2 * sha1 - implements new NIST Secure Hash Standard-1 (SHA1)
4 * Written 2 September 1992, Peter C. Gutmann.
6 * This file has been extensively modified by:
9 * http://www.isthe.com/chongo/
11 * chongo <was here> /\../\
13 * This code has been placed in the public domain. Please do not
14 * copyright this code.
16 * LANDON CURT NOLL DISCLAIMS ALL WARRANTIES WITH REGARD TO
17 * THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MER-
18 * CHANTABILITY AND FITNESS. IN NO EVENT SHALL LANDON CURT
19 * NOLL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
20 * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
21 * USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
22 * NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
23 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
25 * @(#) $Revision: 30.4 $
26 * @(#) $Id: sha1.c,v 30.4 2013/08/11 01:08:32 chongo Exp $
27 * @(#) $Source: /usr/local/src/cmd/calc/RCS/sha1.c,v $
29 * This file is not covered under version 2.1 of the GNU LGPL.
36 #include "endian_calc.h"
43 * The SHA1 f()-functions. The f1 and f3 functions can be optimized
44 * to save one boolean operation each - thanks to Rich Schroeppel,
45 * rcs@cs.arizona.edu for discovering this.
47 * f1: ((x&y) | (~x&z)) == (z ^ (x&(y^z)))
48 * f3: ((x&y) | (x&z) | (y&z)) == ((x&y) | (z&(x|y)))
50 #define f1(x,y,z) (z ^ (x&(y^z))) /* Rounds 0-19 */
51 #define f2(x,y,z) (x^y^z) /* Rounds 20-39 */
52 #define f3(x,y,z) ((x&y) | (z&(x|y))) /* Rounds 40-59 */
53 #define f4(x,y,z) (x^y^z) /* Rounds 60-79 */
55 /* The SHA1 Mysterious Constants */
56 #define K1 0x5A827999L /* Rounds 0-19 */
57 #define K2 0x6ED9EBA1L /* Rounds 20-39 */
58 #define K3 0x8F1BBCDCL /* Rounds 40-59 */
59 #define K4 0xCA62C1D6L /* Rounds 60-79 */
61 /* SHA1 initial values */
62 #define h0init 0x67452301L
63 #define h1init 0xEFCDAB89L
64 #define h2init 0x98BADCFEL
65 #define h3init 0x10325476L
66 #define h4init 0xC3D2E1F0L
68 /* 32-bit rotate left - kludged with shifts */
69 #define LEFT_ROT(X,n) (((X)<<(n)) | ((X)>>(32-(n))))
73 * The initial expanding function. The hash function is defined over an
74 * 80-word expanded input array W, where the first 16 are copies of the input
75 * data, and the remaining 64 are defined by
77 * W[i] = LEFT_ROT(W[i-16] ^ W[i-14] ^ W[i-8] ^ W[i-3], 1)
79 * NOTE: The expanding function used in rounds 16 to 79 was changed from the
80 * original SHA (in FIPS Pub 180) to one that also left circular shifted
81 * by one bit for Secure Hash Algorithm-1 (FIPS Pub 180-1).
84 (t = (W[i&15] ^ W[(i-14)&15] ^ W[(i-8)&15] ^ W[(i-3)&15]), \
85 W[i&15] = LEFT_ROT(t, 1))
88 * The prototype SHA1 sub-round. The fundamental sub-round is:
90 * a' = e + LEFT_ROT(a,5) + f(b,c,d) + k + data;
92 * c' = LEFT_ROT(b,30);
96 * but this is implemented by unrolling the loop 5 times and renaming the
97 * variables ( e, a, b, c, d ) = ( a', b', c', d', e' ) each iteration.
98 * This code is then replicated 20 times for each of the 4 functions, using
99 * the next 20 values from the W[] array each time.
