modified: diffout.py
[GalaxyCodeBases.git] / c_cpp / etc / calc / qtrans.c
blob90d5104c4d0a19eaf728a2f010fbd2683517c0bd
1 /*
2 * qtrans - transcendental functions for real numbers
4 * Copyright (C) 1999-2007 David I. Bell and Ernest Bowen
6 * Primary author: David I. Bell
8 * Calc is open software; you can redistribute it and/or modify it under
9 * the terms of the version 2.1 of the GNU Lesser General Public License
10 * as published by the Free Software Foundation.
12 * Calc is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
15 * Public License for more details.
17 * A copy of version 2.1 of the GNU Lesser General Public License is
18 * distributed with calc under the filename COPYING-LGPL. You should have
19 * received a copy with calc; if not, write to Free Software Foundation, Inc.
20 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
22 * @(#) $Revision: 30.2 $
23 * @(#) $Id: qtrans.c,v 30.2 2008/10/24 07:09:41 chongo Exp $
24 * @(#) $Source: /usr/local/src/bin/calc/RCS/qtrans.c,v $
26 * Under source code control: 1990/02/15 01:48:22
27 * File existed as early as: before 1990
29 * Share and enjoy! :-) http://www.isthe.com/chongo/tech/comp/calc/
33 * Transcendental functions for real numbers.
34 * These are sin, cos, exp, ln, power, cosh, sinh.
38 #include "qmath.h"
40 HALF _qlgenum_[] = { 36744 };
41 HALF _qlgeden_[] = { 25469 };
42 NUMBER _qlge_ = { { _qlgenum_, 1, 0 }, { _qlgeden_, 1, 0 }, 1, NULL };
45 * cache the natural logarithm of 10
47 STATIC NUMBER *ln_10 = NULL;
48 STATIC NUMBER *ln_10_epsilon = NULL;
50 STATIC NUMBER *pivalue[2];
51 STATIC NUMBER *qexprel(NUMBER *q, long bitnum);
54 * Evaluate and store in specified locations the sin and cos of a given
55 * number to accuracy corresponding to a specified number of binary digits.
57 void
58 qsincos(NUMBER *q, long bitnum, NUMBER **vs, NUMBER **vc)
60 long n, m, k, h, s, t, d;
61 NUMBER *qtmp1, *qtmp2;
62 ZVALUE X, cossum, sinsum, mul, ztmp1, ztmp2, ztmp3;
64 qtmp1 = qqabs(q);
65 h = qilog2(qtmp1);
66 qfree(qtmp1);
67 k = bitnum + h + 1;
68 if (k < 0) {
69 *vs = qlink(&_qzero_);
70 *vc = qlink(&_qone_);
71 return;
73 s = k;
74 if (k) {
75 do {
76 t = s;
77 s = (s + k/s)/2;
79 while (t > s);
80 } /* s is int(sqrt(k)) */
81 s++;
82 if (s < -h)
83 s = -h;
84 n = h + s; /* n is number of squarings that will be required */
85 m = bitnum + n;
86 while (s > 0) { /* increasing m by ilog2(s) */
87 s >>= 1;
88 m++;
89 } /* m is working number of bits */
90 qtmp1 = qscale(q, m - n);
91 zquo(qtmp1->num, qtmp1->den, &X, 24);
92 qfree(qtmp1);
93 if (ziszero(X)) {
94 zfree(X);
95 *vs = qlink(&_qzero_);
96 *vc = qlink(&_qone_);
97 return;
99 zbitvalue(m, &cossum);
100 zcopy(X, &sinsum);
101 zcopy(X, &mul);
102 d = 1;
103 for (;;) {
104 X.sign = !X.sign;
105 zmul(X, mul, &ztmp1);
106 zfree(X);
107 zshift(ztmp1, -m, &ztmp2);
108 zfree(ztmp1);
109 zdivi(ztmp2, ++d, &X);
110 zfree(ztmp2);
111 if (ziszero(X))
112 break;
113 zadd(cossum, X, &ztmp1);
114 zfree(cossum);
115 cossum = ztmp1;
116 zmul(X, mul, &ztmp1);
117 zfree(X);
118 zshift(ztmp1, -m, &ztmp2);
119 zfree(ztmp1);
120 zdivi(ztmp2, ++d, &X);
121 zfree(ztmp2);
122 if (ziszero(X))
123 break;
124 zadd(sinsum, X, &ztmp1);
125 zfree(sinsum);
126 sinsum = ztmp1;
128 zfree(X);
129 zfree(mul);
130 while (n-- > 0) {
131 zsquare(cossum, &ztmp1);
132 zsquare(sinsum, &ztmp2);
133 zsub(ztmp1, ztmp2, &ztmp3);
134 zfree(ztmp1);
135 zfree(ztmp2);
136 zmul(cossum, sinsum, &ztmp1);
137 zfree(cossum);
138 zfree(sinsum);
139 zshift(ztmp3, -m, &cossum);
140 zfree(ztmp3);
141 zshift(ztmp1, 1 - m, &sinsum);
142 zfree(ztmp1);
144 h = zlowbit(cossum);
145 qtmp1 = qalloc();
146 if (m > h) {
147 zshift(cossum, -h, &qtmp1->num);
148 zbitvalue(m - h, &qtmp1->den);
149 } else {
150 zshift(cossum, - m, &qtmp1->num);
152 zfree(cossum);
153 *vc = qtmp1;
154 h = zlowbit(sinsum);
155 qtmp2 = qalloc();
156 if (m > h) {
157 zshift(sinsum, -h, &qtmp2->num);
158 zbitvalue(m - h, &qtmp2->den);
159 } else {
160 zshift(sinsum, -m, &qtmp2->num);
162 zfree(sinsum);
163 *vs = qtmp2;
164 return;
168 * Calculate the cosine of a number to a near multiple of epsilon.
169 * This calls qsincos() and discards the value of sin.
171 NUMBER *
172 qcos(NUMBER *q, NUMBER *epsilon)
174 NUMBER *sin, *cos, *res;
175 long n;
177 if (qiszero(epsilon)) {
178 math_error("Zero epsilon value for cosine");
179 /*NOTREACHED*/
181 if (qiszero(q))
182 return qlink(&_qone_);
183 n = -qilog2(epsilon);
184 if (n < 0)
185 return qlink(&_qzero_);
186 qsincos(q, n + 2, &sin, &cos);
187 qfree(sin);
188 res = qmappr(cos, epsilon, 24);
189 qfree(cos);
190 return res;
196 * This calls qsincos() and discards the value of cos.
