modified: makefile
[GalaxyCodeBases.git] / tools / lh3misc / klib.lua
blobbfe52f7f7591b60bf09ceffab93e7da195d7b428
1 --[[
2 The MIT License
4 Copyright (c) 2011, Attractive Chaos <attractor@live.co.uk>
6 Permission is hereby granted, free of charge, to any person obtaining a copy
7 of this software and associated documentation files (the "Software"), to deal
8 in the Software without restriction, including without limitation the rights
9 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 copies of the Software, and to permit persons to whom the Software is
11 furnished to do so, subject to the following conditions:
13 The above copyright notice and this permission notice shall be included in
14 all copies or substantial portions of the Software.
16 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 SOFTWARE.
23 ]]--
25 --[[
26 This is a Lua library, more exactly a collection of Lua snippets, covering
27 utilities (e.g. getopt), string operations (e.g. split), statistics (e.g.
28 Fisher's exact test), special functions (e.g. logarithm gamma) and matrix
29 operations (e.g. Gauss-Jordan elimination). The routines are designed to be
30 as independent as possible, such that one can copy-paste relevant pieces of
31 code without worrying about additional library dependencies.
33 If you use routines from this library, please include the licensing
34 information above where appropriate.
35 ]]--
37 --[[
38 Library functions and dependencies. "a>b" means "a is required by b"; "b<a"
39 means "b depends on a".
41 os.getopt()
42 string:split()
43 io.xopen()
44 table.ksmall()
45 table.shuffle()
46 math.lgamma() >math.lbinom() >math.igamma()
47 math.igamma() <math.lgamma() >matrix.chi2()
48 math.erfc()
49 math.lbinom() <math.lgamma() >math.fisher_exact()
50 math.bernstein_poly() <math.lbinom()
51 math.fisher_exact() <math.lbinom()
52 math.jackknife()
53 math.pearson()
54 math.spearman()
55 math.fmin()
56 matrix
57 matrix.add()
58 matrix.T() >matrix.mul()
59 matrix.mul() <matrix.T()
60 matrix.tostring()
61 matrix.chi2() <math.igamma()
62 matrix.solve()
63 ]]--
65 -- Description: getopt() translated from the BSD getopt(); compatible with the default Unix getopt()
66 --[[ Example:
67 for o, a in os.getopt(arg, 'a:b') do
68 print(o, a)
69 end
70 ]]--
71 function os.getopt(args, ostr)
72 local arg, place = nil, 0;
73 return function ()
74 if place == 0 then -- update scanning pointer
75 place = 1
76 if #args == 0 or args[1]:sub(1, 1) ~= '-' then place = 0; return nil end
77 if #args[1] >= 2 then
78 place = place + 1
79 if args[1]:sub(2, 2) == '-' then -- found "--"
80 place = 0
81 table.remove(args, 1);
82 return nil;
83 end
84 end
85 end
86 local optopt = args[1]:sub(place, place);
87 place = place + 1;
88 local oli = ostr:find(optopt);
89 if optopt == ':' or oli == nil then -- unknown option
90 if optopt == '-' then return nil end
91 if place > #args[1] then
92 table.remove(args, 1);
93 place = 0;
94 end
95 return '?';
96 end
97 oli = oli + 1;
98 if ostr:sub(oli, oli) ~= ':' then -- do not need argument
99 arg = nil;
100 if place > #args[1] then
101 table.remove(args, 1);
102 place = 0;
104 else -- need an argument
105 if place <= #args[1] then -- no white space
106 arg = args[1]:sub(place);
107 else