101 #define subRound(a, b, c, d, e, f, k, data) \
102 (e += LEFT_ROT(a,5) + f(b,c,d) + k + data, b = LEFT_ROT(b,30))
104 /* forward declarations */
105 S_FUNC
void sha1Init(HASH
*);
106 S_FUNC
void sha1Transform(USB32
*, USB32
*);
107 S_FUNC
void sha1Update(HASH
*, USB8
*, USB32
);
108 S_FUNC
void sha1Final(HASH
*);
109 S_FUNC
void sha1_chkpt(HASH
*);
110 S_FUNC
void sha1_note(int, HASH
*);
111 S_FUNC
void sha1_type(int, HASH
*);
112 void sha1_init_state(HASH
*);
113 S_FUNC ZVALUE
sha1_final_state(HASH
*);
114 S_FUNC
int sha1_cmp(HASH
*, HASH
*);
115 S_FUNC
void sha1_print(HASH
*);
119 * sha1Init - initialize the SHA1 state
122 sha1Init(HASH
*state
)
124 SHA1_INFO
*dig
= &state
->h_union
.h_sha1
; /* digest state */
126 /* Set the h-vars to their initial values */
127 dig
->digest
[0] = h0init
;
128 dig
->digest
[1] = h1init
;
129 dig
->digest
[2] = h2init
;
130 dig
->digest
[3] = h3init
;
131 dig
->digest
[4] = h4init
;
133 /* Initialise bit count */
141 * sha1Transform - perform the SHA1 transformatio
143 * Note that this code, like MD5, seems to break some optimizing compilers.
144 * It may be necessary to split it into sections, eg based on the four
145 * subrounds. One may also want to roll each subround into a loop.
148 sha1Transform(USB32
*digest
, USB32
*W
)
150 USB32 A
, B
, C
, D
, E
; /* Local vars */
151 USB32 t
; /* temp storage for exor() */
153 /* Set up first buffer and local data buffer */
160 /* Heavy mangling, in 4 sub-rounds of 20 interations each. */
161 subRound(A
, B
, C
, D
, E
, f1
, K1
, W
[ 0]);
162 subRound(E
, A
, B
, C
, D
, f1
, K1
, W
[ 1]);
163 subRound(D
, E
, A
, B
, C
, f1
, K1
, W
[ 2]);
164 subRound(C
, D
, E
, A
, B
, f1
, K1
, W
[ 3]);
165 subRound(B
, C
, D
, E
, A
, f1
, K1
, W
[ 4]);
166 subRound(A
, B
, C
, D
, E
, f1
, K1
, W
[ 5]);
167 subRound(E
, A
, B
, C
, D
, f1
, K1
, W
[ 6]);
168 subRound(D
, E
, A
, B
, C
, f1
, K1
, W
[ 7]);
169 subRound(C
, D
, E
, A
, B
, f1
, K1
, W
[ 8]);
170 subRound(B
, C
, D
, E
, A
, f1
, K1
, W
[ 9]);
171 subRound(A
, B
, C
, D
, E
, f1
, K1
, W
[10]);
172 subRound(E
, A
, B
, C
, D
, f1
, K1
, W
[11]);
173 subRound(D
, E
, A
, B
, C
, f1
, K1
, W
[12]);
174 subRound(C
, D
, E
, A
, B
, f1
, K1
, W
[13]);
175 subRound(B
, C
, D
, E
, A
, f1
, K1
, W
[14]);
176 subRound(A
, B
, C
, D
, E
, f1
, K1
, W
[15]);
177 subRound(E
, A
, B
, C
, D
, f1
, K1
, exor(W
,16,t
));
178 subRound(D
, E
, A
, B
, C
, f1
, K1
, exor(W
,17,t
));
179 subRound(C
, D
, E
, A
, B
, f1
, K1
, exor(W
,18,t
));
180 subRound(B
, C
, D
, E
, A
, f1
, K1
, exor(W
,19,t
));
182 subRound(A
, B
, C
, D
, E
, f2
, K2
, exor(W
,20,t
));
183 subRound(E
, A
, B
, C
, D
, f2
, K2
, exor(W
,21,t
));
184 subRound(D
, E
, A
, B
, C
, f2
, K2
, exor(W
,22,t
));
185 subRound(C
, D
, E
, A
, B
, f2
, K2
, exor(W
,23,t
));