198 NUMBER *
199 qsin(NUMBER *q, NUMBER *epsilon)
201 NUMBER *sin, *cos, *res;
202 long n;
204 if (qiszero(epsilon)) {
205 math_error("Zero epsilon value for sine");
206 /*NOTREACHED*/
208 n = -qilog2(epsilon);
209 if (qiszero(q) || n < 0)
210 return qlink(&_qzero_);
211 qsincos(q, n + 2, &sin, &cos);
212 qfree(cos);
213 res = qmappr(sin, epsilon, 24);
214 qfree(sin);
215 return res;
220 * Calculate the tangent function.
222 NUMBER *
223 qtan(NUMBER *q, NUMBER *epsilon)
225 NUMBER *sin, *cos, *tan, *res;
226 long n, k, m;
228 if (qiszero(epsilon)) {
229 math_error("Zero epsilon value for tangent");
230 /*NOTREACHED*/
232 if (qiszero(q))
233 return qlink(q);
234 n = qilog2(epsilon);
235 k = (n > 0) ? 4 + n/2 : 4;
236 for (;;) {
237 qsincos(q, 2 * k - n, &sin, &cos);
238 if (qiszero(cos)) {
239 qfree(sin);
240 qfree(cos);
241 k = 2 * k - n + 4;
242 continue;
244 m = -qilog2(cos);
245 if (m < k)
246 break;
247 qfree(sin);
248 qfree(cos);
249 k = m + 1;
251 tan = qqdiv(sin, cos);
252 qfree(sin);
253 qfree(cos);
254 res = qmappr(tan, epsilon, 24);
255 qfree(tan);
256 return res;
261 * Calculate the cotangent function.
263 NUMBER *
264 qcot(NUMBER *q, NUMBER *epsilon)
266 NUMBER *sin, *cos, *cot, *res;
267 long n, k, m;
269 if (qiszero(epsilon)) {
270 math_error("Zero epsilon value for cotangent");
271 /*NOTREACHED*/
273 if (qiszero(q)) {
274 math_error("Zero argument for cotangent");
275 /*NOTREACHED*/
277 k = -qilog2(q);
278 n = qilog2(epsilon);
279 if (k < 0)
280 k = (n > 0) ? n/2 : 0;
281 k += 4;
282 for (;;) {
283 qsincos(q, 2 * k - n, &sin, &cos);
284 if (qiszero(sin)) {
285 qfree(sin);
286 qfree(cos);
287 k = 2 * k - n + 4;
288 continue;
290 m = -qilog2(sin);
291 if (m < k)
292 break;
293 qfree(sin);
294 qfree(cos);
295 k = m + 1;
297 cot = qqdiv(cos, sin);
298 qfree(sin);
299 qfree(cos);
300 res = qmappr(cot, epsilon, 24);
301 qfree(cot);
302 return res;
307 * Calculate the secant function.
309 NUMBER *
310 qsec(NUMBER *q, NUMBER *epsilon)
312 NUMBER *sin, *cos, *sec, *res;
313 long n, k, m;
315 if (qiszero(epsilon)) {
316 math_error("Zero epsilon value for secant");
317 /*NOTREACHED*/
319 if (qiszero(q))
320 return qlink(&_qone_);
321 n = qilog2(epsilon);
322 k = (n > 0) ? 4 + n/2 : 4;
323 for (;;) {
324 qsincos(q, 2 * k - n, &sin, &cos);
325 qfree(sin);
326 if (qiszero(cos)) {
327 qfree(cos);
328 k = 2 * k - n + 4;
329 continue;
331 m = -qilog2(cos);
332 if (m < k)
333 break;
334 qfree(cos);
335 k = m + 1;
337 sec = qinv(cos);
338 qfree(cos);
339 res = qmappr(sec, epsilon, 24);
340 qfree(sec);
341 return res;
346 * Calculate the cosecant function.
348 NUMBER *
349 qcsc(NUMBER *q, NUMBER *epsilon)
351 NUMBER *sin, *cos, *csc, *res;
352 long n, k, m;
354 if (qiszero(epsilon)) {
355 math_error("Zero epsilon value for cosecant");
356 /*NOTREACHED*/
358 if (qiszero(q)) {
359 math_error("Zero argument for cosecant");
360 /*NOTREACHED*/
362 k = -qilog2(q);
363 n = qilog2(epsilon);
364 if (k < 0)
365 k = (n > 0) ? n/2 : 0;
366 k += 4;
367 for (;;) {
368 qsincos(q, 2 * k - n, &sin, &cos);
369 qfree(cos);
370 if (qiszero(sin)) {
371 qfree(sin);
372 k = 2 * k - n + 4;
373 continue;
375 m = -qilog2(sin);
376 if (m < k)
377 break;
378 qfree(sin);
379 k = m + 1;
381 csc = qinv(sin);
382 qfree(sin);
383 res = qmappr(csc, epsilon, 24);
384 qfree(csc);
385 return res;
388 * Calculate the arcsine function.
389 * The result is in the range -pi/2 to pi/2.
391 NUMBER *
392 qasin(NUMBER *q, NUMBER *epsilon)
394 NUMBER *qtmp1, *qtmp2, *epsilon1;
395 ZVALUE ztmp;
396 BOOL neg;
397 FLAG r;
399 if (qiszero(epsilon)) {
400 math_error("Zero epsilon value for asin");
401 /*NOTREACHED*/
403 if (qiszero(q))
404 return qlink(&_qzero_);
405 ztmp = q->num;
406 neg = ztmp.sign;
407 ztmp.sign = 0;
408 r = zrel(ztmp, q->den);
409 if (r > 0)
410 return NULL;
411 if (r == 0) {
412 epsilon1 = qscale(epsilon, 1L);
413 qtmp2 = qpi(epsilon1);
414 qtmp1 = qscale(qtmp2, -1L);
415 } else {
416 epsilon1 = qscale(epsilon, -2L);
417 qtmp1 = qalloc();
418 zsquare(q->num, &qtmp1->num);
419 zsquare(q->den, &ztmp);
420 zsub(ztmp, qtmp1->num, &qtmp1->den);
421 zfree(ztmp);
422 qtmp2 = qsqrt(qtmp1, epsilon1, 24);
423 qfree(qtmp1);
424 qtmp1 = qatan(qtmp2, epsilon);
426 qfree(qtmp2);
427 qfree(epsilon1);
428 if (neg) {
429 qtmp2 = qneg(qtmp1);
430 qfree(qtmp1);
431 return(qtmp2);
433 return qtmp1;
439 * Calculate the acos function.
440 * The result is in the range 0 to pi.