108 table.remove(args, 1);
109 if #args == 0 then -- an option requiring argument is the last one
110 place = 0;
111 if ostr:sub(1, 1) == ':' then return ':' end
112 return '?';
113 else arg = args[1] end
115 table.remove(args, 1);
116 place = 0;
118 return optopt, arg;
122 -- Description: string split
123 function string:split(sep, n)
124 local a, start = {}, 1;
125 sep = sep or "%s+";
126 repeat
127 local b, e = self:find(sep, start);
128 if b == nil then
129 table.insert(a, self:sub(start));
130 break
132 a[#a+1] = self:sub(start, b - 1);
133 start = e + 1;
134 if n and #a == n then
135 table.insert(a, self:sub(start));
136 break
138 until start > #self;
139 return a;
142 -- Description: smart file open
143 function io.xopen(fn, mode)
144 mode = mode or 'r';
145 if fn == nil then return io.stdin;
146 elseif fn == '-' then return (mode == 'r' and io.stdin) or io.stdout;
147 elseif fn:sub(-3) == '.gz' then return (mode == 'r' and io.popen('gzip -dc ' .. fn, 'r')) or io.popen('gzip > ' .. fn, 'w');
148 elseif fn:sub(-4) == '.bz2' then return (mode == 'r' and io.popen('bzip2 -dc ' .. fn, 'r')) or io.popen('bgzip2 > ' .. fn, 'w');
149 else return io.open(fn, mode) end
152 -- Description: find the k-th smallest element in an array (Ref. http://ndevilla.free.fr/median/)
153 function table.ksmall(arr, k)
154 local low, high = 1, #arr;
155 while true do
156 if high <= low then return arr[k] end
157 if high == low + 1 then
158 if arr[high] < arr[low] then arr[high], arr[low] = arr[low], arr[high] end;
159 return arr[k];
161 local mid = math.floor((high + low) / 2);
162 if arr[high] < arr[mid] then arr[mid], arr[high] = arr[high], arr[mid] end
163 if arr[high] < arr[low] then arr[low], arr[high] = arr[high], arr[low] end
164 if arr[low] < arr[mid] then arr[low], arr[mid] = arr[mid], arr[low] end
165 arr[mid], arr[low+1] = arr[low+1], arr[mid];
166 local ll, hh = low + 1, high;
167 while true do
168 repeat ll = ll + 1 until arr[ll] >= arr[low]
169 repeat hh = hh - 1 until arr[low] >= arr[hh]
170 if hh < ll then break end
171 arr[ll], arr[hh] = arr[hh], arr[ll];
173 arr[low], arr[hh] = arr[hh], arr[low];
174 if hh <= k then low = ll end
175 if hh >= k then high = hh - 1 end
179 -- Description: shuffle/permutate an array
180 function table.shuffle(a)
181 for i = #a, 1, -1 do
182 local j = math.random(i)
183 a[j], a[i] = a[i], a[j]
188 -- Mathematics
191 -- Description: log gamma function
192 -- Required by: math.lbinom()
193 -- Reference: AS245, 2nd algorithm, http://lib.stat.cmu.edu/apstat/245
194 function math.lgamma(z)
195 local x;
196 x = 0.1659470187408462e-06 / (z+7);
197 x = x + 0.9934937113930748e-05 / (z+6);
198 x = x - 0.1385710331296526 / (z+5);
199 x = x + 12.50734324009056 / (z+4);
200 x = x - 176.6150291498386 / (z+3);
201 x = x + 771.3234287757674 / (z+2);
202 x = x - 1259.139216722289 / (z+1);
203 x = x + 676.5203681218835 / z;
204 x = x + 0.9999999999995183;
205 return math.log(x) - 5.58106146679532777 - z + (z-0.5) * math.log(z+6.5);
208 -- Description: regularized incomplete gamma function
209 -- Dependent on: math.lgamma()
210 --[[
211 Formulas are taken from Wiki, with additional input from Numerical
212 Recipes in C (for modified Lentz's algorithm) and AS245
213 (http://lib.stat.cmu.edu/apstat/245).
