modified: diffout.py
[GalaxyCodeBases.git] / c_cpp / etc / calc / qmath.c
blobf58ed081fff388be7b5279acac18e7b1ba60b4fb
1 /*
2 * qmath - extended precision rational arithmetic primitive routines
4 * Copyright (C) 1999-2007 David I. Bell and Ernest Bowen
6 * Primary author: David I. Bell
8 * Calc is open software; you can redistribute it and/or modify it under
9 * the terms of the version 2.1 of the GNU Lesser General Public License
10 * as published by the Free Software Foundation.
12 * Calc is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
15 * Public License for more details.
17 * A copy of version 2.1 of the GNU Lesser General Public License is
18 * distributed with calc under the filename COPYING-LGPL. You should have
19 * received a copy with calc; if not, write to Free Software Foundation, Inc.
20 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
22 * @(#) $Revision: 30.2 $
23 * @(#) $Id: qmath.c,v 30.2 2013/08/11 08:41:38 chongo Exp $
24 * @(#) $Source: /usr/local/src/bin/calc/RCS/qmath.c,v $
26 * Under source code control: 1990/02/15 01:48:21
27 * File existed as early as: before 1990
29 * Share and enjoy! :-) http://www.isthe.com/chongo/tech/comp/calc/
33 #include <stdio.h>
34 #include "qmath.h"
35 #include "config.h"
38 NUMBER _qzero_ = { { _zeroval_, 1, 0 }, { _oneval_, 1, 0 }, 1, NULL };
39 NUMBER _qone_ = { { _oneval_, 1, 0 }, { _oneval_, 1, 0 }, 1, NULL };
40 NUMBER _qtwo_ = { { _twoval_, 1, 0 }, { _oneval_, 1, 0 }, 1, NULL };
41 NUMBER _qthree_ = { { _threeval_, 1, 0 }, { _oneval_, 1, 0 }, 1, NULL };
42 NUMBER _qfour_ = { { _fourval_, 1, 0 }, { _oneval_, 1, 0 }, 1, NULL };
43 NUMBER _qten_ = { { _tenval_, 1, 0 }, { _oneval_, 1, 0 }, 1, NULL };
44 NUMBER _qnegone_ = { { _oneval_, 1, 1 }, { _oneval_, 1, 0 }, 1, NULL };
45 NUMBER _qonehalf_ = { { _oneval_, 1, 0 }, { _twoval_, 1, 0 }, 1, NULL };
46 NUMBER _qneghalf_ = { { _oneval_, 1, 1 }, { _twoval_, 1, 0 }, 1, NULL };
47 NUMBER _qonesqbase_ = { { _oneval_, 1, 0 }, { _sqbaseval_, 2, 0 }, 1, NULL };
49 NUMBER * initnumbs[INITCONSTCOUNT] = {&_qzero_, &_qone_, &_qtwo_, &_qthree_,
50 &_qfour_, &_qten_, &_qnegone_, &_qonehalf_, &_qneghalf_};
54 * Create another copy of a number.
55 * q2 = qcopy(q1);
57 NUMBER *
58 qcopy(NUMBER *q)
60 register NUMBER *r;
62 r = qalloc();
63 r->num.sign = q->num.sign;
64 if (!zisunit(q->num)) {
65 r->num.len = q->num.len;
66 r->num.v = alloc(r->num.len);
67 zcopyval(q->num, r->num);
69 if (!zisunit(q->den)) {
70 r->den.len = q->den.len;
71 r->den.v = alloc(r->den.len);
72 zcopyval(q->den, r->den);
74 return r;
79 * Convert a number to a normal integer.
80 * i = qtoi(q);
82 long
83 qtoi(NUMBER *q)
85 long i;
86 ZVALUE res;
88 if (qisint(q))
89 return ztoi(q->num);
90 zquo(q->num, q->den, &res, 0);
91 i = ztoi(res);
92 zfree(res);
93 return i;
98 * Convert a normal integer into a number.
99 * q = itoq(i);
101 NUMBER *
102 itoq(long i)
104 register NUMBER *q;
106 if ((i >= -1) && (i <= 10)) {
107 switch ((int) i) {
108 case 0: q = &_qzero_; break;
109 case 1: q = &_qone_; break;
110 case 2: q = &_qtwo_; break;
111 case 10: q = &_qten_; break;
112 case -1: q = &_qnegone_; break;
113 default: q = NULL;
115 if (q)
116 return qlink(q);
118 q = qalloc();
119 itoz(i, &q->num);
120 return q;
125 * Convert a number to a normal unsigned integer.
126 * u = qtou(q);
128 FULL
129 qtou(NUMBER *q)
131 FULL i;
132 ZVALUE res;
134 if (qisint(q))
135 return ztou(q->num);
136 zquo(q->num, q->den, &res, 0);
137 i = ztou(res);
138 zfree(res);
139 return i;
144 * Convert a number to a normal signed integer.
145 * s = qtos(q);
147 SFULL
148 qtos(NUMBER *q)
150 SFULL i;
151 ZVALUE res;
153 if (qisint(q))
154 return ztos(q->num);
155 zquo(q->num, q->den, &res, 0);
156 i = ztos(res);
157 zfree(res);
158 return i;
163 * Convert a normal unsigned integer into a number.