442 NUMBER *
443 qacos(NUMBER *q, NUMBER *epsilon)
445 NUMBER *q1, *q2, *epsilon1;
446 ZVALUE z;
448 if (qiszero(epsilon)) {
449 math_error("Zero epsilon value for acos");
450 /*NOTREACHED*/
452 if (qisone(q))
453 return qlink(&_qzero_);
454 if (qisnegone(q))
455 return qpi(epsilon);
457 z = q->num;
458 z.sign = 0;
459 if (zrel(z, q->den) > 0)
460 return NULL;
461 epsilon1 = qscale(epsilon, -3L); /* ??? */
462 q1 = qalloc();
463 zsub(q->den, q->num, &q1->num);
464 zadd(q->den, q->num, &q1->den);
465 q2 = qsqrt(q1, epsilon1, 24L);
466 qfree(q1);
467 qfree(epsilon1);
468 epsilon1 = qscale(epsilon, -1L);
469 q1 = qatan(q2, epsilon1);
470 qfree(epsilon1);
471 qfree(q2);
472 q2 = qscale(q1, 1L);
473 qfree(q1)
474 return q2;
479 * Calculate the arctangent function to the nearest or next to nearest
480 * multiple of epsilon. Algorithm uses
481 * atan(x) = 2 * atan(x/(1 + sqrt(1+x^2)))
482 * to reduce x to a small value and then
483 * atan(x) = x - x^3/3 + ...
485 NUMBER *
486 qatan(NUMBER *q, NUMBER *epsilon)
488 long m, k, i;
489 FULL d;
490 ZVALUE X, D, DD, sum, mul, term, ztmp1, ztmp2;
491 NUMBER *qtmp, *res;
492 BOOL sign;
494 if (qiszero(epsilon)) {
495 math_error("Zero epsilon value for arctangent");
496 /*NOTREACHED*/
498 if (qiszero(q))
499 return qlink(&_qzero_);
500 m = 12 - qilog2(epsilon);
501 /* 4 bits for 4 doublings; 8 for rounding */
502 if (m < 8)
503 m = 8; /* m is number of working binary digits */
504 qtmp = qscale(q, m);
505 zquo(qtmp->num, qtmp->den, &X, 24);
506 qfree(qtmp);
507 zbitvalue(m, &D); /* q has become X/D */
508 zsquare(D, &DD);
509 i = 4; /* maybe this should be larger */
510 while (i-- > 0 && !ziszero(X)) {
511 zsquare(X, &ztmp1);
512 zadd(ztmp1, DD, &ztmp2);
513 zfree(ztmp1);
514 zsqrt(ztmp2, &ztmp1, 24L);
515 zfree(ztmp2);
516 zadd(ztmp1, D, &ztmp2);
517 zfree(ztmp1);
518 zshift(X, m, &ztmp1);
519 zfree(X);
520 zquo(ztmp1, ztmp2, &X, 24L);
521 zfree(ztmp1);
522 zfree(ztmp2);
524 zfree(DD);
525 zfree(D);
526 if (ziszero(X)) {
527 zfree(X);
528 return qlink(&_qzero_);
530 zcopy(X, &sum);
531 zsquare(X, &ztmp1);
532 zshift(ztmp1, -m, &mul);
533 zfree(ztmp1);
534 d = 3;
535 sign = !X.sign;
536 for (;;) {
537 if (d > BASE) {
538 math_error("Too many terms required for atan");
539 /*NOTREACHED*/
541 zmul(X, mul, &ztmp1);
542 zfree(X);
543 zshift(ztmp1, -m, &X); /* X now (original X)^d */
544 zfree(ztmp1);
545 zdivi(X, d, &term);
546 if (ziszero(term)) {
547 zfree(term);
548 break;
550 term.sign = sign;
551 zadd(sum, term, &ztmp1);
552 zfree(sum);
553 zfree(term);
554 sum = ztmp1;
555 sign = !sign;
556 d += 2;
558 zfree(mul);
559 zfree(X);
560 qtmp = qalloc();
561 k = zlowbit(sum);
562 if (k) {
563 zshift(sum, -k, &qtmp->num);
564 zfree(sum);
565 } else {
566 qtmp->num = sum;
568 zbitvalue(m - 4 - k, &qtmp->den);
569 res = qmappr(qtmp, epsilon, 24L);
570 qfree(qtmp);
571 return res;
575 * Inverse secant function
577 NUMBER *
578 qasec(NUMBER *q, NUMBER *epsilon)
580 NUMBER *tmp, *res;
582 tmp = qinv(q);
583 res = qacos(tmp, epsilon);
584 qfree(tmp);
585 return res;
590 * Inverse cosecant function
592 NUMBER *
593 qacsc(NUMBER *q, NUMBER *epsilon)
595 NUMBER *tmp, *res;
597 tmp = qinv(q);
598 res = qasin(tmp, epsilon);
599 qfree(tmp);
600 return res;
605 * Inverse cotangent function
607 NUMBER *
608 qacot(NUMBER *q, NUMBER *epsilon)
610 NUMBER *tmp1, *tmp2, *tmp3, *epsilon1;
612 if (qiszero(epsilon)) {
613 math_error("Zero epsilon for acot");
614 /*NOTREACHED*/
616 if (qiszero(q)) {
617 epsilon1 = qscale(epsilon, 1L);
618 tmp1 = qpi(epsilon1);
619 qfree(epsilon1);
620 tmp2 = qscale(tmp1, -1L);
621 qfree(tmp1);
622 return tmp2;
624 tmp1 = qinv(q);
625 if (!qisneg(q)) {
626 tmp2 = qatan(tmp1, epsilon);
627 qfree(tmp1);
628 return tmp2;
630 epsilon1 = qscale(epsilon, -2L);
631 tmp2 = qatan(tmp1, epsilon1);
632 qfree(tmp1);
633 tmp1 = qpi(epsilon1);
634 qfree(epsilon1);
635 tmp3 = qqadd(tmp1, tmp2);
636 qfree(tmp1);
637 qfree(tmp2);
638 tmp1 = qmappr(tmp3, epsilon, 24L);
639 qfree(tmp3);
640 return tmp1;
645 * Calculate the angle which is determined by the point (x,y).
646 * This is the same as atan(y/x) for positive x, but is continuous
647 * except for y = 0, x <= 0. By convention, y is the first argument.
648 * For all x, y, -pi < atan2 <= pi. For example, qatan2(1, -1) = 3/4 * pi.
650 NUMBER *
651 qatan2(NUMBER *qy, NUMBER *qx, NUMBER *epsilon)
653 NUMBER *tmp1, *tmp2, *tmp3, *epsilon2;
655 if (qiszero(epsilon)) {
656 math_error("Zero epsilon value for atan2");
657 /*NOTREACHED*/
659 if (qiszero(qy) && qiszero(qx)) {
660 /* conform to 4.3BSD ANSI/IEEE 754-1985 math lib */
661 return qlink(&_qzero_);
664 * If the point is on the negative real axis, then the answer is pi.
666 if (qiszero(qy) && qisneg(qx))
667 return qpi(epsilon);
669 * If the point is in the right half plane, then use the normal atan.