215 A good online calculator is available at:
217 http://www.danielsoper.com/statcalc/calc23.aspx
219 It calculates upper incomplete gamma function, which equals
220 math.igamma(s,z,true)*math.exp(math.lgamma(s))
221 ]]--
222 function math.igamma(s, z, complement)
224 local function _kf_gammap(s, z)
225 local sum, x = 1, 1;
226 for k = 1, 100 do
227 x = x * z / (s + k);
228 sum = sum + x;
229 if x / sum < 1e-14 then break end
231 return math.exp(s * math.log(z) - z - math.lgamma(s + 1.) + math.log(sum));
234 local function _kf_gammaq(s, z)
235 local C, D, f, TINY;
236 f = 1. + z - s; C = f; D = 0.; TINY = 1e-290;
237 -- Modified Lentz's algorithm for computing continued fraction. See Numerical Recipes in C, 2nd edition, section 5.2
238 for j = 1, 100 do
239 local d;
240 local a, b = j * (s - j), j*2 + 1 + z - s;
241 D = b + a * D;
242 if D < TINY then D = TINY end
243 C = b + a / C;
244 if C < TINY then C = TINY end
245 D = 1. / D;
246 d = C * D;
247 f = f * d;
248 if math.abs(d - 1) < 1e-14 then break end
250 return math.exp(s * math.log(z) - z - math.lgamma(s) - math.log(f));
253 if complement then
254 return ((z <= 1 or z < s) and 1 - _kf_gammap(s, z)) or _kf_gammaq(s, z);
255 else
256 return ((z <= 1 or z < s) and _kf_gammap(s, z)) or (1 - _kf_gammaq(s, z));
260 math.M_SQRT2 = 1.41421356237309504880 -- sqrt(2)
261 math.M_SQRT1_2 = 0.70710678118654752440 -- 1/sqrt(2)
263 -- Description: complement error function erfc(x): \Phi(x) = 0.5 * erfc(-x/M_SQRT2)
264 function math.erfc(x)
265 local z = math.abs(x) * math.M_SQRT2
266 if z > 37 then return (x > 0 and 0) or 2 end
267 local expntl = math.exp(-0.5 * z * z)
268 local p
269 if z < 10. / math.M_SQRT2 then -- for small z
270 p = expntl * ((((((.03526249659989109 * z + .7003830644436881) * z + 6.37396220353165) * z + 33.912866078383)
271 * z + 112.0792914978709) * z + 221.2135961699311) * z + 220.2068679123761)
272 / (((((((.08838834764831844 * z + 1.755667163182642) * z + 16.06417757920695) * z + 86.78073220294608)
273 * z + 296.5642487796737) * z + 637.3336333788311) * z + 793.8265125199484) * z + 440.4137358247522);
274 else p = expntl / 2.506628274631001 / (z + 1. / (z + 2. / (z + 3. / (z + 4. / (z + .65))))) end
275 return (x > 0 and 2 * p) or 2 * (1 - p)
278 -- Description: log binomial coefficient
279 -- Dependent on: math.lgamma()
280 -- Required by: math.fisher_exact()
281 function math.lbinom(n, m)
282 if m == nil then
283 local a = {};
284 a[0], a[n] = 0, 0;
285 local t = math.lgamma(n+1);
286 for m = 1, n-1 do a[m] = t - math.lgamma(m+1) - math.lgamma(n-m+1) end
287 return a;
288 else return math.lgamma(n+1) - math.lgamma(m+1) - math.lgamma(n-m+1) end
291 -- Description: Berstein polynomials (mainly for Bezier curves)
292 -- Dependent on: math.lbinom()
293 -- Note: to compute derivative: let beta_new[i]=beta[i+1]-beta[i]
294 function math.bernstein_poly(beta)
295 local n = #beta - 1;
296 local lbc = math.lbinom(n); -- log binomial coefficients
297 return function (t)
298 assert(t >= 0 and t <= 1);
299 if t == 0 then return beta[1] end
300 if t == 1 then return beta[n+1] end
301 local sum, logt, logt1 = 0, math.log(t), math.log(1-t);
302 for i = 0, n do sum = sum + beta[i+1] * math.exp(lbc[i] + i * logt + (n-i) * logt1) end
303 return sum;
307 -- Description: Fisher's exact test
308 -- Dependent on: math.lbinom()
309 -- Return: left-, right- and two-tail P-values
310 --[[
311 Fisher's exact test for 2x2 congintency tables:
313 n11 n12 | n1_
314 n21 n22 | n2_
315 -----------+----
316 n_1 n_2 | n
318 Reference: http://www.langsrud.com/fisher.htm
319 ]]--
320 function math.fisher_exact(n11, n12, n21, n22)
321 local aux; -- keep the states of n* for acceleration
323 -- Description: hypergeometric function
324 local function hypergeo(n11, n1_, n_1, n)
325 return math.exp(math.lbinom(n1_, n11) + math.lbinom(n-n1_, n_1-n11) - math.lbinom(n, n_1));
328 -- Description: incremental hypergeometric function
329 -- Note: aux = {n11, n1_, n_1, n, p}
330 local function hypergeo_inc(n11, n1_, n_1, n)
331 if n1_ ~= 0 or n_1 ~= 0 or n ~= 0 then
332 aux = {n11, n1_, n_1, n, 1};
333 else -- then only n11 is changed
334 local mod;
335 _, mod = math.modf(n11 / 11);
336 if mod ~= 0 and n11 + aux[4] - aux[2] - aux[3] ~= 0 then
337 if n11 == aux[1] + 1 then -- increase by 1
338 aux[5] = aux[5] * (aux[2] - aux[1]) / n11 * (aux[3] - aux[1]) / (n11 + aux[4] - aux[2] - aux[3]);
339 aux[1] = n11;
340 return aux[5];
342 if n11 == aux[1] - 1 then -- descrease by 1
343 aux[5] = aux[5] * aux[1] / (aux[2] - n11) * (aux[1] + aux[4] - aux[2] - aux[3]) / (aux[3] - n11);
344 aux[1] = n11;
345 return aux[5];
348 aux[1] = n11;
350 aux[5] = hypergeo(aux[1], aux[2], aux[3], aux[4]);
351 return aux[5];
354 -- Description: computing the P-value by Fisher's exact test
355 local max, min, left, right, n1_, n_1, n, two, p, q, i, j;
356 n1_, n_1, n = n11 + n12, n11 + n21, n11 + n12 + n21 + n22;
357 max = (n_1 < n1_ and n_1) or n1_; -- max n11, for the right tail
358 min = n1_ + n_1 - n;
359 if min < 0 then min = 0 end -- min n11, for the left tail
360 two, left, right = 1, 1, 1;
361 if min == max then return 1 end -- no need to do test
362 q = hypergeo_inc(n11, n1_, n_1, n); -- the probability of the current table
363 -- left tail
364 i, left, p = min + 1, 0, hypergeo_inc(min, 0, 0, 0);
365 while p < 0.99999999 * q do
366 left, p, i = left + p, hypergeo_inc(i, 0, 0, 0), i + 1;
368 i = i - 1;
369 if p < 1.00000001 * q then left = left + p;
370 else i = i - 1 end
371 -- right tail
372 j, right, p = max - 1, 0, hypergeo_inc(max, 0, 0, 0);
373 while p < 0.99999999 * q do
374 right, p, j = right + p, hypergeo_inc(j, 0, 0, 0), j - 1;
376 j = j + 1;
377 if p < 1.00000001 * q then right = right + p;
378 else j = j + 1 end
379 -- two-tail
380 two = left + right;
381 if two > 1 then two = 1 end
382 -- adjust left and right
383 if math.abs(i - n11) < math.abs(j - n11) then right = 1 - left + q;
384 else left = 1 - right + q end
385 return left, right, two;
388 -- Description: Delete-m Jackknife
389 --[[
390 Given g groups of values with a statistics estimated from m[i] samples in
391 i-th group being t[i], compute the mean and the variance. t0 below is the
392 estimate from all samples. Reference:
394 Busing et al. (1999) Delete-m Jackknife for unequal m. Statistics and Computing, 9:3-8.
395 ]]--
396 function math.jackknife(g, m, t, t0)
397 local h, n, sum = {}, 0, 0;
398 for j = 1, g do n = n + m[j] end
399 if t0 == nil then -- When t0 is absent, estimate it in a naive way
400 t0 = 0;
401 for j = 1, g do t0 = t0 + m[j] * t[j] end
402 t0 = t0 / n;
404 local mean, var = 0, 0;
405 for j = 1, g do
406 h[j] = n / m[j];
407 mean = mean + (1 - m[j] / n) * t[j];
409 mean = g * t0 - mean; -- Eq. (8)
410 for j = 1, g do
411 local x = h[j] * t0 - (h[j] - 1) * t[j] - mean;
412 var = var + 1 / (h[j] - 1) * x * x;
414 var = var / g;
415 return mean, var;