186 subRound(B
, C
, D
, E
, A
, f2
, K2
, exor(W
,24,t
));
187 subRound(A
, B
, C
, D
, E
, f2
, K2
, exor(W
,25,t
));
188 subRound(E
, A
, B
, C
, D
, f2
, K2
, exor(W
,26,t
));
189 subRound(D
, E
, A
, B
, C
, f2
, K2
, exor(W
,27,t
));
190 subRound(C
, D
, E
, A
, B
, f2
, K2
, exor(W
,28,t
));
191 subRound(B
, C
, D
, E
, A
, f2
, K2
, exor(W
,29,t
));
192 subRound(A
, B
, C
, D
, E
, f2
, K2
, exor(W
,30,t
));
193 subRound(E
, A
, B
, C
, D
, f2
, K2
, exor(W
,31,t
));
194 subRound(D
, E
, A
, B
, C
, f2
, K2
, exor(W
,32,t
));
195 subRound(C
, D
, E
, A
, B
, f2
, K2
, exor(W
,33,t
));
196 subRound(B
, C
, D
, E
, A
, f2
, K2
, exor(W
,34,t
));
197 subRound(A
, B
, C
, D
, E
, f2
, K2
, exor(W
,35,t
));
198 subRound(E
, A
, B
, C
, D
, f2
, K2
, exor(W
,36,t
));
199 subRound(D
, E
, A
, B
, C
, f2
, K2
, exor(W
,37,t
));
200 subRound(C
, D
, E
, A
, B
, f2
, K2
, exor(W
,38,t
));
201 subRound(B
, C
, D
, E
, A
, f2
, K2
, exor(W
,39,t
));
203 subRound(A
, B
, C
, D
, E
, f3
, K3
, exor(W
,40,t
));
204 subRound(E
, A
, B
, C
, D
, f3
, K3
, exor(W
,41,t
));
205 subRound(D
, E
, A
, B
, C
, f3
, K3
, exor(W
,42,t
));
206 subRound(C
, D
, E
, A
, B
, f3
, K3
, exor(W
,43,t
));
207 subRound(B
, C
, D
, E
, A
, f3
, K3
, exor(W
,44,t
));
208 subRound(A
, B
, C
, D
, E
, f3
, K3
, exor(W
,45,t
));
209 subRound(E
, A
, B
, C
, D
, f3
, K3
, exor(W
,46,t
));
210 subRound(D
, E
, A
, B
, C
, f3
, K3
, exor(W
,47,t
));
211 subRound(C
, D
, E
, A
, B
, f3
, K3
, exor(W
,48,t
));
212 subRound(B
, C
, D
, E
, A
, f3
, K3
, exor(W
,49,t
));
213 subRound(A
, B
, C
, D
, E
, f3
, K3
, exor(W
,50,t
));
214 subRound(E
, A
, B
, C
, D
, f3
, K3
, exor(W
,51,t
));
215 subRound(D
, E
, A
, B
, C
, f3
, K3
, exor(W
,52,t
));
216 subRound(C
, D
, E
, A
, B
, f3
, K3
, exor(W
,53,t
));
217 subRound(B
, C
, D
, E
, A
, f3
, K3
, exor(W
,54,t
));
218 subRound(A
, B
, C
, D
, E
, f3
, K3
, exor(W
,55,t
));
219 subRound(E
, A
, B
, C
, D
, f3
, K3
, exor(W
,56,t
));
220 subRound(D
, E
, A
, B
, C
, f3
, K3
, exor(W
,57,t
));
221 subRound(C
, D
, E
, A
, B
, f3
, K3
, exor(W
,58,t
));
222 subRound(B
, C
, D
, E
, A
, f3
, K3
, exor(W
,59,t
));
224 subRound(A
, B
, C
, D
, E
, f4
, K4
, exor(W
,60,t
));
225 subRound(E
, A
, B
, C
, D
, f4
, K4
, exor(W
,61,t
));
226 subRound(D
, E
, A
, B
, C
, f4
, K4
, exor(W
,62,t
));
227 subRound(C
, D
, E
, A
, B
, f4
, K4
, exor(W
,63,t
));
228 subRound(B
, C
, D
, E
, A
, f4
, K4
, exor(W
,64,t
));
229 subRound(A
, B
, C
, D
, E
, f4
, K4
, exor(W
,65,t
));
230 subRound(E
, A
, B
, C
, D
, f4
, K4
, exor(W
,66,t
));
231 subRound(D
, E
, A
, B
, C
, f4
, K4
, exor(W
,67,t
));
232 subRound(C
, D
, E
, A
, B
, f4
, K4
, exor(W
,68,t
));
233 subRound(B
, C
, D
, E
, A
, f4
, K4
, exor(W
,69,t
));
234 subRound(A
, B
, C
, D
, E
, f4
, K4
, exor(W
,70,t