671 if (!qisneg(qx) && !qiszero(qx)) {
672 if (qiszero(qy))
673 return qlink(&_qzero_);
674 tmp1 = qqdiv(qy, qx);
675 tmp2 = qatan(tmp1, epsilon);
676 qfree(tmp1);
677 return tmp2;
680 * The point is in the left half plane (x <= 0) with nonzero y.
681 * Calculate the angle by using the formula:
682 * atan2(y,x) = 2 * atan(sgn(y) * sqrt((x/y)^2 + 1) - x/y).
684 epsilon2 = qscale(epsilon, -4L);
685 tmp1 = qqdiv(qx, qy);
686 tmp2 = qsquare(tmp1);
687 tmp3 = qqadd(tmp2, &_qone_);
688 qfree(tmp2);
689 tmp2 = qsqrt(tmp3, epsilon2, 24L | (qy->num.sign * 64));
690 qfree(tmp3);
691 tmp3 = qsub(tmp2, tmp1);
692 qfree(tmp2);
693 qfree(tmp1);
694 qfree(epsilon2);
695 epsilon2 = qscale(epsilon, -1L);
696 tmp1 = qatan(tmp3, epsilon2);
697 qfree(epsilon2);
698 qfree(tmp3);
699 tmp2 = qscale(tmp1, 1L);
700 qfree(tmp1);
701 return tmp2;
706 * Calculate the value of pi to within the required epsilon.
707 * This uses the following formula which only needs integer calculations
708 * except for the final operation:
709 * pi = 1 / SUMOF(comb(2 * N, N) ^ 3 * (42 * N + 5) / 2 ^ (12 * N + 4)),
710 * where the summation runs from N=0. This formula gives about 6 bits of
711 * accuracy per term. Since the denominator for each term is a power of two,
712 * we can simply use shifts to sum the terms. The combinatorial numbers
713 * in the formula are calculated recursively using the formula:
714 * comb(2*(N+1), N+1) = 2 * comb(2 * N, N) * (2 * N + 1) / N.
716 NUMBER *
717 qpi(NUMBER *epsilon)
719 ZVALUE comb; /* current combinatorial value */
720 ZVALUE sum; /* current sum */
721 ZVALUE tmp1, tmp2;
722 NUMBER *r, *t1, qtmp;
723 long shift; /* current shift of result */
724 long N; /* current term number */
725 long bits; /* needed number of bits of precision */
726 long t;
728 if (qiszero(epsilon)) {
729 math_error("zero epsilon value for pi");
730 /*NOTREACHED*/
732 if (epsilon == pivalue[0])
733 return qlink(pivalue[1]);
734 if (pivalue[0]) {
735 qfree(pivalue[0]);
736 qfree(pivalue[1]);
738 bits = -qilog2(epsilon) + 4;
739 if (bits < 4)
740 bits = 4;
741 comb = _one_;
742 itoz(5L, &sum);
743 N = 0;
744 shift = 4;
745 do {
746 t = 1 + (++N & 0x1);
747 (void) zdivi(comb, N / (3 - t), &tmp1);
748 zfree(comb);
749 zmuli(tmp1, t * (2 * N - 1), &comb);
750 zfree(tmp1);
751 zsquare(comb, &tmp1);
752 zmul(comb, tmp1, &tmp2);
753 zfree(tmp1);
754 zmuli(tmp2, 42 * N + 5, &tmp1);
755 zfree(tmp2);
756 zshift(sum, 12L, &tmp2);
757 zfree(sum);
758 zadd(tmp1, tmp2, &sum);
759 t = zhighbit(tmp1);
760 zfree(tmp1);
761 zfree(tmp2);
762 shift += 12;
763 } while ((shift - t) < bits);
764 zfree(comb);
765 qtmp.num = _one_;
766 qtmp.den = sum;
767 t1 = qscale(&qtmp, shift);
768 zfree(sum);
769 r = qmappr(t1, epsilon, 24L);
770 qfree(t1);
771 pivalue[0] = qlink(epsilon);
772 pivalue[1] = qlink(r);
773 return r;
777 * Calculate the exponential function to the nearest or next to nearest
778 * multiple of the positive number epsilon.
780 NUMBER *
781 qexp(NUMBER *q, NUMBER *epsilon)
783 long m, n;
784 NUMBER *tmp1, *tmp2;
786 if (qiszero(epsilon)) {
787 math_error("Zero epsilon value for exp");
788 /*NOTREACHED*/
790 if (qiszero(q))
791 return qlink(&_qone_);
792 tmp1 = qmul(q, &_qlge_);
793 m = qtoi(tmp1); /* exp(q) < 2^(m+1) or m == MAXLONG */
794 qfree(tmp1);
796 if (m > (1 << 30))
797 return NULL;
799 n = qilog2(epsilon); /* 2^n <= epsilon < 2^(n+1) */
800 if (m < n)
801 return qlink(&_qzero_);
802 tmp1 = qqabs(q);
803 tmp2 = qexprel(tmp1, m - n + 1);
804 qfree(tmp1);
805 if (tmp2 == NULL)
806 return NULL;
807 if (qisneg(q)) {
808 tmp1 = qinv(tmp2);
809 qfree(tmp2);
810 tmp2 = tmp1;
812 tmp1 = qmappr(tmp2, epsilon, 24L);
813 qfree(tmp2);
814 return tmp1;
819 * Calculate the exponential function with relative error corresponding
820 * to a specified number of significant bits
821 * Requires *q >= 0, bitnum >= 0.
822 * This returns NULL if more than 2^30 working bits would be required.