418 -- Description: Pearson correlation coefficient
419 -- Input: a is an n*2 table
420 function math.pearson(a)
421 -- compute the mean
422 local x1, y1 = 0, 0
423 for _, v in pairs(a) do
424 x1, y1 = x1 + v[1], y1 + v[2]
426 -- compute the coefficient
427 x1, y1 = x1 / #a, y1 / #a
428 local x2, y2, xy = 0, 0, 0
429 for _, v in pairs(a) do
430 local tx, ty = v[1] - x1, v[2] - y1
431 xy, x2, y2 = xy + tx * ty, x2 + tx * tx, y2 + ty * ty
433 return xy / math.sqrt(x2) / math.sqrt(y2)
436 -- Description: Spearman correlation coefficient
437 function math.spearman(a)
438 local function aux_func(t) -- auxiliary function
439 return (t == 1 and 0) or (t*t - 1) * t / 12
442 for _, v in pairs(a) do v.r = {} end
443 local T, S = {}, {}
444 -- compute the rank
445 for k = 1, 2 do
446 table.sort(a, function(u,v) return u[k]<v[k] end)
447 local same = 1
448 T[k] = 0
449 for i = 2, #a + 1 do
450 if i <= #a and a[i-1][k] == a[i][k] then same = same + 1
451 else
452 local rank = (i-1) * 2 - same + 1
453 for j = i - same, i - 1 do a[j].r[k] = rank end
454 if same > 1 then T[k], same = T[k] + aux_func(same), 1 end
457 S[k] = aux_func(#a) - T[k]
459 -- compute the coefficient
460 local sum = 0
461 for _, v in pairs(a) do -- TODO: use nested loops to reduce loss of precision
462 local t = (v.r[1] - v.r[2]) / 2
463 sum = sum + t * t
465 return (S[1] + S[2] - sum) / 2 / math.sqrt(S[1] * S[2])
468 -- Description: Hooke-Jeeves derivative-free optimization
469 function math.fmin(func, x, data, r, eps, max_calls)
470 local n, n_calls = #x, 0;
471 r = r or 0.5;
472 eps = eps or 1e-7;
473 max_calls = max_calls or 50000
475 function fmin_aux(x1, data, fx1, dx) -- auxiliary function
476 local ftmp;
477 for k = 1, n do
478 x1[k] = x1[k] + dx[k];
479 local ftmp = func(x1, data); n_calls = n_calls + 1;
480 if ftmp < fx1 then fx1 = ftmp;
481 else -- search the opposite direction
482 dx[k] = -dx[k];
483 x1[k] = x1[k] + dx[k] + dx[k];
484 ftmp = func(x1, data); n_calls = n_calls + 1;
485 if ftmp < fx1 then fx1 = ftmp
486 else x1[k] = x1[k] - dx[k] end -- back to the original x[k]
489 return fx1; -- here: fx1=f(n,x1)
492 local dx, x1 = {}, {};
493 for k = 1, n do -- initial directions, based on MGJ
494 dx[k] = math.abs(x[k]) * r;
495 if dx[k] == 0 then dx[k] = r end;
497 local radius = r;
498 local fx1, fx;
499 fx = func(x, data); fx1 = fx; n_calls = n_calls + 1;
500 while true do
501 for i = 1, n do x1[i] = x[i] end; -- x1 = x
502 fx1 = fmin_aux(x1, data, fx, dx);
503 while fx1 < fx do
504 for k = 1, n do
505 local t = x[k];
506 dx[k] = (x1[k] > x[k] and math.abs(dx[k])) or -math.abs(dx[k]);
507 x[k] = x1[k];
508 x1[k] = x1[k] + x1[k] - t;
510 fx = fx1;
511 if n_calls >= max_calls then break end
512 fx1 = func(x1, data); n_calls = n_calls + 1;
513 fx1 = fmin_aux(x1, data, fx1, dx);
514 if fx1 >= fx then break end
515 local kk = n;
516 for k = 1, n do
517 if math.abs(x1[k] - x[k]) > .5 * math.abs(dx[k]) then
518 kk = k;
519 break;
522 if kk == n then break end
524 if radius >= eps then
525 if n_calls >= max_calls then break end
526 radius = radius * r;
527 for k = 1, n do dx[k] = dx[k] * r end
528 else break end
530 return fx1, n_calls;
534 -- Matrix
537 matrix = {}
539 -- Description: matrix transpose
540 -- Required by: matrix.mul()
541 function matrix.T(a)
542 local m, n, x = #a, #a[1], {};
543 for i = 1, n do
544 x[i] = {};
545 for j = 1, m do x[i][j] = a[j][i] end
547 return x;
550 -- Description: matrix add
