},{209,125,30, 0},{210,127,29, 1},{128,211, 1,29}, // 204-207
105 {130,212, 0,30},{213,125,31, 0},{214,137,30, 1},{138,215, 1,30}, // 208-211
106 {130,216, 0,31},{217,125,32, 0},{218,137,31, 1},{138,219, 1,31}, // 212-215
107 {130,220, 0,32},{221,125,33, 0},{222,137,32, 1},{138,223, 1,32}, // 216-219
108 {130,224, 0,33},{225,125,34, 0},{226,137,33, 1},{138,227, 1,33}, // 220-223
109 {130,228, 0,34},{229,125,35, 0},{230,137,34, 1},{138,231, 1,34}, // 224-227
110 {130,232, 0,35},{233,125,36, 0},{234,137,35, 1},{138,235, 1,35}, // 228-231
111 {130,236, 0,36},{237,125,37, 0},{238,137,36, 1},{138,239, 1,36}, // 232-235
112 {130,240, 0,37},{241,125,38, 0},{242,137,37, 1},{138,243, 1,37}, // 236-239
113 {130,244, 0,38},{245,135,39, 0},{246,137,38, 1},{138,247, 1,38}, // 240-243
114 {140,248, 0,39},{249,135,40, 0},{250, 69,39, 1},{ 80,251, 1,39}, // 244-247
115 {140,252, 0,40},{249,135,41, 0},{250, 69,40, 1},{ 80,251, 1,40}, // 248-251
116 {140,252, 0,41}}; // 253-255 are reserved
118 #define nex(state,sel) State_table[state][sel]
120 ///////////////////////////// Squash //////////////////////////////
122 // return p = 1/(1 + exp(-d)), d scaled by 8 bits, p scaled by 12 bits
124 static const int t
[33]={
125 1,2,3,6,10,16,27,45,73,120,194,310,488,747,1101,
126 1546,2047,2549,2994,3348,3607,3785,3901,3975,4022,
127 4050,4068,4079,4085,4089,4092,4093,4094};
128 if (d
>2047) return 4095;
129 if (d
<-2047) return 0;
132 return (t
[d
]*(128-w
)+t
[(d
+1)]*w
+64) >> 7;
135 //////////////////////////// Stretch ///////////////////////////////
137 // Inverse of squash. d = ln(p/(1-p)), d scaled by 8 bits, p by 12 bits.
138 // d has range -2047 to 2047 representing -8 to 8. p has range 0 to 4095.
144 int operator()(int p
) const {
145 assert(p
>=0 && p
<4096);
150 Stretch::Stretch(): t(4096) {
152 for (int x
=-2047; x
<=2047; ++x
) { // invert squash()
154 for (int j
=pi
; j
<=i
; ++j
)
163 //////////////////////////// StateMap //////////////////////////
165 StateMap::StateMap(): cxt(0), t(256) {
166 for (int i
=0; i
<256; ++i
) {
171 t
[i
] = 65536*(n1
+1)/(n0
+n1
+2);
175 //////////////////////////// APM //////////////////////////////
177 // maps p, cxt -> p initially
178 APM::APM(int n
): index(0), N(n
), t(n
*33) {
179 for (int i
=0; i
<N
; ++i
)
180 for (int j
=0; j
<33; ++j
)
181 t
[i
*33+j
] = i
==0 ? squash((j
-16)*128)*16 : t
[j
];
184 int APM::p(int y
, int pr
, int cxt
, int rate
) {
185 assert(pr
>=0 && pr
<4096 && cxt
>=0 && cxt
<N
&& rate
>0 && rate
<32);
187 int g
= (y
<<16)+(y
<<rate
)-y
-y
;
188 t
[index
] += (g
-t
[index
]) >> rate
;
189 t
[index
+1] += (g
-t
[index
+1]) >> rate
;
190 const int w
= pr
&127; // interpolation weight (33 points)
191 index
= ((pr
+2048)>>7)+cxt
*33;
192 return (t
[index
]*(128-w
)+t
[index
+1]*w
) >> 11;
195 //////////////////////////// Predictor //////////////////////////
197 void Predictor::update(int y
) {
208 if (((c4
^c4
>>8)&255)==0) {
211 if (run
==1 || run
==2 || run
==4) runcxt
+= 1;
213 else run
=0, runcxt
=0;
216 int c1c
= ((c4
& 255) + 256) >> (8-bpos
);
217 int c1d
= (c4
>> (7-bpos
)) & 1;
218 if (c1c
== c0
) c1d
+= 2;
219 //int c1 = c4 & (255 ^ (127>>bpos));
224 pr
= a2
.p(y
, pr
, c0
|(c1d
<<8), 7);
225 pr
= a3
.p(y
, pr
, runcxt
, 8);
226 pr
= (a5
.p(y
, pr
, c0
^((c4
*123456791)>>21), 7)+pr
+1)>>1;
227 pr
= (a4
.p(y
, pr
, c0
, 7)+pr
+1)>>1;
232 ///////////////////// BbbCompressor /////////////////////
234 void BbbCompressor::CompressBit(int bit
) {
235 int p
= predictor_
.p();
239 uint32 xmid
= x1_
+ ((x2_
-x1_
) >> 12) * p
240 + ((((x2_
-x1_
) & 0xfff) * p
) >> 12);
243 bit
? (x2_
= xmid
) : (x1_
= xmid
+ 1);
244 predictor_
.update(bit
);
245 while (((x1_
^ x2_
) & 0xff000000) == 0) {
248 x2_
= (x2_
<<8) + 255;
252 void BbbCompressor::WriteBegin() {
257 void BbbCompressor::WriteEndPrivate() {
264 ///////////////////// BbbDecompressor /////////////////////
266 void BbbDecompressor::ReadBegin() {
269 x_
= GetCompressedByte();
270 for (int i
= 3; i
; --i
) x_
= (x_
<< 8) + GetCompressedByte();
273 int BbbDecompressor::GetUncompressedBit() {
274 int p
= predictor_
.p();
278 uint32 xmid
= x1_
+ ((x2_
-x1_
) >> 12) * p
279 + ((((x2_
-x1_
) & 0xfff) * p
) >> 12);
282 int bit
= (x_
<= xmid
);
283 bit
? (x2_
= xmid
) : (x1_
= xmid
+ 1);
284 predictor_
.update(bit
);
285 while (((x1_
^ x2_
) & 0xff000000) == 0) {
287 x2_
= (x2_
<<8) + 255;
288 x_
=(x_
<<8) + GetCompressedByte();
293 } // namespace dcsbwt