824 S_FUNC NUMBER *
825 qexprel(NUMBER *q, long bitnum)
827 long n, m, k, h, s, t, d;
828 NUMBER *qtmp1;
829 ZVALUE X, B, sum, term, ztmp1, ztmp2;
831 h = qilog2(q);
832 k = bitnum + h + 1;
833 if (k < 0)
834 return qlink(&_qone_);
835 s = k;
836 if (k) {
837 do {
838 t = s;
839 s = (s + k/s)/2;
841 while (t > s);
842 } /* s is int(sqrt(k)) */
843 s++;
844 if (s < -h)
845 s = -h;
846 n = h + s; /* n is number of squarings that will be required */
847 m = bitnum + n;
848 if (m > (1 << 30))
849 return NULL;
850 while (s > 0) { /* increasing m by ilog2(s) */
851 s >>= 1;
852 m++;
853 } /* m is working number of bits */
854 qtmp1 = qscale(q, m - n);
855 zquo(qtmp1->num, qtmp1->den, &X, 24);
856 qfree(qtmp1);
857 if (ziszero(X)) {
858 zfree(X);
859 return qlink(&_qone_);
861 zbitvalue(m, &sum);
862 zcopy(X, &term);
863 d = 1;
864 do {
865 zadd(sum, term, &ztmp1);
866 zfree(sum);
867 sum = ztmp1;
868 zmul(term, X, &ztmp1);
869 zfree(term);
870 zshift(ztmp1, -m, &ztmp2);
871 zfree(ztmp1);
872 zdivi(ztmp2, ++d, &term);
873 zfree(ztmp2);
875 while (!ziszero(term));
876 zfree(term);
877 zfree(X);
878 k = 0;
879 zbitvalue(2 * m + 1, &B);
880 while (n-- > 0) {
881 k *= 2;
882 zsquare(sum, &ztmp1);
883 zfree(sum);
884 if (zrel(ztmp1, B) >= 0) {
885 zshift(ztmp1, -m - 1, &sum);
886 k++;
887 } else {
888 zshift(ztmp1, -m, &sum);
890 zfree(ztmp1);
892 zfree(B);
893 h = zlowbit(sum);
894 qtmp1 = qalloc();
895 if (m > h + k) {
896 zshift(sum, -h, &qtmp1->num);
897 zbitvalue(m - h - k, &qtmp1->den);
899 else
900 zshift(sum, k - m, &qtmp1->num);
901 zfree(sum);
902 return qtmp1;
907 * Calculate the natural logarithm of a number accurate to the specified
908 * positive epsilon.
910 NUMBER *
911 qln(NUMBER *q, NUMBER *epsilon)
913 long m, n, k, h, d;
914 ZVALUE term, sum, mul, pow, X, D, B, ztmp;
915 NUMBER *qtmp, *res;
916 BOOL neg;
918 if (qiszero(q) || qiszero(epsilon)) {
919 math_error("logarithm of 0");
920 /*NOTREACHED*/
922 if (qisunit(q))
923 return qlink(&_qzero_);
924 q = qqabs(q); /* Ignore sign of q */
925 neg = (zrel(q->num, q->den) < 0);
926 if (neg) {
927 qtmp = qinv(q);
928 qfree(q);
929 q = qtmp;
931 k = qilog2(q);
932 m = -qilog2(epsilon); /* m will be number of working bits */
933 if (m < 0)
934 m = 0;
935 h = k;
936 while (h > 0) {
937 h /= 2;
938 m++; /* Add 1 for each sqrt until X < 2 */
940 m += 18; /* 8 more sqrts, 8 for rounding, 2 for epsilon/4 */
941 qtmp = qscale(q, m - k);
942 zquo(qtmp->num, qtmp->den, &X, 24L);
943 qfree(q);
944 qfree(qtmp);
946 zbitvalue(m, &D); /* Now "q" = X/D */
947 zbitvalue(m - 8, &ztmp);
948 zadd(D, ztmp, &B); /* Will take sqrts until X <= B */
949 zfree(ztmp);
951 n = 1; /* n is to count 1 + number of sqrts */
953 while (k > 0 || zrel(X, B) > 0) {
954 n++;
955 zshift(X, m + (k & 1), &ztmp);
956 zfree(X);
957 zsqrt(ztmp, &X, 24);
958 zfree(ztmp)
959 k /= 2;
961 zfree(B);
962 zsub(X, D, &pow); /* pow, mul used as tmps */
963 zadd(X, D, &mul);
964 zfree(X);
965 zfree(D);
966 zshift(pow, m, &ztmp);
967 zfree(pow);
968 zquo(ztmp, mul, &pow, 24); /* pow now (X - D)/(X + D) */
969 zfree(ztmp);
970 zfree(mul);
972 zcopy(pow, &sum); /* pow is first term of sum */
973 zsquare(pow, &ztmp);
974 zshift(ztmp, -m, &mul); /* mul is now multiplier for powers */
975 zfree(ztmp);
977 d = 1;
978 for (;;) {
979 zmul(pow, mul, &ztmp);
980 zfree(pow);
981 zshift(ztmp, -m, &pow);
982 zfree(ztmp);
983 d += 2;
984 zdivi(pow, d, &term); /* Round down div should be round off */
985 if (ziszero(term)) {
986 zfree(term);
987 break;
989 zadd(sum, term, &ztmp);
990 zfree(term);
991 zfree(sum);
992 sum = ztmp;
994 zfree(pow);
995 zfree(mul);
996 qtmp = qalloc(); /* qtmp is to be 2^n * sum / 2^m */
997 k = zlowbit(sum);
998 sum.sign = neg;
999 if (k + n >= m) {
1000 zshift(sum, n - m, &qtmp->num);
1001 } else {
1002 if (k) {
1003 zshift(sum, -k, &qtmp->num);
1004 zfree(sum);
1005 } else {
1006 qtmp->num = sum;
1008 zbitvalue(m - k - n, &qtmp->den);
1010 res = qmappr(qtmp, epsilon, 24L);
1011 qfree(qtmp);
1012 return res;
1017 * Calculate the base 10 logarithm
1019 * log(q) = ln(q) / ln(10)
1021 NUMBER *
1022 qlog(NUMBER *q, NUMBER *epsilon)
1024 int need_new_ln_10 = TRUE; /* FALSE => use cached ln_10 value */
1025 NUMBER *ln_q; /* ln(x) */
1026 NUMBER *ret; /* base 10 logarithm of x */
1028 /* firewall */
1029 if (qiszero(q) || qiszero(epsilon)) {
1030 math_error("logarithm of 0");
1031 /*NOTREACHED*/
1035 * shortcut for small integer powers of 10
1037 if (qisint(q) && qispos(q) && !zge8192b(q->num) && ziseven(q->num)) {
1038 BOOL is_10_power; /* TRUE ==> q is a power of 10 */
1039 long ilog_10; /* integer log base 10 */
1041 /* try for a quick small power of 10 log */
1042 ilog_10 = zlog10(q->num, &is_10_power );
1043 if (is_10_power == TRUE) {
1044 /* is small power of 10, return log */
1045 return itoq(ilog_10);
1047 /* q is an even integer that is not a power of 10 */
1051 * compute ln(c) first
1053 ln_q = qln(q, epsilon);
1054 /* log(1) == 0 */
1055 if (qiszero(ln_q)) {
1056 return ln_q;
1060 * save epsilon for ln(10) if needed
1062 if (ln_10_epsilon == NULL) {
1063 /* first time call */
1064 ln_10_epsilon = qcopy(epsilon);
1065 } else if (qcmp(ln_10_epsilon, epsilon) == TRUE) {
1066 /* replaced cacheed value with epsilon arg */
1067 qfree(ln_10_epsilon);
1068 ln_10_epsilon = qcopy(epsilon);
1069 } else if (ln_10 != NULL) {
1070 /* the previously computed ln(2) is OK to use */
1071 need_new_ln_10 = FALSE;
1075 * compute ln(10) if needed
1077 if (need_new_ln_10 == TRUE) {
1078 if (ln_10 != NULL) {
1079 qfree(ln_10);
1081 ln_10 = qln(&_qten_, ln_10_epsilon);
1085 * return ln(q) / ln(10)
1087 ret = qqdiv(ln_q, ln_10);
1088 qfree(ln_q);
1089 return ret;
1094 * Calculate the result of raising one number to the power of another.