164 * q = utoq(i);
166 NUMBER *
167 utoq(FULL i)
169 register NUMBER *q;
171 if (i <= 10) {
172 switch ((int) i) {
173 case 0: q = &_qzero_; break;
174 case 1: q = &_qone_; break;
175 case 2: q = &_qtwo_; break;
176 case 10: q = &_qten_; break;
177 default: q = NULL;
179 if (q)
180 return qlink(q);
182 q = qalloc();
183 utoz(i, &q->num);
184 return q;
189 * Convert a normal signed integer into a number.
190 * q = stoq(s);
192 NUMBER *
193 stoq(SFULL i)
195 register NUMBER *q;
197 if (i <= 10) {
198 switch ((int) i) {
199 case 0: q = &_qzero_; break;
200 case 1: q = &_qone_; break;
201 case 2: q = &_qtwo_; break;
202 case 10: q = &_qten_; break;
203 default: q = NULL;
205 if (q)
206 return qlink(q);
208 q = qalloc();
209 stoz(i, &q->num);
210 return q;
215 * Create a number from the given FULL numerator and denominator.
216 * q = uutoq(inum, iden);
218 NUMBER *
219 uutoq(FULL inum, FULL iden)
221 register NUMBER *q;
222 FULL d;
223 BOOL sign;
225 if (iden == 0) {
226 math_error("Division by zero");
227 /*NOTREACHED*/
229 if (inum == 0)
230 return qlink(&_qzero_);
231 sign = 0;
232 d = uugcd(inum, iden);
233 inum /= d;
234 iden /= d;
235 if (iden == 1)
236 return utoq(inum);
237 q = qalloc();
238 if (inum != 1)
239 utoz(inum, &q->num);
240 utoz(iden, &q->den);
241 q->num.sign = sign;
242 return q;
247 * Create a number from the given integral numerator and denominator.
248 * q = iitoq(inum, iden);
250 NUMBER *
251 iitoq(long inum, long iden)
253 register NUMBER *q;
254 long d;
255 BOOL sign;
257 if (iden == 0) {
258 math_error("Division by zero");
259 /*NOTREACHED*/
261 if (inum == 0)
262 return qlink(&_qzero_);
263 sign = 0;
264 if (inum < 0) {
265 sign = 1;
266 inum = -inum;
268 if (iden < 0) {
269 sign = 1 - sign;
270 iden = -iden;
272 d = iigcd(inum, iden);
273 inum /= d;
274 iden /= d;
275 if (iden == 1)
276 return itoq(sign ? -inum : inum);
277 q = qalloc();
278 if (inum != 1)
279 itoz(inum, &q->num);
280 itoz(iden, &q->den);
281 q->num.sign = sign;
282 return q;
287 * Add two numbers to each other.
288 * q3 = qqadd(q1, q2);
290 NUMBER *
291 qqadd(NUMBER *q1, NUMBER *q2)
293 NUMBER *r;
294 ZVALUE t1, t2, temp, d1, d2, vpd1, upd1;
296 if (qiszero(q1))
297 return qlink(q2);
298 if (qiszero(q2))
299 return qlink(q1);
300 r = qalloc();
302 * If either number is an integer, then the result is easy.
304 if (qisint(q1) && qisint(q2)) {
305 zadd(q1->num, q2->num, &r->num);
306 return r;
308 if (qisint(q2)) {
309 zmul(q1->den, q2->num, &temp);
310 zadd(q1->num, temp, &r->num);
311 zfree(temp);
312 zcopy(q1->den, &r->den);
313 return r;
315 if (qisint(q1)) {
316 zmul(q2->den, q1->num, &temp);
317 zadd(q2->num, temp, &r->num);
318 zfree(temp);
319 zcopy(q2->den, &r->den);
320 return r;
323 * Both arguments are true fractions, so we need more work.
324 * If the denominators are relatively prime, then the answer is the
325 * straightforward cross product result with no need for reduction.
327 zgcd(q1->den, q2->den, &d1);
328 if (zisunit(d1)) {
329 zfree(d1);
330 zmul(q1->num, q2->den, &t1);
331 zmul(q1->den, q2->num, &t2);
332 zadd(t1, t2, &r->num);
333 zfree(t1);
334 zfree(t2);
335 zmul(q1->den, q2->den, &r->den);
336 return r;
339 * The calculation is now more complicated.
340 * See Knuth Vol 2 for details.
342 zquo(q2->den, d1, &vpd1, 0);
343 zquo(q1->den, d1, &upd1, 0);
344 zmul(q1->num, vpd1, &t1);
345 zmul(q2->num, upd1, &t2);
346 zadd(t1, t2, &temp);
347 zfree(t1);
348 zfree(t2);
349 zfree(vpd1);
350 zgcd(temp, d1, &d2);
351 zfree(d1);
352 if (zisunit(d2)) {
353 zfree(d2);
354 r->num = temp;
355 zmul(upd1, q2->den, &r->den);
356 zfree(upd1);
357 return r;
359 zquo(temp, d2, &r->num, 0);
360 zfree(temp);
361 zquo(q2->den, d2, &temp, 0);
362 zfree(d2);
363 zmul(temp, upd1, &r->den);
364 zfree(temp);
365 zfree(upd1);
366 return r;
371 * Subtract one number from another.