));
235 subRound(E
, A
, B
, C
, D
, f4
, K4
, exor(W
,71,t
));
236 subRound(D
, E
, A
, B
, C
, f4
, K4
, exor(W
,72,t
));
237 subRound(C
, D
, E
, A
, B
, f4
, K4
, exor(W
,73,t
));
238 subRound(B
, C
, D
, E
, A
, f4
, K4
, exor(W
,74,t
));
239 subRound(A
, B
, C
, D
, E
, f4
, K4
, exor(W
,75,t
));
240 subRound(E
, A
, B
, C
, D
, f4
, K4
, exor(W
,76,t
));
241 subRound(D
, E
, A
, B
, C
, f4
, K4
, exor(W
,77,t
));
242 subRound(C
, D
, E
, A
, B
, f4
, K4
, exor(W
,78,t
));
243 subRound(B
, C
, D
, E
, A
, f4
, K4
, exor(W
,79,t
));
245 /* Build message digest */
255 * sha1Update - update SHA1 with arbitrary length data
258 sha1Update(HASH
*state
, USB8
*buffer
, USB32 count
)
260 SHA1_INFO
*dig
= &state
->h_union
.h_sha1
; /* digest state */
261 USB32 datalen
= dig
->datalen
;
263 #if CALC_BYTE_ORDER == LITTLE_ENDIAN
268 * Update the full count, even if some of it is buffered for later
270 SHA1COUNT(dig
, count
);
273 /* determine the size we need to copy */
274 cpylen
= SHA1_CHUNKSIZE
- datalen
;
276 /* case: new data will not fill the buffer */
277 if (cpylen
> count
) {
278 memcpy((char *)dig
->data
+datalen
,
279 (char *)buffer
, count
);
280 dig
->datalen
= datalen
+count
;
284 /* case: buffer will be filled */
285 memcpy((char *)dig
->data
+ datalen
, (char *)buffer
, cpylen
);
288 * Process data in SHA1_CHUNKSIZE chunks
291 #if CALC_BYTE_ORDER == LITTLE_ENDIAN
293 for (i
=0; i
< SHA1_CHUNKWORDS
; ++i
) {
294 SWAP_B8_IN_B32(dig
->data
+i
, dig
->data
+i
);
298 sha1Transform(dig
->digest
, dig
->data
);
301 if (count
< SHA1_CHUNKSIZE
)
303 cpylen
= SHA1_CHUNKSIZE
;
304 memcpy(dig
->data
, buffer
, cpylen
);
308 * Handle any remaining bytes of data.
309 * This should only happen once on the final lot of data
312 memcpy((char *)dig
->data
, (char *)buffer
, count
);
314 dig
->datalen
= count
;
319 * sha1Final - perform final SHA1 transforms
321 * At this point we have less than a full chunk of data remaining
322 * (and possibly no data) in the sha1 state data buffer.
324 * First we append a final 0x80 byte.
326 * Next if we have more than 56 bytes, we will zero fill the remainder
327 * of the chunk, transform and then zero fill the first 56 bytes.
328 * If we have 56 or fewer bytes, we will zero fill out to the 56th
329 * chunk byte. Regardless, we wind up with 56 bytes data.
331 * Finally we append the 64 bit length on to the 56 bytes of data
332 * remaining. This final chunk is transformed.
336 sha1Final(HASH
*state
)
338 SHA1_INFO
*dig
= &state
->h_union
.h_sha1
; /* digest state */
339 long count
= (long)(dig
->datalen
);
342 USB8
*data
= (USB8
*) dig
->data
;
343 #if CALC_BYTE_ORDER == LITTLE_ENDIAN
347 /* Pad to end of chunk */
349 memset(data
+ count
, 0, SHA1_CHUNKSIZE
- count
);
352 * If processing bytes, set the first byte of padding to 0x80.