1095 * The result is calculated to the nearest or next to nearest multiple of
1096 * epsilon.
1098 NUMBER *
1099 qpower(NUMBER *q1, NUMBER *q2, NUMBER *epsilon)
1101 NUMBER *tmp1, *tmp2, *epsilon2;
1102 NUMBER *q1tmp, *q2tmp;
1103 long m, n;
1105 if (qiszero(epsilon)) {
1106 math_error("Zero epsilon for power");
1107 /*NOTREACHED*/
1109 if (qiszero(q1) && qisneg(q2)) {
1110 math_error("Negative power of zero");
1111 /*NOTREACHED*/
1113 if (qiszero(q2) || qisone(q1))
1114 return qlink(&_qone_);
1115 if (qiszero(q1))
1116 return qlink(&_qzero_);
1117 if (qisneg(q1)) {
1118 math_error("Negative base for qpower");
1119 /*NOTREACHED*/
1121 if (qisone(q2))
1122 return qmappr(q1, epsilon, 24);
1123 if (zrel(q1->num, q1->den) < 0) {
1124 q1tmp = qinv(q1);
1125 q2tmp = qneg(q2);
1126 } else {
1127 q1tmp = qlink(q1);
1128 q2tmp = qlink(q2);
1130 if (qisone(q2tmp)) {
1131 qfree(q2tmp);
1132 q2tmp = qmappr(q1tmp, epsilon, 24);
1133 qfree(q1tmp);
1134 return q2tmp;
1136 m = qilog2(q1tmp);
1137 n = qilog2(epsilon);
1138 if (qisneg(q2tmp)) {
1139 if (m > 0) {
1140 tmp1 = itoq(m);
1141 tmp2 = qmul(tmp1, q2tmp);
1142 m = qtoi(tmp2);
1143 } else {
1144 tmp1 = qdec(q1tmp);
1145 tmp2 = qqdiv(tmp1, q1tmp);
1146 qfree(tmp1);
1147 tmp1 = qmul(tmp2, q2tmp);
1148 qfree(tmp2);
1149 tmp2 = qmul(tmp1, &_qlge_);
1150 m = qtoi(tmp2);
1152 } else {
1153 if (m > 0) {
1154 tmp1 = itoq(m + 1);
1155 tmp2 = qmul(tmp1, q2tmp);
1156 m = qtoi(tmp2);
1157 } else {
1158 tmp1 = qdec(q1tmp);
1159 tmp2 = qmul(tmp1, q2tmp);
1160 qfree(tmp1);
1161 tmp1 = qmul(tmp2, &_qlge_);
1162 m = qtoi(tmp1);
1165 qfree(tmp1);
1166 qfree(tmp2);
1167 if (m > (1 << 30)) {
1168 qfree(q1tmp);
1169 qfree(q2tmp);
1170 return NULL;
1172 m += 1;
1173 if (m < n) {
1174 qfree(q1tmp);
1175 qfree(q2tmp);
1176 return qlink(&_qzero_);
1178 tmp1 = qqdiv(epsilon, q2tmp);
1179 tmp2 = qscale(tmp1, -m - 4);
1180 epsilon2 = qqabs(tmp2);
1181 qfree(tmp1);
1182 qfree(tmp2);
1183 tmp1 = qln(q1tmp, epsilon2);
1184 qfree(epsilon2);
1185 tmp2 = qmul(tmp1, q2tmp);
1186 qfree(tmp1);
1187 qfree(q1tmp);
1188 qfree(q2tmp);
1189 if (qisneg(tmp2)) {
1190 tmp1 = qneg(tmp2);
1191 qfree(tmp2);
1192 tmp2 = qexprel(tmp1, m - n + 3);
1193 if (tmp2 == NULL) {
1194 qfree(tmp1);
1195 return NULL;
1197 qfree(tmp1);
1198 tmp1 = qinv(tmp2);
1199 } else {
1200 tmp1 = qexprel(tmp2, m - n + 3) ;
1201 if (tmp1 == NULL) {
1202 qfree(tmp2);
1203 return NULL;
1206 qfree(tmp2);
1207 tmp2 = qmappr(tmp1, epsilon, 24L);
1208 qfree(tmp1);
1209 return tmp2;
1214 * Calculate the Kth root of a number to within the specified accuracy.
1216 NUMBER *
1217 qroot(NUMBER *q1, NUMBER *q2, NUMBER *epsilon)
1219 NUMBER *tmp1, *tmp2;
1220 int neg;
1222 if (qiszero(epsilon)) {
1223 math_error("Zero epsilon for root");
1224 /*NOTREACHED*/
1226 if (qisneg(q2) || qiszero(q2) || qisfrac(q2)) {
1227 math_error("Taking bad root of number");
1228 /*NOTREACHED*/
1230 if (qiszero(q1) || qisone(q1) || qisone(q2))
1231 return qlink(q1);
1232 if (qistwo(q2))
1233 return qsqrt(q1, epsilon, 24L);
1234 neg = qisneg(q1);
1235 if (neg) {
1236 if (ziseven(q2->num)) {
1237 math_error("Taking even root of negative number");
1238 /*NOTREACHED*/
1240 q1 = qqabs(q1);
1242 tmp2 = qinv(q2);
1243 tmp1 = qpower(q1, tmp2, epsilon);
1244 qfree(tmp2);
1245 if (tmp1 == NULL)
1246 return NULL;
1247 if (neg) {
1248 tmp2 = qneg(tmp1);
1249 qfree(tmp1);
1250 tmp1 = tmp2;
1252 return tmp1;
1256 /* Calculate the hyperbolic cosine function to the nearest or next to
1257 * nearest multiple of epsilon.
1258 * This is calculated using cosh(x) = (exp(x) + 1/exp(x))/2;
1260 NUMBER *
1261 qcosh(NUMBER *q, NUMBER *epsilon)
1263 NUMBER *tmp1, *tmp2, *tmp3, *epsilon1;
1265 epsilon1 = qscale(epsilon, -2);
1266 tmp1 = qqabs(q);
1267 tmp2 = qexp(tmp1, epsilon1);
1268 qfree(tmp1);
1269 qfree(epsilon1);
1270 if (tmp2 == NULL)
1271 return NULL;
1272 tmp1 = qinv(tmp2);
1273 tmp3 = qqadd(tmp1, tmp2);
1274 qfree(tmp1)
1275 qfree(tmp2)
1276 tmp1 = qscale(tmp3, -1);
1277 qfree(tmp3);
1278 tmp2 = qmappr(tmp1, epsilon, 24L);
1279 qfree(tmp1);
1280 return tmp2;
1285 * Calculate the hyperbolic sine to the nearest or next to nearest
1286 * multiple of epsilon.