372 * q3 = qsub(q1, q2);
374 NUMBER *
375 qsub(NUMBER *q1, NUMBER *q2)
377 NUMBER *r;
379 if (q1 == q2)
380 return qlink(&_qzero_);
381 if (qiszero(q2))
382 return qlink(q1);
383 if (qisint(q1) && qisint(q2)) {
384 r = qalloc();
385 zsub(q1->num, q2->num, &r->num);
386 return r;
388 q2 = qneg(q2);
389 if (qiszero(q1))
390 return q2;
391 r = qqadd(q1, q2);
392 qfree(q2);
393 return r;
398 * Increment a number by one.
400 NUMBER *
401 qinc(NUMBER *q)
403 NUMBER *r;
405 r = qalloc();
406 if (qisint(q)) {
407 zadd(q->num, _one_, &r->num);
408 return r;
410 zadd(q->num, q->den, &r->num);
411 zcopy(q->den, &r->den);
412 return r;
417 * Decrement a number by one.
419 NUMBER *
420 qdec(NUMBER *q)
422 NUMBER *r;
424 r = qalloc();
425 if (qisint(q)) {
426 zsub(q->num, _one_, &r->num);
427 return r;
429 zsub(q->num, q->den, &r->num);
430 zcopy(q->den, &r->den);
431 return r;
436 * Add a normal small integer value to an arbitrary number.
438 NUMBER *
439 qaddi(NUMBER *q1, long n)
441 NUMBER addnum; /* temporary number */
442 HALF addval[2]; /* value of small number */
443 BOOL neg; /* TRUE if number is neg */
444 #if LONG_BITS > BASEB
445 FULL nf;
446 #endif
448 if (n == 0)
449 return qlink(q1);
450 if (n == 1)
451 return qinc(q1);
452 if (n == -1)
453 return qdec(q1);
454 if (qiszero(q1))
455 return itoq(n);
456 addnum.num.sign = 0;
457 addnum.num.v = addval;
458 addnum.den = _one_;
459 neg = (n < 0);
460 if (neg)
461 n = -n;
462 addval[0] = (HALF) n;
463 #if LONG_BITS > BASEB
464 nf = (((FULL) n) >> BASEB);
465 if (nf) {
466 addval[1] = (HALF) nf;
467 addnum.num.len = 2;
469 #else
470 addnum.num.len = 1;
471 #endif
472 if (neg)
473 return qsub(q1, &addnum);
474 else
475 return qqadd(q1, &addnum);
480 * Multiply two numbers.
481 * q3 = qmul(q1, q2);
483 NUMBER *
484 qmul(NUMBER *q1, NUMBER *q2)
486 NUMBER *r; /* returned value */
487 ZVALUE n1, n2, d1, d2; /* numerators and denominators */
488 ZVALUE tmp;
490 if (qiszero(q1) || qiszero(q2))
491 return qlink(&_qzero_);
492 if (qisone(q1))
493 return qlink(q2);
494 if (qisone(q2))
495 return qlink(q1);
496 if (qisint(q1) && qisint(q2)) { /* easy results if integers */
497 r = qalloc();
498 zmul(q1->num, q2->num, &r->num);
499 return r;
501 n1 = q1->num;
502 n2 = q2->num;
503 d1 = q1->den;
504 d2 = q2->den;
505 if (ziszero(d1) || ziszero(d2)) {
506 math_error("Division by zero");
507 /*NOTREACHED*/
509 if (ziszero(n1) || ziszero(n2))
510 return qlink(&_qzero_);
511 if (!zisunit(n1) && !zisunit(d2)) { /* possibly reduce */
512 zgcd(n1, d2, &tmp);
513 if (!zisunit(tmp)) {
514 zequo(q1->num, tmp, &n1);
515 zequo(q2->den, tmp, &d2);
517 zfree(tmp);
519 if (!zisunit(n2) && !zisunit(d1)) { /* again possibly reduce */
520 zgcd(n2, d1, &tmp);
521 if (!zisunit(tmp)) {
522 zequo(q2->num, tmp, &n2);
523 zequo(q1->den, tmp, &d1);
525 zfree(tmp);
527 r = qalloc();
528 zmul(n1, n2, &r->num);
529 zmul(d1, d2, &r->den);
530 if (q1->num.v != n1.v)
531 zfree(n1);
532 if (q1->den.v != d1.v)
533 zfree(d1);
534 if (q2->num.v != n2.v)
535 zfree(n2);
536 if (q2->den.v != d2.v)
537 zfree(d2);
538 return r;
543 * Multiply a number by a small integer.