353 * if processing words: on a big-endian machine set the first
354 * byte of padding to 0x80, on a little-endian machine set
355 * the first four bytes to 0x00000080
356 * This is safe since there is always at least one byte or word free
359 memset(data
+ count
, 0, SHA1_CHUNKSIZE
- count
);
361 #if CALC_BYTE_ORDER == LITTLE_ENDIAN
364 for (i
=0; i
< SHA1_CHUNKWORDS
; ++i
) {
365 SWAP_B8_IN_B32(dig
->data
+i
, dig
->data
+i
);
369 math_error("This should not happen in sha1Final");
372 data
[count
+ 3] = 0x80;
378 if (count
>= SHA1_CHUNKSIZE
-8) {
379 sha1Transform(dig
->digest
, dig
->data
);
381 /* Now load another chunk with 56 bytes of padding */
382 memset(data
, 0, SHA1_CHUNKSIZE
-8);
386 * Append length in bits and transform
388 * We assume that bit count is a multiple of 8 because we have
389 * only processed full bytes.
391 highBitcount
= dig
->countHi
;
392 lowBitcount
= dig
->countLo
;
393 dig
->data
[SHA1_HIGH
] = (highBitcount
<< 3) | (lowBitcount
>> 29);
394 dig
->data
[SHA1_LOW
] = (lowBitcount
<< 3);
395 sha1Transform(dig
->digest
, dig
->data
);
401 * sha1_chkpt - checkpoint a SHA1 state
404 * state the state to checkpoint
406 * This function will ensure that the hash chunk buffer is empty.
407 * Any partially hashed data will be padded out with 0's and hashed.
410 sha1_chkpt(HASH
*state
)
412 SHA1_INFO
*dig
= &state
->h_union
.h_sha1
; /* digest state */
413 #if CALC_BYTE_ORDER == LITTLE_ENDIAN
418 * checkpoint if partial buffer exists
420 if (dig
->datalen
> 0) {
422 /* pad to the end of the chunk */
423 memset((USB8
*)dig
->data
+ dig
->datalen
, 0,
424 SHA1_CHUNKSIZE
-dig
->datalen
);
425 #if CALC_BYTE_ORDER == LITTLE_ENDIAN
427 for (i
=0; i
< SHA1_CHUNKWORDS
; ++i
) {
428 SWAP_B8_IN_B32(dig
->data
+i
, dig
->data
+i
);
432 /* transform padded chunk */
433 sha1Transform(dig
->digest
, dig
->data
);
434 SHA1COUNT(dig
, SHA1_CHUNKSIZE
-dig
->datalen
);
444 * sha1_note - note a special value
447 * state the state to hash
448 * special a special value (SHA1_HASH_XYZ) to note
450 * This function will note that a special value is about to be hashed.
451 * Types include negative values, complex values, division, zero numeric
452 * and array of HALFs.
455 sha1_note(int special
, HASH
*state
)
457 SHA1_INFO
*dig
= &state
->h_union
.h_sha1
; /* digest state */
461 * change state to reflect a special value
463 dig
->digest
[0] ^= special
;
464 for (i
=1; i
< SHA1_DIGESTWORDS
; ++i
) {
465 dig
->digest
[i
] ^= (special
+ dig
->digest
[i
-1] + i
);
472 * sha1_type - note a VALUE type
475 * state the state to hash
476 * type the VALUE type to note
478 * This function will note that a type of value is about to be hashed.
479 * The type of a VALUE will be noted. For purposes of hash comparison,
480 * we will do nothing with V_NUM and V_COM so that the other functions
481 * can hash to the same value regardless of if sha1_value() is called
482 * or not. We also do nothing with V_STR so that a hash of a string
483 * will produce the same value as the standard hash function.