1287 * This is calculated using sinh(x) = (exp(x) - 1/exp(x))/2.
1289 NUMBER *
1290 qsinh(NUMBER *q, NUMBER *epsilon)
1292 NUMBER *tmp1, *tmp2, *tmp3, *epsilon1;
1294 if (qiszero(q))
1295 return qlink(&_qzero_);
1296 epsilon1 = qscale(epsilon, -3);
1297 tmp1 = qqabs(q);
1298 tmp2 = qexp(tmp1, epsilon1);
1299 qfree(tmp1);
1300 qfree(epsilon1);
1301 if (tmp2 == NULL)
1302 return NULL;
1303 tmp1 = qinv(tmp2);
1304 tmp3 = qispos(q) ? qsub(tmp2, tmp1) : qsub(tmp1, tmp2);
1305 qfree(tmp1)
1306 qfree(tmp2)
1307 tmp1 = qscale(tmp3, -1);
1308 qfree(tmp3);
1309 tmp2 = qmappr(tmp1, epsilon, 24L);
1310 qfree(tmp1);
1311 return tmp2;
1316 * Calculate the hyperbolic tangent to the nearest or next to nearest
1317 * multiple of epsilon.
1318 * This is calculated using the formulae:
1319 * tanh(x) = 1 or -1 for very large abs(x)
1320 * tanh(x) = (+ or -)(1 - 2 * exp(2 * x)) for large abx(x)
1321 * tanh(x) = (exp(2*x) - 1)/(exp(2*x) + 1) otherwise
1323 NUMBER *
1324 qtanh(NUMBER *q, NUMBER *epsilon)
1326 NUMBER *tmp1, *tmp2, *tmp3;
1327 long n, m;
1329 n = qilog2(epsilon);
1330 if (n > 0 || qiszero(q))
1331 return qlink(&_qzero_);
1332 n = -n;
1333 tmp1 = qqabs(q);
1334 tmp2 = qmul(tmp1, &_qlge_);
1335 m = qtoi(tmp2); /* exp(|q|) < 2^(m+1) or m == MAXLONG */
1336 qfree(tmp2);
1337 if (m > 1 + n/2) {
1338 qfree(tmp1);
1339 return q->num.sign ? qlink(&_qnegone_) : qlink(&_qone_);
1341 tmp2 = qscale(tmp1, 1);
1342 qfree(tmp1);
1343 tmp1 = qexprel(tmp2, 2 + n);
1344 qfree(tmp2);
1345 if (m > 1 + n/4) {
1346 tmp2 = qqdiv(&_qtwo_, tmp1);
1347 qfree(tmp1);
1348 tmp1 = qsub(&_qone_, tmp2);
1349 qfree(tmp2);
1350 } else {
1351 tmp2 = qdec(tmp1);
1352 tmp3 = qinc(tmp1);
1353 qfree(tmp1);
1354 tmp1 = qqdiv(tmp2, tmp3);
1355 qfree(tmp2);
1356 qfree(tmp3);
1358 tmp2 = qmappr(tmp1, epsilon, 24L);
1359 qfree(tmp1);
1360 if (qisneg(q)) {
1361 tmp1 = qneg(tmp2);
1362 qfree(tmp2);
1363 return tmp1;
1365 return tmp2;
1370 * Hyperbolic cotangent.
1371 * Calculated using coth(x) = 1 + 2/(exp(2*x) - 1)
1373 NUMBER *
1374 qcoth(NUMBER *q, NUMBER *epsilon)
1376 NUMBER *tmp1, *tmp2, *res;
1377 long n, k;
1379 if (qiszero(epsilon)) {
1380 math_error("Zero epsilon value for coth");
1381 /*NOTREACHED*/
1383 if (qiszero(q)) {
1384 math_error("Zero argument for coth");
1385 /*NOTREACHED*/
1387 tmp1 = qscale(q, 1);
1388 tmp2 = qqabs(tmp1);
1389 qfree(tmp1);
1390 k = qilog2(tmp2);
1391 n = qilog2(epsilon);
1392 if (k > 0) {
1393 tmp1 = qmul(&_qlge_, tmp2);
1394 k = qtoi(tmp1);
1395 qfree(tmp1);
1396 } else {
1397 k = 2 * k;
1399 k = 4 - k - n;
1400 if (k < 4)
1401 k = 4;
1402 tmp1 = qexprel(tmp2, k);
1403 qfree(tmp2);
1404 tmp2 = qdec(tmp1);
1405 qfree(tmp1);
1406 if (qiszero(tmp2)) {
1407 math_error("This should not happen ????");
1408 /*NOTREACHED*/
1410 tmp1 = qinv(tmp2);
1411 qfree(tmp2);
1412 tmp2 = qscale(tmp1, 1);
1413 qfree(tmp1);
1414 tmp1 = qinc(tmp2);
1415 qfree(tmp2);
1416 if (qisneg(q)) {
1417 tmp2 = qneg(tmp1);
1418 qfree(tmp1);
1419 tmp1 = tmp2;
1421 res = qmappr(tmp1, epsilon, 24L);
1422 qfree(tmp1);
1423 return res;
1427 NUMBER *
1428 qsech(NUMBER *q, NUMBER *epsilon)
1430 NUMBER *tmp1, *tmp2, *tmp3, *res;
1431 long n, k;
1433 if (qiszero(epsilon)) {
1434 math_error("Zero epsilon value for sech");
1435 /*NOTREACHED*/
1437 if (qiszero(q))
1438 return qlink(&_qone_);
1440 tmp1 = qqabs(q);
1441 k = 0;
1442 if (zrel(tmp1->num, tmp1->den) >= 0) {
1443 tmp2 = qmul(&_qlge_, tmp1);
1444 k = qtoi(tmp2);
1445 qfree(tmp2);
1447 n = qilog2(epsilon);
1448 if (k + n > 1) {
1449 qfree(tmp1);
1450 return qlink(&_qzero_);
1452 tmp2 = qexprel(tmp1, 4 - k - n);
1453 qfree(tmp1);
1454 tmp1 = qinv(tmp2);
1455 tmp3 = qqadd(tmp1, tmp2);
1456 qfree(tmp1);
1457 qfree(tmp2);
1458 tmp1 = qinv(tmp3);
1459 qfree(tmp3);
1460 tmp2 = qscale(tmp1, 1);
1461 qfree(tmp1);
1462 res = qmappr(tmp2, epsilon, 24L);
1463 qfree(tmp2);
1464 return res;
1468 NUMBER *
1469 qcsch(NUMBER *q, NUMBER *epsilon)
1471 NUMBER *tmp1, *tmp2, *tmp3, *res;
1472 long n, k;
1474 if (qiszero(epsilon)) {
1475 math_error("Zero epsilon value for csch");
1476 /*NOTREACHED*/
1478 if (qiszero(q)) {
1479 math_error("Zero argument for csch");
1480 /*NOTREACHED*/
1483 n = qilog2(epsilon);
1484 tmp1 = qqabs(q);
1485 if (zrel(tmp1->num, tmp1->den) >= 0) {
1486 tmp2 = qmul(&_qlge_, tmp1);
1487 k = qtoi(tmp2);
1488 qfree(tmp2);
1489 } else {
1490 k = 2 * qilog2(tmp1);
1492 if (k + n >= 1) {
1493 qfree(tmp1);
1494 return qlink(&_qzero_);
1496 tmp2 = qexprel(tmp1, 4 - k - n);
1497 qfree(tmp1);
1498 tmp1 = qinv(tmp2);
1499 if (qisneg(q))
1500 tmp3 = qsub(tmp1, tmp2);
1501 else
1502 tmp3 = qsub(tmp2, tmp1);
1503 qfree(tmp1);
1504 qfree(tmp2);
1505 tmp1 = qinv(tmp3);
1506 qfree(tmp3)
1507 tmp2 = qscale(tmp1, 1);
1508 qfree(tmp1);
1509 res = qmappr(tmp2, epsilon, 24L);
1510 qfree(tmp2);
1511 return res;
1516 * Compute the hyperbolic arccosine within the specified accuracy.