544 * q2 = qmuli(q1, n);
546 NUMBER *
547 qmuli(NUMBER *q, long n)
549 NUMBER *r;
550 long d; /* gcd of multiplier and denominator */
551 int sign;
553 if ((n == 0) || qiszero(q))
554 return qlink(&_qzero_);
555 if (n == 1)
556 return qlink(q);
557 r = qalloc();
558 if (qisint(q)) {
559 zmuli(q->num, n, &r->num);
560 return r;
562 sign = 1;
563 if (n < 0) {
564 n = -n;
565 sign = -1;
567 d = zmodi(q->den, n);
568 d = iigcd(d, n);
569 zmuli(q->num, (n * sign) / d, &r->num);
570 (void) zdivi(q->den, d, &r->den);
571 return r;
576 * Divide two numbers (as fractions).
577 * q3 = qqdiv(q1, q2);
579 NUMBER *
580 qqdiv(NUMBER *q1, NUMBER *q2)
582 NUMBER temp;
584 if (qiszero(q2)) {
585 math_error("Division by zero");
586 /*NOTREACHED*/
588 if ((q1 == q2) || !qcmp(q1, q2))
589 return qlink(&_qone_);
590 if (qisone(q1))
591 return qinv(q2);
592 temp.num = q2->den;
593 temp.den = q2->num;
594 temp.num.sign = temp.den.sign;
595 temp.den.sign = 0;
596 temp.links = 1;
597 return qmul(q1, &temp);
602 * Divide a number by a small integer.
603 * q2 = qdivi(q1, n);
605 NUMBER *
606 qdivi(NUMBER *q, long n)
608 NUMBER *r;
609 long d; /* gcd of divisor and numerator */
610 int sign;
612 if (n == 0) {
613 math_error("Division by zero");
614 /*NOTREACHED*/
616 if ((n == 1) || qiszero(q))
617 return qlink(q);
618 sign = 1;
619 if (n < 0) {
620 n = -n;
621 sign = -1;
623 r = qalloc();
624 d = zmodi(q->num, n);
625 d = iigcd(d, n);
626 (void) zdivi(q->num, d * sign, &r->num);
627 zmuli(q->den, n / d, &r->den);
628 return r;
633 * Return the integer quotient of a pair of numbers
634 * If q1/q2 is an integer qquo(q1, q2) returns this integer
635 * If q2 is zero, zero is returned
636 * In other cases whether rounding is down, up, towards zero, etc.
637 * is determined by rnd.
639 NUMBER *
640 qquo(NUMBER *q1, NUMBER *q2, long rnd)
642 ZVALUE tmp, tmp1, tmp2;
643 NUMBER *q;
645 if (qiszero(q1) || qiszero(q2))
646 return qlink(&_qzero_);
647 if (qisint(q1) && qisint(q2)) {
648 zquo(q1->num, q2->num, &tmp, rnd);
649 } else {
650 zmul(q1->num, q2->den, &tmp1);
651 zmul(q2->num, q1->den, &tmp2);
652 zquo(tmp1, tmp2, &tmp, rnd);
653 zfree(tmp1);
654 zfree(tmp2);
656 if (ziszero(tmp)) {
657 zfree(tmp);
658 return qlink(&_qzero_);
660 q = qalloc();
661 q->num = tmp;
662 return q;
667 * Return the absolute value of a number.
668 * q2 = qqabs(q1);
670 NUMBER *
671 qqabs(NUMBER *q)
673 register NUMBER *r;
675 if (q->num.sign == 0)
676 return qlink(q);
677 r = qalloc();
678 if (!zisunit(q->num))
679 zcopy(q->num, &r->num);
680 if (!zisunit(q->den))
681 zcopy(q->den, &r->den);
682 r->num.sign = 0;
683 return r;
688 * Negate a number.
689 * q2 = qneg(q1);
691 NUMBER *
692 qneg(NUMBER *q)
694 register NUMBER *r;
696 if (qiszero(q))
697 return qlink(&_qzero_);
698 r = qalloc();
699 if (!zisunit(q->num))
700 zcopy(q->num, &r->num);
701 if (!zisunit(q->den))
702 zcopy(q->den, &r->den);
703 r->num.sign = !q->num.sign;
704 return r;
709 * Return the sign of a number (-1, 0 or 1)
711 NUMBER *
712 qsign(NUMBER *q)
714 if (qiszero(q))
715 return qlink(&_qzero_);
716 if (qisneg(q))
717 return qlink(&_qnegone_);
718 return qlink(&_qone_);
723 * Invert a number.
724 * q2 = qinv(q1);
726 NUMBER *
727 qinv(NUMBER *q)
729 register NUMBER *r;
731 if (qisunit(q)) {
732 r = (qisneg(q) ? &_qnegone_ : &_qone_);
733 return qlink(r);
735 if (qiszero(q)) {
736 math_error("Division by zero");
737 /*NOTREACHED*/
739 r = qalloc();
740 if (!zisunit(q->num))
741 zcopy(q->num, &r->den);
742 if (!zisunit(q->den))
743 zcopy(q->den, &r->num);
744 r->num.sign = q->num.sign;
745 r->den.sign = 0;
746 return r;
751 * Return just the numerator of a number.