486 sha1_type(int type
, HASH
*state
)
488 SHA1_INFO
*dig
= &state
->h_union
.h_sha1
; /* digest state */
492 * ignore NUMBER and COMPLEX
494 if (type
== V_NUM
|| type
== V_COM
|| type
== V_STR
) {
499 * change state to reflect a VALUE type
501 dig
->digest
[0] += type
;
502 for (i
=1; i
< SHA1_DIGESTWORDS
; ++i
) {
503 dig
->digest
[i
] += ((type
+i
) ^ dig
->digest
[i
-1]);
510 * sha1_init_state - initialize a hash state structure for this hash
513 * state - pointer to the hfunction element to initialize
516 sha1_init_state(HASH
*state
)
521 state
->hashtype
= SHA1_HASH_TYPE
;
523 state
->update
= sha1Update
;
524 state
->chkpt
= sha1_chkpt
;
525 state
->note
= sha1_note
;
526 state
->type
= sha1_type
;
527 state
->final
= sha1_final_state
;
528 state
->cmp
= sha1_cmp
;
529 state
->print
= sha1_print
;
530 state
->base
= SHA1_BASE
;
531 state
->chunksize
= SHA1_CHUNKSIZE
;
532 state
->unionsize
= sizeof(SHA1_INFO
);
535 * perform the internal init function
537 memset((void *)&(state
->h_union
.h_sha1
), 0, sizeof(SHA1_INFO
));
544 * sha1_final_state - complete hash state and return a ZVALUE
547 * state the state to complete and convert
550 * a ZVALUE representing the state
553 sha1_final_state(HASH
*state
)
555 SHA1_INFO
*dig
= &state
->h_union
.h_sha1
; /* digest state */
556 ZVALUE ret
; /* return ZVALUE of completed hash state */
560 * malloc and initialize if state is NULL
563 state
= (HASH
*)malloc(sizeof(HASH
));
565 math_error("cannot malloc HASH");
568 sha1_init_state(state
);
572 * complete the hash state
577 * allocate storage for ZVALUE
579 ret
.len
= SHA1_DIGESTSIZE
/sizeof(HALF
);
581 ret
.v
= alloc(ret
.len
);
586 #if BASEB == 16 && CALC_BYTE_ORDER == LITTLE_ENDIAN
587 for (i
=0; i
< ret
.len
; i
+=2) {
588 ret
.v
[ret
.len
-i
-1] = ((HALF
*)dig
->digest
)[i
+1];
589 ret
.v
[ret
.len
-i
-2] = ((HALF
*)dig
->digest
)[i
];
592 for (i
=0; i
< ret
.len
; ++i
) {
593 ret
.v
[ret
.len
-i
-1] = ((HALF
*)dig
->digest
)[i
];
606 * sha1_cmp - compare two hash states
610 * b second hash state
613 * TRUE => hash states are different
614 * FALSE => hash states are the same
617 sha1_cmp(HASH
*a
, HASH
*b
)
620 * firewall and quick check
623 /* pointers to the same object */
626 if (a
== NULL
|| b
== NULL
) {
627 /* one is NULL, so they differ */
632 * compare data-reading modes
634 if (a
->bytes
!= b
->bytes
)
640 if (a
->h_union
.h_sha1
.countLo
!= b
->h_union
.h_sha1
.countLo
||
641 a
->h_union
.h_sha1
.countHi
!= b
->h_union
.h_sha1
.countHi
) {
647 * compare pending buffers
649 if (a
->h_union
.h_sha1
.datalen
!= b
->h_union
.h_sha1
.datalen
) {
650 /* buffer lengths differ */
653 if (memcmp((USB8
*)a
->h_union
.h_sha1
.data
,
654 (USB8
*)b
->h_union
.h_sha1
.data
,
655 a
->h_union
.h_sha1
.datalen
) != 0) {
656 /* buffer contents differ */
663 return (memcmp((USB8
*)(a
->h_union
.h_sha1
.digest
),
664 (USB8
*)(b
->h_union
.h_sha1
.digest
),
665 SHA1_DIGESTSIZE
) != 0);
670 * sha1_print - print a hash state
673 * state the hash state to print
676 sha1_print(HASH
*state
)
679 * form the hash value
681 if (conf
->calc_debug
& CALCDBG_HASH_STATE
) {
682 char buf
[DEBUG_SIZE
+1]; /* hash value buffer */
685 * print numeric debug value
687 * NOTE: This value represents only the hash value as of
688 * the last full update or finalization. Thus it
689 * may NOT be the actual hash value.
692 "sha1: 0x%08x%08x%08x%08x%08x data: %d octets",
693 (int)state
->h_union
.h_sha1
.digest
[0],
694 (int)state
->h_union
.h_sha1
.digest
[1],
695 (int)state
->h_union
.h_sha1
.digest
[2],
696 (int)state
->h_union
.h_sha1
.digest
[3],
697 (int)state
->h_union
.h_sha1
.digest
[4],
698 (int)state
->h_union
.h_sha1
.datalen
);
701 math_str("sha1 hash state");