551 function matrix.add(a, b)
552 assert(#a == #b and #a[1] == #b[1]);
553 local m, n, x = #a, #a[1], {};
554 for i = 1, m do
555 x[i] = {};
556 local ai, bi, xi = a[i], b[i], x[i];
557 for j = 1, n do xi[j] = ai[j] + bi[j] end
559 return x;
562 -- Description: matrix mul
563 -- Dependent on: matrix.T()
564 -- Note: much slower without transpose
565 function matrix.mul(a, b)
566 assert(#a[1] == #b);
567 local m, n, p, x = #a, #a[1], #b[1], {};
568 local c = matrix.T(b); -- transpose for efficiency
569 for i = 1, m do
570 x[i] = {}
571 local xi = x[i];
572 for j = 1, p do
573 local sum, ai, cj = 0, a[i], c[j];
574 for k = 1, n do sum = sum + ai[k] * cj[k] end
575 xi[j] = sum;
578 return x;
581 -- Description: matrix print
582 function matrix.tostring(a)
583 local z = {};
584 for i = 1, #a do
585 z[i] = table.concat(a[i], "\t");
587 return table.concat(z, "\n");
590 -- Description: chi^2 test for contingency tables
591 -- Dependent on: math.igamma()
592 function matrix.chi2(a)
593 if #a == 2 and #a[1] == 2 then -- 2x2 table
594 local x, z
595 x = (a[1][1] + a[1][2]) * (a[2][1] + a[2][2]) * (a[1][1] + a[2][1]) * (a[1][2] + a[2][2])
596 if x == 0 then return 0, 1, false end
597 z = a[1][1] * a[2][2] - a[1][2] * a[2][1]
598 z = (a[1][1] + a[1][2] + a[2][1] + a[2][2]) * z * z / x
599 return z, math.igamma(.5, .5 * z, true), true
600 else -- generic table
601 local rs, cs, n, m, N, z = {}, {}, #a, #a[1], 0, 0
602 for i = 1, n do rs[i] = 0 end
603 for j = 1, m do cs[j] = 0 end
604 for i = 1, n do -- compute column sum and row sum
605 for j = 1, m do cs[j], rs[i] = cs[j] + a[i][j], rs[i] + a[i][j] end
607 for i = 1, n do N = N + rs[i] end
608 for i = 1, n do -- compute the chi^2 statistics
609 for j = 1, m do
610 local E = rs[i] * cs[j] / N;
611 z = z + (a[i][j] - E) * (a[i][j] - E) / E
614 return z, math.igamma(.5 * (n-1) * (m-1), .5 * z, true), true;
618 -- Description: Gauss-Jordan elimination (solving equations; computing inverse)
619 -- Note: on return, a[n][n] is the inverse; b[n][m] is the solution
620 -- Reference: Section 2.1, Numerical Recipes in C, 2nd edition
621 function matrix.solve(a, b)
622 assert(#a == #a[1]);
623 local n, m = #a, (b and #b[1]) or 0;
624 local xc, xr, ipiv = {}, {}, {};
625 local ic, ir;
627 for j = 1, n do ipiv[j] = 0 end
628 for i = 1, n do
629 local big = 0;
630 for j = 1, n do
631 local aj = a[j];
632 if ipiv[j] ~= 1 then
633 for k = 1, n do
634 if ipiv[k] == 0 then
635 if math.abs(aj[k]) >= big then
636 big = math.abs(aj[k]);
637 ir, ic = j, k;
639 elseif ipiv[k] > 1 then return -2 end -- singular matrix
643 ipiv[ic] = ipiv[ic] + 1;
644 if ir ~= ic then
645 for l = 1, n do a[ir][l], a[ic][l] = a[ic][l], a[ir][l] end
646 if b then
647 for l = 1, m do b[ir][l], b[ic][l] = b[ic][l], b[ir][l] end
650 xr[i], xc[i] = ir, ic;
651 if a[ic][ic] == 0 then return -3 end -- singular matrix
652 local pivinv = 1 / a[ic][ic];
653 a[ic][ic] = 1;
654 for l = 1, n do a[ic][l] = a[ic][l] * pivinv end
655 if b then
656 for l = 1, n do b[ic][l] = b[ic][l] * pivinv end
658 for ll = 1, n do
659 if ll ~= ic then
660 local tmp = a[ll][ic];
661 a[ll][ic] = 0;
662 local all, aic = a[ll], a[ic];
663 for l = 1, n do all[l] = all[l] - aic[l] * tmp end
664 if b then
665 local bll, bic = b[ll], b[ic];
666 for l = 1, m do bll[l] = bll[l] - bic[l] * tmp end
671 for l = n, 1, -1 do
672 if xr[l] ~= xc[l] then
673 for k = 1, n do a[k][xr[l]], a[k][xc[l]] = a[k][xc[l]], a[k][xr[l]] end
676 return 0;