752 * q2 = qnum(q1);
754 NUMBER *
755 qnum(NUMBER *q)
757 register NUMBER *r;
759 if (qisint(q))
760 return qlink(q);
761 if (zisunit(q->num)) {
762 r = (qisneg(q) ? &_qnegone_ : &_qone_);
763 return qlink(r);
765 r = qalloc();
766 zcopy(q->num, &r->num);
767 return r;
772 * Return just the denominator of a number.
773 * q2 = qden(q1);
775 NUMBER *
776 qden(NUMBER *q)
778 register NUMBER *r;
780 if (qisint(q))
781 return qlink(&_qone_);
782 r = qalloc();
783 zcopy(q->den, &r->num);
784 return r;
789 * Return the fractional part of a number.
790 * q2 = qfrac(q1);
792 NUMBER *
793 qfrac(NUMBER *q)
795 register NUMBER *r;
797 if (qisint(q))
798 return qlink(&_qzero_);
799 if ((q->num.len < q->den.len) || ((q->num.len == q->den.len) &&
800 (q->num.v[q->num.len - 1] < q->den.v[q->num.len - 1])))
801 return qlink(q);
802 r = qalloc();
803 zmod(q->num, q->den, &r->num, 2);
804 zcopy(q->den, &r->den);
805 return r;
810 * Return the integral part of a number.
811 * q2 = qint(q1);
813 NUMBER *
814 qint(NUMBER *q)
816 register NUMBER *r;
818 if (qisint(q))
819 return qlink(q);
820 if ((q->num.len < q->den.len) || ((q->num.len == q->den.len) &&
821 (q->num.v[q->num.len - 1] < q->den.v[q->num.len - 1])))
822 return qlink(&_qzero_);
823 r = qalloc();
824 zquo(q->num, q->den, &r->num, 2);
825 return r;
830 * Compute the square of a number.
832 NUMBER *
833 qsquare(NUMBER *q)
835 ZVALUE num, zden;
837 if (qiszero(q))
838 return qlink(&_qzero_);
839 if (qisunit(q))
840 return qlink(&_qone_);
841 num = q->num;
842 zden = q->den;
843 q = qalloc();
844 if (!zisunit(num))
845 zsquare(num, &q->num);
846 if (!zisunit(zden))
847 zsquare(zden, &q->den);
848 return q;
853 * Shift an integer by a given number of bits. This multiplies the number
854 * by the appropriate power of two. Positive numbers shift left, negative
855 * ones shift right. Low bits are truncated when shifting right.
857 NUMBER *
858 qshift(NUMBER *q, long n)
860 register NUMBER *r;
862 if (qisfrac(q)) {
863 math_error("Shift of non-integer");
864 /*NOTREACHED*/
866 if (qiszero(q) || (n == 0))
867 return qlink(q);
868 if (n <= -(q->num.len * BASEB))
869 return qlink(&_qzero_);
870 r = qalloc();
871 zshift(q->num, n, &r->num);
872 return r;
877 * Scale a number by a power of two, as in:
878 * ans = q * 2^n.
879 * This is similar to shifting, except that fractions work.
881 NUMBER *
882 qscale(NUMBER *q, long pow)
884 long numshift, denshift, tmp;
885 NUMBER *r;
887 if (qiszero(q) || (pow == 0))
888 return qlink(q);
889 numshift = zisodd(q->num) ? 0 : zlowbit(q->num);
890 denshift = zisodd(q->den) ? 0 : zlowbit(q->den);
891 if (pow > 0) {
892 tmp = pow;
893 if (tmp > denshift)
894 tmp = denshift;
895 denshift = -tmp;
896 numshift = (pow - tmp);
897 } else {
898 pow = -pow;
899 tmp = pow;
900 if (tmp > numshift)
901 tmp = numshift;
902 numshift = -tmp;
903 denshift = (pow - tmp);
905 r = qalloc();
906 if (numshift)
907 zshift(q->num, numshift, &r->num);
908 else
909 zcopy(q->num, &r->num);
910 if (denshift)
911 zshift(q->den, denshift, &r->den);
912 else
913 zcopy(q->den, &r->den);
914 return r;
919 * Return the minimum of two numbers.
921 NUMBER *
922 qmin(NUMBER *q1, NUMBER *q2)
924 if (q1 == q2)
925 return qlink(q1);
926 if (qrel(q1, q2) > 0)
927 q1 = q2;
928 return qlink(q1);
933 * Return the maximum of two numbers.
935 NUMBER *
936 qmax(NUMBER *q1, NUMBER *q2)
938 if (q1 == q2)
939 return qlink(q1);
940 if (qrel(q1, q2) < 0)
941 q1 = q2;
942 return qlink(q1);
947 * Perform the bitwise OR of two integers.