1517 * This is calculated using the formula:
1518 * acosh(x) = ln(x + sqrt(x^2 - 1)).
1520 NUMBER *
1521 qacosh(NUMBER *q, NUMBER *epsilon)
1523 NUMBER *tmp1, *tmp2, *epsilon1;
1524 long n;
1526 if (qiszero(epsilon)) {
1527 math_error("Zero epsilon value for acosh");
1528 /*NOTREACHED*/
1530 if (qisone(q))
1531 return qlink(&_qzero_);
1532 if (zrel(q->num, q->den) < 0)
1533 return NULL;
1534 n = qilog2(epsilon);
1535 epsilon1 = qbitvalue(n - 3);
1536 tmp1 = qsquare(q);
1537 tmp2 = qdec(tmp1);
1538 qfree(tmp1);
1539 tmp1 = qsqrt(tmp2, epsilon1, 24L);
1540 qfree(tmp2);
1541 tmp2 = qqadd(tmp1, q);
1542 qfree(tmp1);
1543 tmp1 = qln(tmp2, epsilon1);
1544 qfree(tmp2);
1545 qfree(epsilon1);
1546 tmp2 = qmappr(tmp1, epsilon, 24L);
1547 qfree(tmp1);
1548 return tmp2;
1553 * Compute the hyperbolic arcsine within the specified accuracy.
1554 * This is calculated using the formula:
1555 * asinh(x) = ln(x + sqrt(x^2 + 1)).
1557 NUMBER *
1558 qasinh(NUMBER *q, NUMBER *epsilon)
1560 NUMBER *tmp1, *tmp2, *epsilon1;
1561 long n;
1562 BOOL neg;
1564 if (qiszero(epsilon)) {
1565 math_error("Zero epsilon value for asinh");
1566 /*NOTREACHED*/
1568 if (qiszero(q))
1569 return qlink(&_qzero_);
1570 neg = qisneg(q);
1571 q = qqabs(q);
1572 n = qilog2(epsilon);
1573 epsilon1 = qbitvalue(n - 3);
1574 tmp1 = qsquare(q);
1575 tmp2 = qinc(tmp1);
1576 qfree(tmp1);
1577 tmp1 = qsqrt(tmp2, epsilon1, 24L);
1578 qfree(tmp2);
1579 tmp2 = qqadd(tmp1, q);
1580 qfree(tmp1);
1581 tmp1 = qln(tmp2, epsilon1);
1582 qfree(tmp2);
1583 qfree(q);
1584 qfree(epsilon1);
1585 tmp2 = qmappr(tmp1, epsilon, 24L);
1586 if (neg) {
1587 tmp1 = qneg(tmp2);
1588 qfree(tmp2);
1589 return tmp1;
1591 return tmp2;
1596 * Compute the hyperbolic arctangent within the specified accuracy.
1597 * This is calculated using the formula:
1598 * atanh(x) = ln((1 + x) / (1 - x)) / 2.
1600 NUMBER *
1601 qatanh(NUMBER *q, NUMBER *epsilon)
1603 NUMBER *tmp1, *tmp2, *tmp3, *epsilon1;
1604 ZVALUE z;
1606 if (qiszero(epsilon)) {
1607 math_error("Zero epsilon value for atanh");
1608 /*NOTREACHED*/
1610 if (qiszero(q))
1611 return qlink(&_qzero_);
1612 z = q->num;
1613 z.sign = 0;
1614 if (zrel(z, q->den) >= 0)
1615 return NULL;
1616 tmp1 = qinc(q);
1617 tmp2 = qsub(&_qone_, q);
1618 tmp3 = qqdiv(tmp1, tmp2);
1619 qfree(tmp1);
1620 qfree(tmp2);
1621 epsilon1 = qscale(epsilon, 1L);
1622 tmp1 = qln(tmp3, epsilon1);
1623 qfree(tmp3);
1624 tmp2 = qscale(tmp1, -1L);
1625 qfree(tmp1);
1626 qfree(epsilon1);
1627 return tmp2;
1632 * Inverse hyperbolic secant function
1634 NUMBER *
1635 qasech(NUMBER *q, NUMBER *epsilon)
1637 NUMBER *tmp, *res;
1639 tmp = qinv(q);
1640 res = qacosh(tmp, epsilon);
1641 qfree(tmp);
1642 return res;
1647 * Inverse hyperbolic cosecant function
1649 NUMBER *
1650 qacsch(NUMBER *q, NUMBER *epsilon)
1652 NUMBER *tmp, *res;
1654 tmp = qinv(q);
1655 res = qasinh(tmp, epsilon);
1656 qfree(tmp);
1657 return res;
1662 * Inverse hyperbolic cotangent function
1664 NUMBER *
1665 qacoth(NUMBER *q, NUMBER *epsilon)
1667 NUMBER *tmp, *res;
1669 tmp = qinv(q);
1670 res = qatanh(tmp, epsilon);
1671 qfree(tmp);
1672 return res;