949 NUMBER *
950 qor(NUMBER *q1, NUMBER *q2)
952 register NUMBER *r;
953 NUMBER *q1tmp, *q2tmp, *q;
955 if (qisfrac(q1) || qisfrac(q2)) {
956 math_error("Non-integers for bitwise or");
957 /*NOTREACHED*/
959 if (qcmp(q1,q2) == 0 || qiszero(q2))
960 return qlink(q1);
961 if (qiszero(q1))
962 return qlink(q2);
963 if (qisneg(q1)) {
964 q1tmp = qcomp(q1);
965 if (qisneg(q2)) {
966 q2tmp = qcomp(q2);
967 q = qand(q1tmp,q2tmp);
968 r = qcomp(q);
969 qfree(q1tmp);
970 qfree(q2tmp);
971 qfree(q);
972 return r;
974 q = qandnot(q1tmp, q2);
975 qfree(q1tmp);
976 r = qcomp(q);
977 qfree(q);
978 return r;
980 if (qisneg(q2)) {
981 q2tmp = qcomp(q2);
982 q = qandnot(q2tmp, q1);
983 qfree(q2tmp);
984 r = qcomp(q);
985 qfree(q);
986 return r;
988 r = qalloc();
989 zor(q1->num, q2->num, &r->num);
990 return r;
995 * Perform the bitwise AND of two integers.
997 NUMBER *
998 qand(NUMBER *q1, NUMBER *q2)
1000 register NUMBER *r;
1001 NUMBER *q1tmp, *q2tmp, *q;
1002 ZVALUE res;
1004 if (qisfrac(q1) || qisfrac(q2)) {
1005 math_error("Non-integers for bitwise and");
1006 /*NOTREACHED*/
1008 if (qcmp(q1, q2) == 0)
1009 return qlink(q1);
1010 if (qiszero(q1) || qiszero(q2))
1011 return qlink(&_qzero_);
1012 if (qisneg(q1)) {
1013 q1tmp = qcomp(q1);
1014 if (qisneg(q2)) {
1015 q2tmp = qcomp(q2);
1016 q = qor(q1tmp, q2tmp);
1017 qfree(q1tmp);
1018 qfree(q2tmp);
1019 r = qcomp(q);
1020 qfree(q);
1021 return r;
1023 r = qandnot(q2, q1tmp);
1024 qfree(q1tmp);
1025 return r;
1027 if (qisneg(q2)) {
1028 q2tmp = qcomp(q2);
1029 r = qandnot(q1, q2tmp);
1030 qfree(q2tmp);
1031 return r;
1033 zand(q1->num, q2->num, &res);
1034 if (ziszero(res)) {
1035 zfree(res);
1036 return qlink(&_qzero_);
1038 r = qalloc();
1039 r->num = res;
1040 return r;
1045 * Perform the bitwise XOR of two integers.
1047 NUMBER *
1048 qxor(NUMBER *q1, NUMBER *q2)
1050 register NUMBER *r;
1051 NUMBER *q1tmp, *q2tmp, *q;
1052 ZVALUE res;
1054 if (qisfrac(q1) || qisfrac(q2)) {
1055 math_error("Non-integers for bitwise xor");
1056 /*NOTREACHED*/
1058 if (qcmp(q1,q2) == 0)
1059 return qlink(&_qzero_);
1060 if (qiszero(q1))
1061 return qlink(q2);
1062 if (qiszero(q2))
1063 return qlink(q1);
1064 if (qisneg(q1)) {
1065 q1tmp = qcomp(q1);
1066 if (qisneg(q2)) {
1067 q2tmp = qcomp(q2);
1068 r = qxor(q1tmp, q2tmp);
1069 qfree(q1tmp);
1070 qfree(q2tmp);
1071 return r;
1073 q = qxor(q1tmp, q2);
1074 qfree(q1tmp);
1075 r = qcomp(q);
1076 qfree(q);
1077 return r;
1079 if (qisneg(q2)) {
1080 q2tmp = qcomp(q2);
1081 q = qxor(q1, q2tmp);
1082 qfree(q2tmp);
1083 r = qcomp(q);
1084 qfree(q);
1085 return r;
1087 zxor(q1->num, q2->num, &res);
1088 if (ziszero(res)) {
1089 zfree(res);
1090 return qlink(&_qzero_);
1092 r = qalloc();
1093 r->num = res;
1094 return r;
1099 * Perform the bitwise ANDNOT of two integers.
1101 NUMBER *
1102 qandnot(NUMBER *q1, NUMBER *q2)
1104 register NUMBER *r;
1105 NUMBER *q1tmp, *q2tmp, *q;
1107 if (qisfrac(q1) || qisfrac(q2)) {
1108 math_error("Non-integers for bitwise xor");
1109 /*NOTREACHED*/
1111 if (qcmp(q1,q2) == 0 || qiszero(q1))
1112 return qlink(&_qzero_);
1113 if (qiszero(q2))
1114 return qlink(q1);
1115 if (qisneg(q1)) {
1116 q1tmp = qcomp(q1);
1117 if (qisneg(q2)) {
1118 q2tmp = qcomp(q2);
1119 r = qandnot(q2tmp, q1tmp);
1120 qfree(q1tmp);
1121 qfree(q2tmp);
1122 return r;
1124 q = qor(q1tmp, q2);
1125 qfree(q1tmp);
1126 r = qcomp(q);
1127 qfree(q);
1128 return r;
1130 if (qisneg(q2)) {
1131 q2tmp = qcomp(q2);
1132 r = qand(q1, q2tmp);
1133 qfree(q2tmp);
1134 return r;
1136 r = qalloc();
1137 zandnot(q1->num, q2->num, &r->num);
1138 return r;
1142 * Return the bitwise "complement" of a number. This is - q -1 if q is an
1143 * integer, - q otherwise.
1145 NUMBER *
1146 qcomp(NUMBER *q)
1148 NUMBER *qtmp;
1149 NUMBER *res;
1151 if (qiszero(q))
1152 return qlink(&_qnegone_);
1153 if (qisnegone(q))
1154 return qlink(&_qzero_);
1155 qtmp = qneg(q);
1156 if (qisfrac(q))
1157 return qtmp;
1158 res = qdec(qtmp);
1159 qfree(qtmp);
1160 return res;
1165 * Return the number whose binary representation only has the specified
1166 * bit set (counting from zero). This thus produces a given power of two.
1168 NUMBER *
1169 qbitvalue(long n)
1171 register NUMBER *r;
1173 if (n == 0)
1174 return qlink(&_qone_);
1175 r = qalloc();
1176 if (n > 0)
1177 zbitvalue(n, &r->num);
1178 else
1179 zbitvalue(-n, &r->den);
1180 return r;
1184 * Return 10^n
1186 NUMBER *
1187 qtenpow(long n)
1189 register NUMBER *r;
1191 if (n == 0)
1192 return qlink(&_qone_);
1193 r = qalloc();
1194 if (n > 0)
1195 ztenpow(n, &r->num);
1196 else
1197 ztenpow(-n, &r->den);
1198 return r;
1203 * Return the precision of a number (usually for examining an epsilon value).
1204 * The precision of a number e less than 1 is the positive
1205 * integer p for which e = 2^-p * f, where 1 <= f < 2.
1206 * Numbers greater than or equal to one have a precision of zero.
1207 * For example, the precision of e is 6 if 1/64 <= e < 1/32.
1209 long
1210 qprecision(NUMBER *q)
1212 long r;
1214 if (qiszero(q) || qisneg(q)) {
1215 math_error("Non-positive number for precision");
1216 /*NOTREACHED*/
1218 r = - qilog2(q);
1219 return (r < 0 ? 0 : r);
1224 * Determine whether or not one number exactly divides another one.
1225 * Returns TRUE if the first number is an integer multiple of the second one.
1227 BOOL
1228 qdivides(NUMBER *q1, NUMBER *q2)
1230 if (qiszero(q1))
1231 return TRUE;
1232 if (qisint(q1) && qisint(q2)) {
1233 if (qisunit(q2))
1234 return TRUE;
1235 return zdivides(q1->num, q2->num);
1237 return zdivides(q1->num, q2->num) && zdivides(q2->den, q1->den);
1242 * Compare two numbers and return an integer indicating their relative size.
1243 * i = qrel(q1, q2);
1245 FLAG
1246 qrel(NUMBER *q1, NUMBER *q2)
1248 ZVALUE z1, z2;
1249 long wc1, wc2;
1250 int sign;
1251 int z1f = 0, z2f = 0;
1253 if (q1 == q2)
1254 return 0;
1255 sign = q2->num.sign - q1->num.sign;
1256 if (sign)
1257 return sign;
1258 if (qiszero(q2))
1259 return !qiszero(q1);
1260 if (qiszero(q1))
1261 return -1;
1263 * Make a quick comparison by calculating the number of words
1264 * resulting as if we multiplied through by the denominators,
1265 * and then comparing the word counts.
1267 sign = 1;
1268 if (qisneg(q1))
1269 sign = -1;
1270 wc1 = q1->num.len + q2->den.len;
1271 wc2 = q2->num.len + q1->den.len;
1272 if (wc1 < wc2 - 1)
1273 return -sign;
1274 if (wc2 < wc1 - 1)
1275 return sign;
1277 * Quick check failed, must actually do the full comparison.
1279 if (zisunit(q2->den)) {
1280 z1 = q1->num;
1281 } else if (zisone(q1->num)) {
1282 z1 = q2->den;
1283 } else {
1284 z1f = 1;
1285 zmul(q1->num, q2->den, &z1);
1287 if (zisunit(q1->den)) {
1288 z2 = q2->num;
1289 } else if (zisone(q2->num)) {
1290 z2 = q1->den;
1291 } else {
1292 z2f = 1;
1293 zmul(q2->num, q1->den, &z2);
1295 sign = zrel(z1, z2);
1296 if (z1f)
1297 zfree(z1);
1298 if (z2f)
1299 zfree(z2);
1300 return sign;
1305 * Compare two numbers to see if they are equal.
1306 * This differs from qrel in that the numbers are not ordered.
1307 * Returns TRUE if they differ.
1309 BOOL
1310 qcmp(NUMBER *q1, NUMBER *q2)
1312 if (q1 == q2)
1313 return FALSE;
1314 if ((q1->num.sign != q2->num.sign) || (q1->num.len != q2->num.len) ||
1315 (q2->den.len != q2->den.len) || (*q1->num.v != *q2->num.v) ||
1316 (*q1->den.v != *q2->den.v))
1317 return TRUE;
1318 if (zcmp(q1->num, q2->num))
1319 return TRUE;
1320 if (qisint(q1))
1321 return FALSE;
1322 return zcmp(q1->den, q2->den);
1327 * Compare a number against a normal small integer.
1328 * Returns 1, 0, or -1, according to whether the first number is greater,
1329 * equal, or less than the second number.
1330 * res = qreli(q, n);
1332 FLAG
1333 qreli(NUMBER *q, long n)
1335 ZVALUE z1, z2;
1336 FLAG res;
1338 if (qiszero(q))
1339 return ((n > 0) ? -1 : (n < 0));
1341 if (n == 0)
1342 return (q->num.sign ? -1 : 0);
1344 if (q->num.sign != (n < 0))
1345 return ((n < 0) ? 1 : -1);
1347 itoz(n, &z1);
1349 if (qisfrac(q)) {
1350 zmul(q->den, z1, &z2);
1351 zfree(z1);
1352 z1 = z2;
1355 res = zrel(q->num, z1);
1356 zfree(z1);
1357 return res;
1362 * Compare a number against a small integer to see if they are equal.
1363 * Returns TRUE if they differ.
1365 BOOL
1366 qcmpi(NUMBER *q, long n)
1368 long len;
1369 #if LONG_BITS > BASEB
1370 FULL nf;
1371 #endif
1373 len = q->num.len;
1374 if (qisfrac(q) || (q->num.sign != (n < 0)))
1375 return TRUE;
1376 if (n < 0)
1377 n = -n;
1378 if (((HALF)(n)) != q->num.v[0])
1379 return TRUE;
1380 #if LONG_BITS > BASEB
1381 nf = ((FULL) n) >> BASEB;
1382 return ((nf != 0 || len > 1) && (len != 2 || nf != q->num.v[1]));
1383 #else
1384 return (len > 1);
1385 #endif
1390 * Number node allocation routines
1393 #define NNALLOC 1000
1396 STATIC NUMBER *freeNum = NULL;
1397 STATIC NUMBER **firstNums = NULL;
1398 STATIC long blockcount = 0;
1401 NUMBER *
1402 qalloc(void)
1404 NUMBER *temp;
1405 NUMBER ** newfn;
1407 if (freeNum == NULL) {
1408 freeNum = (NUMBER *) malloc(sizeof (NUMBER) * NNALLOC);
1409 if (freeNum == NULL) {
1410 math_error("Not enough memory");
1411 /*NOTREACHED*/
1413 freeNum[NNALLOC - 1].next = NULL;
1414 freeNum[NNALLOC - 1].links = 0;
1417 * We prevent the temp pointer from walking behind freeNum
1418 * by stopping one short of the end and running the loop one
1419 * more time.
1421 * We would stop the loop with just temp >= freeNum, but
1422 * doing this helps make code checkers such as insure happy.
1424 for (temp = freeNum + NNALLOC - 2; temp > freeNum; --temp) {
1425 temp->next = temp + 1;
1426 temp->links = 0;
1428 /* run the loop manually one last time */
1429 temp->next = temp + 1;
1430 temp->links = 0;
1432 blockcount++;
1433 if (firstNums == NULL) {
1434 newfn = (NUMBER **) malloc(blockcount * sizeof(NUMBER *));
1435 } else {
1436 newfn = (NUMBER **)
1437 realloc(firstNums, blockcount * sizeof(NUMBER *));
1439 if (newfn == NULL) {
1440 math_error("Cannot allocate new number block");
1441 /*NOTREACHED*/
1443 firstNums = newfn;
1444 firstNums[blockcount - 1] = freeNum;
1446 temp = freeNum;
1447 freeNum = temp->next;
1448 temp->links = 1;
1449 temp->num = _one_;
1450 temp->den = _one_;
1451 return temp;
1455 void
1456 qfreenum(NUMBER *q)
1458 if (q == NULL) {
1459 math_error("Calling qfreenum with null argument!!!");
1460 /*NOTREACHED*/
1462 if (q->links != 0) {
1463 math_error("Calling qfreenum with nozero links!!!");
1464 /*NOTREACHED*/
1466 zfree(q->num);
1467 zfree(q->den);
1468 q->next = freeNum;
1469 freeNum = q;
1472 void
1473 shownumbers(void)
1475 NUMBER *vp;
1476 long i, j, k;
1477 long count = 0;
1479 printf("Index Links Digits Value\n");
1480 printf("----- ----- ------ -----\n");
1482 for (i = 0, k = 0; i < INITCONSTCOUNT; i++) {
1483 count++;
1484 vp = initnumbs[i];
1485 printf("%6ld %4ld ", k++, vp->links);
1486 fitprint(vp, 40);
1487 printf("\n");
1490 for (i = 0; i < blockcount; i++) {
1491 vp = firstNums[i];
1492 for (j = 0; j < NNALLOC; j++, k++, vp++) {
1493 if (vp->links > 0) {
1494 count++;
1495 printf("%6ld %4ld ", k, vp->links);
1496 fitprint(vp, 40);
1497 printf("\n");
1501 printf("\nNumber: %ld\n", count);